SS 2021

4-Manifolds and Kirby calculus

Exercise sheet 1

The goal of this exercise sheet is to give a proof of the following theorem via Kirby calculus of surfaces.

Theorem 0.

For any connected, closed, orientable surface F there exists exactly one $k \in \mathbb{N}_0$ such that F is homeomorphic to $\#_k T^2$, the k-fold connected sum of 2-tori. (Here we define $\#_0 T^2$ to be S^2 .)

Exercise 1.

- (a) Describe handle decompositions of S^2 and T^2 with exactly one 0-handle and exactly one 2-handle.
- (b) Let F₁ and F₂ be surfaces with handle decompositions with exactly one 0-handle and exactly one 2-handle. Describe a handle decomposition of F₁#F₂. *Hint:* Choose disks along which to perform the connected sum that intersect the 0- and the 2-handles in 'half-disks'.

Exercise 2.

- (a) Any closed, connected 1-manifold is homeomorphic to S^1 .
- (b) Any connected, closed surface admits a handle decomposition with exactly one 0-handle and exactly one 2-handle. In the following we will consider only such handle decompositions.

Hint: Here we assume that any closed surface (and 1-manifold) admits a triangulation. Then we can get a handle decomposition by taking regular neighborhoods of the simplicies. An acessible proof of the statement that any surface admits a triangulation can be found in: A. HATCHER, *The Kirby torus trick for surfaces*, arXiv:1312.3518.

Exercise 3.

- (a) Let F be a compact surface and $\phi_1, \phi_2 : \partial D^1 \times D^1 \to \partial F$ be embeddings and $h: F \to F$ be a homeomorphism of F such that $h \circ \phi_1 = \phi_2$. Show that the results of attaching a 1-handle h_1 to F via ϕ_1 or ϕ_2 are homeomorphic.
- (b) Any homeomorphism $S^1 \to S^1$ extends to a homeomorphism $D^2 \to D^2$.
- (c) Let F be a compact surface and $\phi_1, \phi_2 : \partial D^2 \times \{0\} \to \partial F$ be embeddings with equal images $\phi_1(\partial D^2) = \phi_2(\partial D^2)$ then the surfaces obtained from F by attaching a 2-handle via ϕ_1 or ϕ_2 are homeomorphic. Hint: Use Exercise (b).

Exercise 4.

- (a) Embeddings of $[-1,1] \to \mathbb{R}$ are exactly the strictly monotonic functions $[-1,1] \to \mathbb{R}$.
- (b) Let $\phi_1, \phi_2: [-1, 1] \to \mathbb{R}$ be strictly increasing functions. Show that there exists a homeomorphism $h: \mathbb{R}^2_- \to \mathbb{R}^2_-$ such that h = Id away from a compactum and $h \circ \phi_1 = \phi_2$. Here we see \mathbb{R} as the boundary of $\mathbb{R}^2_- := \{(x, y) \mid y < 0\}$. *Hint:* Show first the existence of such a homeomorphism $\mathbb{R} \to \mathbb{R}$.
- (c) Let F be a handle decomposition of a surface F. Show that we can isotope the handle decomposition such that all 1-handles are attached to ∂h_0 . In the following we will consider only such handle decompositions. *Hint:* Use Exercises 3(a), 4(a) and 4(b).

Exercise 5.

Let F be a surface with a handle decomposition. We choose a point ∞ on $\partial h_0 = S^1$ that lies in the complement of the attaching regions of the 1-handles and identify $\partial h_0 \setminus \{\infty\}$ with \mathbb{R} . We draw the attaching spheres $\partial D^1 \times \{0\}$ of the 1-handles on \mathbb{R} an mark pairs of points that belong to the same 1-handle h_1 with the same letter. We call the resulting 1-dimensional diagram a **Kirby diagram** of F.

- (a) Draw Kirby diagrams of S^2 , T^2 and explain how the connected sum operation looks in Kirby diagrams.
- (b) A Kirby diagram of F uniquely determines a handle decomposition of F and thus the homeomorphism type of F.
- (c) Discuss possible changes on a Kirby diagram that do not change the homeomorphism type of a surface.

Hint: It is possible to 'slide' a 1-handle over another 1-handle and one can move a 1-handle through ∞ . How do these operation look in Kirby diagrams? To show that these moves do not change the homeomorphism type of the surface use exercises 3 and 4.

- (d) Prove Theorem 0 by transforming a Kirby diagram of an arbitrary handle decomposition of a surface F into a Kirby diagram of #kT².
 Bonus: Can you show that the integer k in Theorem 0 is unique without using invariants from algebraic topology?
- (e) Deduce the Poincaré conjecture in dimension 2, i.e. show that any closed surface that is homotopy equivalent to S^2 is homeomorphic to S^2 .

Bonus exercise.

- (a) Draw Kirby diagrams of $\mathbb{R}P^2$ and the Klein bottle.
- (b) Show that the Klein bottle is homeomorphic to $\mathbb{R}P^2 \# \mathbb{R}P^2$.
- (c) Show that $T^2 # \mathbb{R}P^2$ is homeomorphic to $\#_3 \mathbb{R}P^2$.
- (d) Classify connected closed non-orientable surfaces.

This sheet will be discussed on Friday 23.4. and should be solved by then.