Differentialgeometrie I

Exercise sheet 8

Exercise 1.

- (a) The product $M \times N$ of two smooth manifolds M and N is again a smooth manifold.
- (b) The topology on the tangent bundle as defined in the lecture is Hausdorff and has countable basis.
- (c) $T(M \times N)$ is diffeomorphic to $TM \times TN$.

Exercise 2.

- (a) The composition and the product of embeddings are again embeddings.
- (b) $S^n \times \mathbb{R}$ can be embedded in \mathbb{R}^{n+1} .
- (c) $S^{n_1} \times \cdots \times S^{n_k}$ can be embedded in $\mathbb{R}^{n_1 + \cdots + n_k + 1}$.

Exercise 3.

Verify the following properties of the Lie bracket:

- (i) [X, Y] = -[Y, X].
- (ii) [X + Y, Z] = [X, Z] + [Y, Z].
- (iii) The Jacobi identity: [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.

Let (U, h) be a chart of M and let $\left(\frac{\partial}{\partial x^1}\right)_p, \ldots, \left(\frac{\partial}{\partial x^m}\right)_p$ the induced basis of $T_p M$ for a point $p \in M$. Then we have:

(iv)
$$\left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right] = 0.$$

(v) For
$$X = X^i \frac{\partial}{\partial x^i}$$
 and $Y = Y^j \frac{\partial}{\partial x^j}$ we have $[X, Y] = \left(X^i \frac{\partial Y^j}{\partial x^i} - Y^i \frac{\partial X^j}{\partial x^i}\right) \frac{\partial}{\partial x^j}$

Use the last equation to compute the Lie bracket of $X = x^1 \frac{\partial}{\partial x^2}$ and $Y = x^1 x^2 \frac{\partial}{\partial x^1}$.

Exercise 4.

The tangent bundle TM of an *m*-manifold M is called **trivial**, if there is a diffeomorphism $TM \to M \times \mathbb{R}^m$ which linearly maps T_pM to $\{p\} \times \mathbb{R}^m$ for every $p \in M$.

- (a) TM is trivial if and only if there exist m vector fields X_1, \ldots, X_m on M such that $X_1(p), \ldots, X_m(p)$ are linearly independent for every $p \in M$.
- (b) $T\mathbb{R}^m$ is trivial.
- (c) TS^1 and TS^3 are trivial.
- (d) TS^2 is not trivial. *Hint:* Use the Poincaré–Hopf theorem.

Bonus exercise 1.

- (a) Any submanifold of \mathbb{R}^n is automatically Hausdorff and has countable basis.
- (b) Where have we used the Hausdorff property and a countable basis in the proof of the Whitney embedding theorem?
- (c) Any Riemannian manifold has automatically a countable basis. Is it also Hausdorff?

Bonus exercise 2.

Describe an immersion of the Klein bottle into \mathbb{R}^3 and describe how to get an embedding into \mathbb{R}^4 from it.

Challenge: Describe an immersion of $\mathbb{R}P^2$ into \mathbb{R}^3 and describe how to get an embedding into \mathbb{R}^4 from it.

Hint for the challenge: The immersion can be described for example by drawing a detailed figure of its image after watching the Youtube video [J. LEYS: *The Boy surface*] or reading [R. KIRBY: *What is ... Boy's Surface*, Notices of the AMS, **54** (2007), 1306–1307].

Another method is to build an explicit 3-dimensional model, see for example [A. CHÉRITAT: A model of Boy's surface in constructive solid geometry, available on his webpage].

If you are not interested in understanding the construction you can alternatively prove that

$$f: D^2 \longrightarrow \mathbb{R}^3$$
$$w \longmapsto \frac{1}{g_1^2 + g_2^2 + g_3^2} (g_1, g_2, g_3)$$

induces an immersion $\mathbb{R}P^2 \to \mathbb{R}^3$, where

$$g_{1} := -\frac{3}{2} \operatorname{Im} \left[\frac{w \left(1 - w^{4} \right)}{w^{6} + \sqrt{5}w^{3} - 1} \right]$$
$$g_{2} := -\frac{3}{2} \operatorname{Re} \left[\frac{w \left(1 + w^{4} \right)}{w^{6} + \sqrt{5}w^{3} - 1} \right]$$
$$g_{3} := \operatorname{Im} \left[\frac{1 + w^{6}}{w^{6} + \sqrt{5}w^{3} - 1} \right] - \frac{1}{2}.$$