WS 2022/23

Marc Kegel Naageswaran Manikandan

Differentialgeometrie I

Exercise sheet 1

Exercise 1.

The 1-sheet hyperboloid

$$\left\{(x,y,z) \in \mathbb{R}^3 \ \big| \ \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1\right\}$$

is a doubly ruled surface, i.e. it can be written in two ways as a ruled surface.

Exercise 2.

The tangent line of a regular curve α in \mathbb{R}^n at the point $t = t_0$ is the line

$$\{w \in \mathbb{R}^n \,|\, w = \alpha(t_0) + \lambda T(t_0), \, \lambda \in \mathbb{R}\}.$$

- (a) Let $\alpha(t) = (t, g(t))$ be a planar curve for some given smooth function $g: \mathbb{R} \to \mathbb{R}$. Compute the tangent line of α and compare it with the tangent line of a graph from Analysis I.
- (b) Show that $\alpha(t) = (\sin 3t \cos t, \sin 3t \sin t)$ is regular and compute the tangent line at $t = \pi/3$.
- (c) Compute the tangent line of the Helix $\alpha(t) = (r \cos t, r \sin t, ht)$ (for given r, h > 0). Show that the angle between $\dot{\alpha}$ and the vector (0, 0, 1) is constant.

Exercise 3.

The curve

$$\alpha(s) = \frac{1}{2} \left(s + \sqrt{s^2 + 1}, \left(s + \sqrt{s^2 + 1} \right)^{-1}, \sqrt{2} \log \left(s + \sqrt{s^2 + 1} \right) \right)$$

is parametrized by arc length.

Exercise 4.

(a) If the plane curve $\alpha(s) = (x(s), y(s))$ is parametrized by arc length then the curvature of α is given by

$$k(s) = |x'(s)y''(s) - x''(s)y'(s)|.$$

(b) The curvature of a regular space curve β is given by

$$k = \frac{|\dot{\beta} \times \ddot{\beta}|}{|\dot{\beta}|^3}$$

Exercise 5.

- (a) A curve with non-vanishing curvature k is a helix if and only if τ/k is constant.
- (b) A curve is a circle helix if and only if $\tau = \text{konst} \neq 0$ and k = konst > 0.
- (c) If α is parametrized by arc length and $k(s) \neq 0$, $k'(s) \neq 0$, and $\tau(s) \neq 0$ for all s. Then α lies on a sphere if $\rho^2 + (\rho'\sigma)^2 = \text{konst} > 0$, where $\rho = 1/k$ and $\sigma = 1/\tau$.