Differentialgeometrie I

Exercise sheet 6

Exercise 1.

An n-gon is a piecewise smooth, regular curve on a surface M, which boundas a disk in M and whose n smooth segments are geodesics in M.
(a) Let M be a surface with $K \leq 0$. Then there is no n-gon for $n=0,1,2$. (A 0 -gon is a closed geodesic bounding a disk in M.)
(b) Find an example of a surface with $K<0$ on which there exists a closed geodesic.

Exercise 2.

Consider the Poincaré disk $U=\left\{(u, v) \in \mathbb{R}^{2} \mid u^{2}+v^{2}<1\right\}$ with the metric given by

$$
\left(g_{i j}(u, v)\right)=\left(\begin{array}{cc}
4 /\left(1-u^{2}-v^{2}\right)^{2} & 0 \\
0 & 4 /\left(1-u^{2}-v^{2}\right)^{2}
\end{array}\right) .
$$

As in Exercise 4 of Sheet 3, this is an example of an abstractly defined surface. We call this metric the hyperbolic metric on U.
(a) Compute its Christoffel symbols and its Gaussian curvature.
(b)) The diameters of U and circle arcs which orthogonally intersect the unit circle $u^{2}+v^{2}=1$ are geodesics. Conversely, every geodesic is of this form.
(c) Determine the area of an n-gon whose vertices lie on the unit circle.
(d) Find an isometry from the Poincaré disk to the upper half plane (from Exercise 4 of Sheet 3). Hint: Use complex coordiantes to describe the map.

Exercise 3.

(a) Show that $(0,0)$ is a zero of the following vector fields, compute its index and visualize that computations in local sketches:
(i) $X(u, v)=(u, v)$,
(ii) $X(u, v)=(-u, v)$,
(iii) $X(u, v)=(u,-v)$,
(iv) $X(u, v)=\left(u^{2}-v^{2},-2 u v\right)$,
(v) $X(u, v)=\left(u^{3}-3 u v^{2}, v^{3}-3 u^{2} v\right)$.
(b) Can it happen that the index of a zero is vanishing? If yes, give an example.
(c) What can be said about the existence of vector fields without zeros on non-compact surfaces?

Exercise 4.

(a) Let $\gamma:[a, b] \rightarrow M$ be a curve parameterized by arc length in a surface $M \subset \mathbb{R}^{3}$. Let α be the angle between the normal vector n of M and the binormal vector B of the curve γ. Show that the curvature k of γ (as a space curve) and the geodesic curvature k_{g} are related by $k_{g}=k \cos \alpha$.
(b) Let γ be the circle of latitude $\phi_{0} \in[-\pi / 2, \pi / 2]$ on the 2 -sphere S^{2}. Show, that $k=1 / \sin \phi_{0}$ and deduce that $k_{g}=\cot \phi_{0}$.
(c) Use the local theorem of Gauss-Bonnet to show that the subsurface of S^{2} whose positive boundary is γ has area $2 \pi\left(1-\cos \phi_{0}\right)$.

Exercise 5.

(a) The 2-sphere is orientable.
(b) The Möbius strip is not orientable.
(c) Let N be an orientable surface and $f: M \rightarrow N$ be a smooth map that is a local diffeomorphism around every point $p \in M$. Then M is also orientable.

Bonus exercise 1.

The boundary of a Möbius strip is diffeomorphic to S^{1}. Construct an embedding of the Möbius strip into \mathbb{R}^{3} such that its boundary gets mapped to a standard round circle. Create a paper model.

Bonus exercise 2.

Let R_{l} be a paper rectangle with boundary lengths 1 and l. Perform experiments by creating paper models for various values of l to find a conjecturally maximal length l such that this is possible.
Challenge: Prove that your bound on l is indeed optimal.

