WS 2022/23

Differentialgeometrie I

Exercise sheet 11

Exercise 1.

- (a) \mathbb{R}^n , S^n , and \mathbb{H}^n are complete Riemannian manifolds.
- (b) Give an example of a non-complete connected Riemannian manifold M such that any two points p and q can be joined by a distance realizing geodesic in M.
- (c) Let M be a complete Riemannian manifold and let $N \subset M$ be a closed embedded submanifold. Then N with the induced metric is again complete.
- (d) Let M be a compact Riemannian manifold. Show that M has finite diameter, and that any two points $p, q \in M$ can be joined by a geodesic of length d(p, q).

Exercise 2.

- (a) Show that a Riemannian manifold is complete if and only if it satisfies the Heine–Borel property, i.e. a set is compact if and only if it is bounded and closed.
- (b) Let M be a Riemannian manifold. A curve $\gamma: [0, a) \to M$ is called *divergent*, if for every compact set $K \subset M$ there exists a $t_0 \in [0, a)$ such that $\gamma(t) \notin K$ for all $t > t_0$. Show: M is complete if and only if all divergent curves are of infinite length.

Exercise 3.

Determine a formula for the second variation of the length, i.e prove Lemma 6.40 from lecture. Determine also a formula for the second variation of the energy.