WS 2020/2021 Marc Kegel

Topology II

Exercise sheet 11

Exercise 1.

Let X and Y be connected CW-complexes. We denote by $p_X \colon X \vee Y \to X$ and $p_Y \colon X \vee Y \to Y$ the projection maps.

- (a) Show that $p_X^* \oplus p_Y^* : H^k(X;R) \oplus H^k(Y;R) \to H^k(X \vee Y;R)$ is an isomorphism for all $k \in \mathbb{N}$.
- (b) The cup product $p_X^*(\alpha) \cup p_Y^*(\beta)$ is vanishing for all α and β of non-trivial degree.
- (c) Compute the cup product on the cohomology $H^*(\Sigma_2)$ of the genus 2 surface Σ_2 . Hint: Consider maps $\Sigma_2 \to T^2$ and $\Sigma_2 \to T^2 \vee T^2$ and use the calculation of the cup product of T^2 from the lecture.

Bonus: What is the cup product of a general genus-g surface Σ_g ?

Exercise 2.

We consider the ideal I in the polynomial ring $\mathbb{Z}[x_1,\ldots,x_n]$ generated by x_i^2 and $x_ix_j+x_jx_i$ for all $i,j=1,\ldots,n$. The **exterior algebra** $\Lambda[x_1,\ldots,x_n]$ is defined to be $\mathbb{Z}[x_1,\ldots,x_n]/I$, where the product is usually denote by Λ and $\operatorname{deg}(x_j):=1$.

(a) $\Lambda[x_1,\ldots,x_n]$ is a free abelian group of rank 2^n where a basis is given by

$$\{x_{k_1} \wedge \cdots \wedge x_{k_l} | k_1 < \cdots < k_l\}.$$

- (b) $\Lambda[x_1,\ldots,x_n]$ is isomorphic to $\Lambda[x_1,\ldots,x_{n-1}]\otimes \mathbb{Z}[x_n]/(x_n^2)$, where $\deg(x_n):=1$.
- (c) The cohomology ring of the *n*-torus $H^*(T^n)$ is isomorphic to $\Lambda[x_1,\ldots,x_n]$.
- (d) Show that

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0,$$

by computing the Euler characteristic $\chi(T^n)$ via the alternating ranks of its cohomology groups (using the universal coefficient theorem) and directly via a cell structure of T^n .

Exercise 3.

Let M and N be closed oriented n-manifolds and $f: M \to N$ a map. Then the induced map on cohomology $f^*: H^n(N; G) \to H^n(M; G)$ is the multiplication by $\deg(f)$.

Exercise 4.

- (a) Show that $\mathbb{R}P^3$ and $\mathbb{R}P^2 \vee S^3$ have isomorphic homology and cohomology groups but different cohomology rings and thus are not homotopy equivalent.
- (b) Use the cup product to show that there is no map $\mathbb{R}P^n \to \mathbb{R}P^m$ inducing a nontrivial map on first cohomology with \mathbb{Z}_2 -coefficients if n > m.
- (c) Deduce from (b) the Borsuk–Ulam theorem.

Bonus exercise 1.

Let $\{A_k\}_{k\in\mathbb{N}}$ be a sequence of finitely generated abelian groups. We assume that A_1 is free abelian. Show that there exists a connected CW-complex X such that for any $k\in\mathbb{N}$ we have $H^k(X)\cong A_k$.

Remark: In contrast to homology groups, not every sequence of abelian groups can occur as cohomology groups of spaces. In [D. KAN AND G. WHITEHEAD, On the realizability of singular cohomology groups, Proc. Amer. Math. Soc. 12 (1961), 24–25] it is shown that there is no space X such that $H^k(X) = 0$ and $H^{k+1}(X) \cong \mathbb{Q}$.

It is unknown if \mathbb{Q} can occur as cohomology group of a topological space at all.

Bonus exercise 2.

Let X be a CW-complex. The map

$$H_k(X) \times H_l(X) \xrightarrow{\times} H_{k+l}(X \times X) \xrightarrow{\operatorname{pr}^*} H_{k+l}(X)$$

is trivial, where \times denotes the cross product and pr denotes the projection to one of the X-factors.