## Differentialgeometrie I

Exercise sheet 5

## Exercise 1.

Compute the Gaussian curvature of

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}=1\right\}
$$

and verify that it is negative everywhere.

## Exercise 2.

(a) Let $M$ be a surface such that each of its points is an umbilical point. Then each point of $M$ has a neighborhood in $M$ which is an open subset of a plane or a sphere.
(b) If $g_{12} \equiv L_{12} \equiv 0$ then the $u_{i}$ curves are curvature lines.
(c) Outside of umbilical points the converse of (b) holds. What happens in umbilical points?
(d) Latitude circles and meridians of a rotation surface are curvature lines.

## Exercise 3.

Consider the surface given by the parametrization

$$
x(u, v)=\left(u-\frac{u^{3}}{3}+u v^{2}, v-\frac{v^{3}}{3}+v u^{2}, u^{2}-v^{2}\right) .
$$

Compute its first and second fundamental form, curvatures, and curvature lines.

