WS 2021/2022

Marc Kegel Shubham Dwivedi



Exercise sheet 9

## Exercise 1.

In the lecture we have seen four different ways to compute homology groups with coefficients:

- via the Mayer–Vietoris sequence,
- directly from the definition and a *CW*-structure,
- with the Bockstein homomorphism or
- using the universal coefficient theorem.

Compute the homology groups of  $\mathbb{R}P^n$  and the Klein bottle with  $\mathbb{Q}$ - and  $\mathbb{Z}_2$ -coefficients using as many of the above methods as possible.

**Bonus:** Do the same for  $\mathbb{Z}_{p}$ - and  $\mathbb{R}$ -coefficients.

## Exercise 2.

- (a) Compute the homology of the *n*-torus  $T^n := S^1 \times \cdots \times S^1$ .
- (b) Let M and N be closed **topological** manifolds. Show that  $M \times N$  is orientable if and only if M and N are orientable.

# Exercise 3.

(a) A short exact sequence

 $0 \to B \to C \to D \to 0$ 

of abelian groups induces an exact sequence of the form

 $0 \to \operatorname{Tor}(A, B) \to \operatorname{Tor}(A, C) \to \operatorname{Tor}(A, D) \to A \otimes B \to A \otimes C \to A \otimes D \to 0.$ 

(b) Prove Lemma 5.5 from the lecture.

#### Exercise 4.

Show that the short exact sequence from the universal coefficient theorem does **not** split natural. *Hint:* Consider the projection map

$$f \colon \mathbb{R}P^2 \cong D^2 \cup \mathbb{R}P^1 \longrightarrow \mathbb{R}P^2 / \mathbb{R}P^1 \cong S^2.$$

### Exercise 5.

Let  $\mathbb{F}$  be an arbitrary field and X a finite CW-complex of dimension n. Then the Euler characteristic of X is given by

$$\chi(X) = \sum_{k=0}^{n} (-1)^k \dim_{\mathbb{F}} H_k(X, \mathbb{F}).$$

p.t.o.

# Bonus exercise 1.

A map  $f: X \to Y$  induces an isomorphism on homology with  $\mathbb{Z}$ -coefficients if and only if f induces an isomorphism on homology with  $\mathbb{Q}$ -coefficients and  $\mathbb{Z}_p$ -coefficients for all primes p.

## Bonus exercise 2.

(a) Let A be a finitely generated abelian group, i.e. A is of the form  $\mathbb{Z}^r \oplus \bigoplus_{i=1}^n \mathbb{Z}_{a_i}$  for natural numbers  $a_i$ . For B isomorphic to  $\mathbb{Q}$ ,  $\mathbb{R}$  or  $\mathbb{C}$  we have

$$A \otimes B \cong B^r$$
.

(b) For finitely generated abelian groups A and B we have

$$\operatorname{rk}(A \otimes B) = \operatorname{rk}(A) \cdot \operatorname{rk}(B).$$

(c) Let R be a commutative ring. Then

$$A \longmapsto A \otimes R$$
$$(f \colon A \to B) \longmapsto (f \otimes \mathrm{id} \colon A \otimes R \to B \otimes R)$$

defines a functor from the category of abelian groups to the category of R-modules. *Hint:* If you are unfamiliar with the notions of rings and modules, it may be helpful to first consider the case that R is a field. (Then R-modules are just the R-vector spaces.)

#### Bonus exercise 3.

Classify finitely generated abelian groups, i.e. prove that any finitely generated abelian group is isomorphic to a group of the form

$$\mathbb{Z}^r \oplus \bigoplus_{i=1}^n \mathbb{Z}_{a_i}$$

for natural numbers  $a_i$ .

#### Bonus exercise 4.

 $\operatorname{Tor}(A, \mathbb{Q}/\mathbb{Z})$  is isomorphic to the torsion subgroup of A.

This sheet will be discussed on Wednesday 5.1. and should be solved by then.