Marc Kegel Shubham Dwivedi

Exercise sheet 6

Exercise 1.

- (a) Reformulate Corollary 3.10 using reduced homology groups.
- (b) Compute again the homology groups of spheres by using Theorem 3.13.
- (c) Compute the homology groups of all closed surfaces. *Hint:* You can do this by using the Mayer–Vietoris sequence or by using Theorem 3.13.

Exercise 2.

Construct, for any $n \in \mathbb{N}$ and $k \in \mathbb{Z}$, a map $f: S^n \to S^n$ of degree k. *Hint:* Construct from a given map $S^{n-1} \to S^{n-1}$ a map $S^n \to S^n$ of the same degree by identifying S^n with the suspension ΣS^{n-1} .

Exercise 3.

Let K be a knot in S^3 , i.e. the image of an embedding of S^1 into S^3 . Compute all homology groups of $S^3 \setminus K$.

Bonus: What can you say about the homotopy groups of $S^3 \setminus K$?

Exercise 4.

Let $x_0 \in X$ be a point.

- (a) $\widetilde{H}_k(X) \cong H_k(X)$ for $k \ge 1$.
- (b) $\widetilde{H}_0(X) \cong \mathbb{Z}^{n-1}$, where *n* is the number of path components of *X*.
- (c) $\widetilde{H}_k(X) \cong H_k(X, \{x_0\}).$

Exercise 5.

Prove the invariance of the domain: Let $U, V \subset S^n$ be homeomorphic. Then U is open if and only if V is open. *Hint:* Use Proposition 3.21 and Theorem 3.17.

Bonus exercise.

- (a) Prove a version of the Mayer–Vietoris sequence for simplicial homology groups.
- (b) Present a geometric description of the connecting homomorphism in the Mayer–Vietoris sequence.

Bonus exercise.

Construct a pair of spaces (X, A) such that $\widetilde{H}_k(X/A)$ is **not** isomorphic to $H_k(X, A)$.

Bonus exercise.

- (a) Describe explicitly a sequence of embeddings $f_k: D^3 \to S^3$ converging to an embedding $f: D^3 \to S^3$, such that $f(S^2)$ is homeomorphic to Alexander's horned sphere.
- (b) Show that the complement of $f(D^3)$ is not contractible by showing that it admits a non-vanishing element γ in $\pi_1(S^3 \setminus f(D^3))$.
- (c) Show explicitly that γ is nullhomologous. (Explicitly means here without using Proposition 3.21.)
- (d) Can we construct an embedding of S^2 into S^3 such that both components of the complement are not contractible?

Hint: For some help in this exercise one could have a look at page 170 in Hatcher's book on algebraic topology.

This sheet will be discussed on Wednesday 1.12. and should be solved by then.