SS 2021

4-Manifolds and Kirby calculus

Exercise sheet 3

Exercise 1.

Figure 1 shows framed knots in $S^1 \times S^2$.

- (a) Which of these knots are (as framed knots) isotopic?
- (b) Classify the isotopy classes of framed knots in $S^1 \times S^2$, that intersect the S^2 -factor transversely exactly once.

Hint: What can you say about such knots without framings?

(c) Which manifolds are described by the Kirby diagrams in Figure 1?

Abbildung 1: Four diagrams of framed knots in $S^1 \times S^2$.

Exercise 2.

(a) Show that the S¹-bundle over S² with Euler number $e \in \mathbb{Z}$ is diffeomorphic to the lens space L(-e, 1) = -L(e, 1).

Hint: Consider the Kirby diagram of the D^2 -bundle over S^2 with Euler number $e \in \mathbb{Z}$ from the lecture and compare their boundaries with the Heegaard diagrams of the lens spaces.

- (b) Describe maps $S^1 \to L(e, 1) \to S^2$ that induce the structure of an S^1 -bundle over S^2 on the lens space L(e, 1).
- (c) Draw a Kirby diagram of the complex projective plane $\mathbb{C}P^2$.

Exercise 3.

(a) Let F be a closed oriented surface with a handle decomposition with exactly one 0-handle and exactly one 2-handle.

Describe handle decompositions of $I \times F$ and $S^1 \times F$ that are induced by the given handle decomposition of F. Use this to draw Heegaard diagrams of $S^1 \times F$.

- (b) Construct from a Heegaard diagram of a 3-manifold M a Kirby diagram of $S^1 \times M$. Hint: It might be helpful to first describe a Kirby diagram of $I \times M$.
- (c) Describe the 4-torus $T^4 = S^1 \times S^1 \times S^1 \times S^1$ as a Kirby diagram.

Exercise 4.

An orientable manifold M is called **reversible** if it admits a diffeomorphism that reverses the orientation.

- (a) Show that S^n and $S^1 \times M^{n-1}$ are reversible.
- (b) How do we get from a planar Heegaard diagram of a 3-manifold M a planar Heegaard diagram of the same manifold with opposite orientation -M?
- (c) How do we get from a Kirby diagram of a 4-manifold W a Kirby diagram of the same manifold with opposite orientation -W?
- (d) Show via the Kirby diagrams of S^4 , $S^1 \times S^3$ and T^4 , that these 4-manifolds are reversible.
- (e) Describe a Kirby diagram of $-\mathbb{C}P^2$.
- (f) Is $\mathbb{C}P^2$ reversible? *Hint:* Consider the intersection form of $\mathbb{C}P^2$.

Abbildung 2: A D^2 -bundle over T^2 with Euler number n.

Exercise 5.

- (a) Show that the attaching knot of the 2-handle in the Kirby diagram of Figure 2 bounds a genus 1 surface. Explain how we get a well-defined (isotopy-invariant) 0-framing from this information and why we can describe a framing of this knot then via an integer $n \in \mathbb{Z}$.
- (b) Show that the Kirby diagram in Figure 2 describes a D^2 -bundle over T^2 with Euler number n.
- (c) Draw a Kirby diagram of a D^2 -bundle over a general genus g surface Σ_g of genus g with Euler number n.

This sheet will be discussed on Friday 21.5. and should be solved by then.