Marc Kegel Shubham Dwivedi

Exercise sheet 3

Exercise 1.

We call a *smooth* manifold M orientable if M admits an atlas in which all charts are compatible and the determinant of the Jacobi matrices of all transition maps (i.e. $\psi \circ \phi^{-1}$ for charts ψ and ϕ) are everywhere positive.

- (a) Show that S^n is orientable by explicitly describing such an atlas.
- (b) The Möbius strip is not orientable.
- (c) If we glue a 2-disk and a Möbius strip along its boundaries we get a space that is homeomorphic to $\mathbb{R}P^2$.
- (d) A surface is orientable if and only if it contains no Möbius strip, i.e. if and only if there exists no closed path interchanging right and left.

Exercise 2.

- (a) Show that $\mathbb{R}P^n$ is a closed manifold of dimension n and that $\mathbb{R}P^1$ is diffeomorphic to S^1 . For which n is $\mathbb{R}P^n$ orientable?
- (b) Show that $\mathbb{C}P^n$ is a closed oriented manifold of dimension 2n and that $\mathbb{C}P^1$ is diffeomorphic to S^2 .
- (c) We denote by \mathbb{H} the quaternions and define the **quaternionic projective spaces** $\mathbb{H}P^n$ as

$$\mathbb{H}P^n := \left(\mathbb{H}^{n+1} \setminus \{0\}\right)/_{\sim},$$

where $u \sim v$ if and only if there exists an $h \in \mathbb{H} \setminus \{0\}$ such that v = hw. Verify that $\mathbb{H}P^n$ is a well-defined closed oriented manifold of dimension 4n and show that $\mathbb{H}P^1$ is homeomorphic to S^4 .

Exercise 3.

- (a) Prove the 2-dimensional Poincaré conjecture.
- (b) More generally, two closed surfaces are homeomorphic if and only if they are homotopy equivalent.
- (c) Is the statement in (b) also true for compact surfaces with boundary?

Exercise 4.

- (a) The Klein bottle $\mathbb{R}P^2 \# \mathbb{R}P^2$ carries the structure of an S^1 -bundle over S^1 .
- (c) We identify S^{2n+1} with the unit sphere in \mathbb{C}^{n+1} . The map

$$p: S^{2n+1} \longrightarrow \mathbb{C}P^n$$
$$(z_0, \cdots, z_n) \longrightarrow [z_0: \cdots: z_n]$$

is an S^1 -bundle.

(d) We identify S^{4n+3} with the unit sphere in \mathbb{H}^{n+1} . The map

$$p: S^{4n+3} \longrightarrow \mathbb{H}P^n$$
$$(h_0, \cdots, h_n) \longrightarrow [h_0: \cdots: h_n]$$

is an S^3 -bundle.

(e) What conclusion do we get from the above bundles about the homotopy groups of these spaces?

Exercise 5.

Let $X_1 \subset X_2 \subset X_3 \subset \cdots$ be an infinite sequence of inclusions of topological spaces. We define the limit

$$X_{\infty} := \lim_{\longrightarrow} X_i := \bigcup_{i \in \mathbb{N}} X_i,$$

where a set U in X_{∞} is called open if $U \cap X_i$ is open in X_i for all $i \in \mathbb{N}$.

If we apply the above construction to the sequence $S^0 \subset S^1 \subset S^2 \subset \cdots$ we get the space S^{∞} and from the sequence $\mathbb{C}P^1 \subset \mathbb{C}P^2 \subset \cdots$ we get the spaces and $\mathbb{C}P^{\infty}$.

- (a) $\pi_k(S^{\infty}) = 0$ for all $k \ge 1$.
- (b) Define an S¹-bundle $p: S^{\infty} \to \mathbb{C}P^{\infty}$ in analogy to Exercise 2(b).
- (c) Compute from the associated long exact sequence the homotopy groups of $\mathbb{C}P^{\infty}$ and conclude that S^2 and $S^3 \times \mathbb{C}P^{\infty}$ have isomorphic homotopy groups.

Bonus exercise.

- (a) Classify compact 1-manifolds (possibly with boundary).
- (b) Workout the details from the proof sketch of the classification theorem of surfaces. *Hint:* It might be helpful to have a look at Chapter 5 of: https://www.mathematik.hu-berlin.de/~kegemarc/19SSTopologie/Skript.pdf

This sheet will be discussed on Wednesday 10.11. and should be solved by then.