Differentialgeometrie I

Exercise sheet 1

Exercise 1.

The 1-sheet hyperboloid

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1\right.\right\}
$$

is a doubly ruled surface, i.e. it can be written in two ways as a ruled surface.

Exercise 2.

The tangent line of a regular curve α in \mathbb{R}^{n} at the point $t=t_{0}$ is the line

$$
\left\{w \in \mathbb{R}^{n} \mid w=\alpha\left(t_{0}\right)+\lambda T\left(t_{0}\right), \lambda \in \mathbb{R}\right\} .
$$

(a) Let $\alpha(t)=(t, g(t))$ be a planar curve for some given smooth function $g: \mathbb{R} \rightarrow \mathbb{R}$. Compute the tangent line of α and compare it with the tangent line of a graph from Analysis I.
(b) Show that $\alpha(t)=(\sin 3 t \cos t, \sin 3 t \sin t)$ is regular and compute the tangent line at $t=\pi / 3$.
(c) Compute the tangent line of the Helix $\alpha(t)=(r \cos t, r \sin t$, ht) (for given $r, h>0)$. Show that the angle between $\dot{\alpha}$ and the vector $(0,0,1)$ is constant.

Exercise 3.

The curve

$$
\alpha(s)=\frac{1}{2}\left(s+\sqrt{s^{2}+1},\left(s+\sqrt{s^{2}+1}\right)^{-1}, \sqrt{2} \log \left(s+\sqrt{s^{2}+1}\right)\right)
$$

is parametrized by arc length.

Exercise 4.

(a) If the plane curve $\alpha(s)=(x(s), y(s))$ is parametrized by arc length then the curvature of α is given by

$$
k(s)=\left|x^{\prime}(s) y^{\prime \prime}(s)-x^{\prime \prime}(s) y^{\prime}(s)\right|
$$

(b) The curvature of a regular space curve β is given by

$$
k=\frac{|\dot{\beta} \times \ddot{\beta}|}{|\dot{\beta}|^{3}}
$$

Exercise 5.

(a) A curve with non-vanishing curvature k is a helix if and only if τ / k is constant.
(b) A curve is a circle helix if and only if $\tau=$ konst $\neq 0$ and $k=$ konst >0.
(c) If α is parametrized by arc length and $k(s) \neq 0, k^{\prime}(s) \neq 0$, and $\tau(s) \neq 0$ for all s. Then α lies on a sphere if $\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}=$ konst >0, where $\rho=1 / k$ and $\sigma=1 / \tau$.

