Differentialgeometrie I

Exercise sheet 4

Exercise 1.

The 2 -torus T^{2} is the surface in \mathbb{R}^{3}, which is obtained by rotating the circle $(r-2)^{2}+z^{2}=1$ in the (r, z)-plane around the z-axis.
(a) Sketch this in a figure and use that figure to visualize the following exercises.
(b) The 2 -torus (except for one meridian and one longitude) can be parametrized by

$$
x(u, v)=((2+\cos u) \cos v,(2+\cos u) \sin v, \sin u),(u, v) \in(0,2 \pi) .
$$

(c) Determine the Gaussian curvature and the mean curvature.

Exercise 2.

Calculate the first fundamental form, the second fundamental form, and the various curvatures of the helicoid

$$
x(u, v)=(v \cos u, v \sin u, c u)
$$

and of the catenoid

$$
x(u, v)=(a \cosh v \cos u, a \cosh v \sin u, a v) .
$$

Here a and c are positive real constants. Are these surfaces (locally) isometric? Draw sketches of these surfaces and describe geodesics on them.

Exercise 3.

The converse of the theorema egregium is false, i.e. a diffeomorphism $f: M \rightarrow N$ between two surfaces, which satisfies $K_{M}(p)=K_{N}(f(p))$ for all $p \in M$, needs not be a local isometry. Hint: Consider the parametrized surfaces

$$
\begin{aligned}
& x(t, \varphi)=(t \cos \varphi, t \sin \varphi, \log t), \text { and } \\
& y(t, \varphi)=(t \cos \varphi, t \sin \varphi, \varphi), \text { for }(t, \varphi) \in R_{+} \times(0,2 \pi) .
\end{aligned}
$$

Exercise 4.

Let $x: U \rightarrow \mathbb{R}^{3}$ be a parametric piece of a surface. A piece of a surface parallel to x is given by

$$
y(u, v)=x(u, v)+c n(u, v),
$$

where c is a constant and n is the normal vector of $x(U)$. At which points is y regular? Express the Gaussian and mean curvature of y at all its regular points in terms of the curvatures of x.

Exercise 5.

(a) The isometries $f: M \rightarrow M$ of a surface M form a group in a natural way. This group is called the isometry group of M.
(b) The isometry group of S^{2} is the group of orthogonal (3×3)-matrices.

A diffeomorphism $f: M \rightarrow N$ is called a conformal map if

$$
\langle d f(X), d f(Y)\rangle_{f(p)}=\lambda(p)\langle X, Y\rangle_{p}
$$

for all $p \in M$ and $X, Y \in T_{p} M$, where $\lambda: M \rightarrow R_{+}$is a differentiable function. Analogously to the notion of local isometry, we define local conformal maps.
(c) S^{2} is not locally isometric, but locally conformal to the plane.

Exercise 6.

(a) Let γ be a curve parameterized by arc length on a surface M, and let S be the intrinsic normal along γ. Then S is parallel along γ if and only if γ is a geodesic.
(b) Let γ be as in (a), with non-vanishing curvature. Let X_{N} be the component of N tangent to M. Show that $X_{N}=N-\langle N, n\rangle n$, and that the following statements are equivalent:
(i) $X_{N} \equiv 0$,
(ii) γ is a geodesic,
(iii) X_{N} is parallel along γ.

Exercise 7.

Let α be a curve with trace on a surface M. Write $n(t)$ for the normal vector of M in $\alpha(t)$. Necessary and sufficient for α to be a curvature line of M is

$$
\dot{n}(t)=\lambda(t) \dot{\alpha}(t)
$$

with a differentiable function $\lambda(t)$, which is except for the sign the corresponding principal curvature in $\alpha(t)$.

