WS 2020/2021

Marc Kegel

Exercise sheet 5

Exercise 1.

Compute the homology groups of all closed surfaces using the Mayer–Vietoris sequence. **Bonus:** Do the same for all compact surfaces.

Exercise 2.

We denote by A and B the curves on the surface Σ_2 of genus 2 shown in Figure 1. Compute the relative homology groups $H_k(\Sigma_2, A)$ and $H_k(\Sigma_2, B)$.

Abbildung 1: Two curves A and B on a genus 2-surface

Exercise 3.

Let K be a knot in S^3 , i.e. the image of an embedding of S^1 into S^3 . Compute all homology groups of $S^3 \setminus K$.

Bonus: What can you say about the homotopy groups of $S^3 \setminus K$?

Exercise 4.

Prove the invariance of the domain: Let $U, V \subset S^n$ be homeomorphic. Then U is open if and only if V is open. *Hint:* Use Proposition 3.21 and Theorem 3.17.

Bonus exercise.

- (a) Describe explicitly a sequence of embeddings $f_k \colon D^3 \to S^3$ converging to an embedding $f \colon D^3 \to S^3$, such that $f(S^2)$ is homeomorphic to Alexander's horned sphere.
- (b) Show that the complement of $f(D^3)$ is not contractible by showing that it admits a nonvanishing element γ in $\pi_1(S^3 \setminus f(D^3))$. Bonus: What is the fundamental group of its complement?
- (c) Show explicitly that γ is nullhomologous. (Explicitly means here without using Proposition 3.21.)
- (d) Can we construct an embedding of S^2 into S^3 such that both components of the complement are not contractible?

Hint: For some help in this exercise one could have a look at page 170 in Hatcher's book on algebraic topology.