Differentialgeometrie I

Exercise sheet 3

Exercise 1.

(a) Compute the first and second fundamental forms of a graph and determine its Christoffel symbols both extrinsically (i.e. by using the definition) as well as intrinsically (i.e. with Theorem 3.5).
(b) Compute the matrix $\left(L_{i j}\right)$ describing the second fundamental form of a rotation surface and show that $\operatorname{det}\left(L_{i j}\right)$ is vanishing if and only if every meridian is a straight line.
Hint: In Exercise 2 of Sheet 2 we have computed its metric coefficients. Try to visualize the second statement in a picture.

Exercise 2.

Consider the 2-sphere S^{2} (without the zero meridian) parametrized as in the lecture by

$$
x(\theta, \varphi)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)
$$

(a) Calculate the metric tensor, its inverse matrix, the coefficients $L_{i j}$ of the second fundamental form and the Christoffel symbols $\Gamma_{i j}^{k}$. Justify geometrically why none of these quantities depend on φ.
Let γ be a curve parametrized by arc length with trace on S^{2}.
(b) The normal curvature k_{n} of γ is constant. What is its value? Does it depend on the radius of the sphere?
(c) If the geodesic curvature k_{g} of γ is constant then γ is a circle.
(d) If γ is a geodesic then γ is a great circle.
(e) Determine the geodesic curvature of a latitudinal circle.

Hint: In case you are missing the proper education in geography, a latitudinal circle is in the above parametrization given by $\varphi \mapsto x\left(\theta_{0}, \varphi\right)$ for a fixed value θ_{0}. For all these exercises I suggest (in addition to your other arguments) to create instructive sketches visualizing the situation.

Exercise 3.

(a) Let M be a surface and E a plane in \mathbb{R}^{3} that intersects M in a curve γ. Then γ is a geodesic if E is a symmetry plane of M.
(b) Every straight line in \mathbb{R}^{3} contained in a surface M is a geodesic.
(c) Let M_{1} be the surface $\left\{x^{2}+y^{2}-z^{2}=1\right\}$ and M_{2} the surface $\left\{z=x^{2}-y^{2}\right\}$. Draw detailed pictures of M_{1} and M_{2} and describe geodesics on M_{1} and M_{2}.

Exercise 4.

Consider the upper half plane

$$
\mathbb{R}_{+}^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}
$$

with the so-called hyperbolic metric given by $g_{11}=g_{22}=1 / y^{2}, g_{12}=g_{21}=0$. We will show in the second part of the lecture that it is impossible to realize \mathbb{R}_{+}^{2} with that metric as a surface in \mathbb{R}^{3}. Nevertheless all intrinsic calculations can be carried out with respect to this metric.
(a) Compute the Christoffel symbols.
(b) Determine the geodesics γ and α with

$$
\begin{aligned}
\left(\gamma^{1}(0), \gamma^{2}(0)\right) & =\left(x_{0}, 1\right), \\
\left(\left(\gamma^{1}\right)^{\prime}(0),\left(\gamma^{2}\right)^{\prime}(0)\right) & =(0,1), \\
\left(\alpha^{1}(0), \alpha^{2}(0)\right) & =(a, r), \text { and } \\
\left(\left(\alpha^{1}\right)^{\prime}(0),\left(\alpha^{2}\right)^{\prime}(0)\right) & =(r, 0)
\end{aligned}
$$

Find explicit parametrizations of γ and α and describe both geometrically in \mathbb{R}_{+}^{2}.
(c) Let $X_{0}=(0,1)$ be a tangent vector at the point $(0,1)$ of \mathbb{R}_{+}^{2}. Verify that X_{0} is a unit vector in $T_{(0,1)} \mathbb{R}_{+}^{2}$ with respect to the hyperbolic metric. Let $X(t)$ be the parallel transport of X_{0} along the curve $x=t, y=1$. Show that the angle between $X(t)$ and the y-axis is equal to t.

Exercise 5.

Determine the transformation behavior of the second fundamental form $L_{i j}$ and the Christoffel symbols $\Gamma_{i j}^{k}$ under a coordinate transformation.

