Marc Kegel Shubham Dwivedi

Topology II

Exercise sheet 10

Exercise 1.

Compute the cohomology groups with \mathbb{Z} , \mathbb{Z}_p , \mathbb{Q} and \mathbb{R} coefficients of $\mathbb{R}P^n$, $\mathbb{R}P^{\infty}$ and closed surfaces using the universal coefficient theorem.

Exercise 2.

Use cellular cohomology to determine the isomorphism types of the cohomology groups of the Klein bottle, $\mathbb{R}P^n$ and $\mathbb{C}P^n$ with \mathbb{Z}_2 -coefficients, with \mathbb{Z}_3 -coefficients and with \mathbb{Z} -coefficients.

Exercise 3.

- (a) Compute the cohomology groups with arbitrary coefficients of S^n in two ways:
 - via the long exact sequence of a pair in cohomology, and
 - via the Mayer–Vietoris sequence for cohomology.
- (b) Compute the cohomology groups of all closed surfaces via the Mayer–Vietoris sequence for cohomology.

Exercise 4.

- (a) Prove Lemma 6.5 from the lecture.
- (b) Is Ext symmetric?
- (c) Compute Ext(A, B) for finitely generated abelian groups A and B.

Bonus exercise 1.

- (a) $\operatorname{Hom}(\mathbb{Z}, G)$ is isomorphic to G for any abelian group G.
- (b) Hom $(\mathbb{Z}_n, \mathbb{Z}_m)$ is isomorphic to $\mathbb{Z}_{gcd(n,m)}$.
- (c) Compute Hom(A, B) for finitely generated abelian groups A and B.
- (d) Let

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

be a short exact sequence of abelian groups and let G be another abelian group. If C is free abelian, then the dual sequence

$$0 \longrightarrow \operatorname{Hom}(C,G) \longrightarrow \operatorname{Hom}(B,G) \longrightarrow \operatorname{Hom}(A,G) \longrightarrow 0$$

is also exact.

(e) Does the dual sequence also split?

Bonus exercise 2.

- (a) Let $A \subset X$ be a closed subspace that is a deformation retract of some open neighborhood U. Then $H^k(X, A; G)$ is isomorphic to $\widetilde{H}^k(X/A; G)$ induced by the projection map $X \to X/A$.
- (b) If A is a retract of X, then $H^k(X;G)$ is isomorphic to $H^k(A;G) \oplus H^k(X,A;G)$.

Bonus exercise 3.

- (a) Let G and H be \mathbb{Q} -vector spaces. Let $\varphi \colon G \to H$ be a homomorphism of abelian groups. Show that φ is also a homomorphism of \mathbb{Q} -vector spaces.
- (b) Conclude that the abelian groups \mathbb{Q} and \mathbb{Q}^2 are not isomorphic.
- (c) Show that the abelian groups \mathbb{R} and \mathbb{R}^2 are isomorphic. *Hint:* For this you will need the axiom of choice.
- (d) Conclude that there exist topological spaces X and Y such that H^k(X) is isomorphic to H^k(Y) for all k, but such that H₁(X) and H₁(Y) are **not** isomorphic. In particular, the roles of homology and cohomology in Corollary 6.6 are not symmetric. Hint: In [J. WIEGOLD, Ext(Q, Z) is the additive group of real numbers, Bull. Aust. Math. Soc. 1 (1969), 341–343] it is proven that Ext(Q, Z) is isomorphic to ℝ. Use this (without proof) together with the universal coefficient theorem for cohomology and Exercise 4 from Sheet 7 to do the exercise.

This sheet will be discussed on Wednesday 12.1. and should be solved by then.