Topology of 3-Manifolds

Exercise sheet 6

Exercise 1.

(a) Construct two linked oriented knots with vanishing linking numbers.
(b) Let K_{1} and K_{2} oriented knots in S^{3}. Let Σ_{2} be a Seifert surface of K_{2}, see the bonus exercise from Sheet 2. Then the linking number of K_{1} and K_{2} can be computed as

$$
\operatorname{lk}\left(K_{1}, K_{2}\right)=K_{1} \bullet \Sigma_{2}
$$

where $K_{1} \bullet \Sigma_{2}$ denotes the oriented count of transverse intersections of K_{1} and Σ_{2}.

Exercise 2.

(a) (-1)-surgery along the right-handed trefoil yields the same manifold as $(+1)$-surgery along the figure eight.
(b) Show that all three surgery descriptions in Figure 1 represent the Poincaré homology sphere.

Abbildung 1: Three more surgery presentations of the Poincaré homology sphere.

Exercise 3.

(a) The lens spaces $L(p, q)$ and $L(p, q+n p)$ are homeomorphic for every integer $n \in \mathbb{Z}$.
(b) If $q q^{\prime} \equiv 1 \bmod (p)$, then the lens spaces $L(p, q)$ and $L\left(p, q^{\prime}\right)$ are homeomorphic.
(c) Moreover, are $L(-p, q), L(p,-q)$ and $-L(p, q)$ orientation preserving homeomorphic.

Remark: The relations from $(a),(b)$ and (c) give the complete classification of lens spaces up to orientation preserving homeomorphisms. However, the classification of lens spaces up to homotopy equivalence differs. Two lens spaces $L(p, q)$ and $L\left(p, q^{\prime}\right)$ are orientation preserving homotopy equivalent if and only if $q q^{\prime}$ is a square $\bmod (p)$. For example $L(7,1)$ and $L(7,2)$ are homotopy equivalent but not homeomorphic.
(d) (+5)-surgery along the right-handed trefoil yields yields a lens space.
(e) Describe a surgery presentation of the connected sum of any two lens spaces.
(f) (+6)-surgery along the right-handed trefoil yields the connected sum of two lens spaces.

Exercise 4.

(a) Compute the homology groups of a 3-manifold from one of its surgery presentations, i.e. prove Lemma 5.8 from the lecture.
(b) Show that, we cannot get the 3 -torus T^{3} by surgery along a link with less than 3 components. Describe a surgery diagram of the 3 -torus along a 3 -component link.
(c) For every natural number $k \in \mathbb{N}$ there exists a 3-manifold that can be obtained by surgery along k-component link but not along a link with less than k components.

Bonus exercise.

(a) Describe a Heegaard splitting of the Poincaré homolgy sphere P.

Bonus: How can we get a Heegaard splitting of a 3-manifold M from one of its surgery presentations?
Hint: Use Exercise 1 (a) from Sheet 5 and try to reverse the proof of Theorem 5.8.
(b) Use the Heegaard splitting of P from (a) and Exercise $1(a)$ from Sheet 4 to verify that the fundamental group of P is isomorphic to the binary icosahedral group

$$
I^{*}:=\left\langle a, b \mid a^{5}=b^{3}=(b a)^{2}\right\rangle
$$

(c) Describe a way to compute the fundamental group of a 3-manifold directly from one of its surgery descriptions and compute the fundamental group of P directly from its surgery diagram.
Hint: Use part (c) from the bonus exercise from Sheet 1.

This sheet will be discussed in the exercise session on 10.7. and should be solved by then.

