Differentialgeometrie I

Exercise sheet 8

Exercise 1.

(a) The product $M \times N$ of two smooth manifolds M and N is again a smooth manifold.
(b) The topology on the tangent bundle as defined in the lecture is Hausdorff and has countable basis.
(c) $T(M \times N)$ is diffeomorphic to $T M \times T N$.

Exercise 2.

(a) The composition and the product of embeddings are again embeddings.
(b) $S^{n} \times \mathbb{R}$ can be embedded in R^{n+1}.
(c) $S^{n_{1}} \times \cdots \times S^{n_{k}}$ can be embedded in $\mathbb{R}^{n_{1}+\cdots+n_{k}+1}$.

Exercise 3.

Verify the following properties of the Lie bracket:
(i) $[X, Y]=-[Y, X]$.
(ii) $[X+Y, Z]=[X, Z]+[Y, Z]$.
(iii) The Jacobi identity: $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0$.

Let (U, h) be a chart of M and let $\left(\frac{\partial}{\partial x^{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial x^{m}}\right)_{p}$ the induced basis of $T_{p} M$ for a point $p \in M$. Then we have:
(iv) $\left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right]=0$.
(v) For $X=X^{i} \frac{\partial}{\partial x^{i}}$ and $Y=Y^{j} \frac{\partial}{\partial x^{j}}$ we have $[X, Y]=\left(X^{i} \frac{\partial Y^{j}}{\partial x^{i}}-Y^{i} \frac{\partial X^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}}$.

Use the last equation to compute the Lie bracket of $X=x^{1} \frac{\partial}{\partial x^{2}}$ and $Y=x^{1} x^{2} \frac{\partial}{\partial x^{1}}$.

Exercise 4.

The tangent bundle $T M$ of an m-manifold M is called trivial, if there is a diffeomorphism $T M \rightarrow$ $M \times \mathbb{R}^{m}$ which linearly maps $T_{p} M$ to $\{p\} \times \mathbb{R}^{m}$ for every $p \in M$.
(a) $T M$ is trivial if and only if there exist m vector fields X_{1}, \ldots, X_{m} on M such that $X_{1}(p), \ldots, X_{m}(p)$ are linearly independent for every $p \in M$.
(b) $T \mathbb{R}^{m}$ is trivial.
(c) $T S^{1}$ and $T S^{3}$ are trivial.
(d) $T S^{2}$ is not trivial. Hint: Use the Poincaré-Hopf theorem.

Bonus exercise 1.

(a) Any submanifold of \mathbb{R}^{n} is automatically Hausdorff and has countable basis.
(b) Where have we used the Hausdorff property and a countable basis in the proof of the Whitney embedding theorem?
(c) Any Riemannian manifold has automatically a countable basis. Is it also Hausdorff?

Bonus exercise 2.

Describe an immersion of the Klein bottle into \mathbb{R}^{3} and describe how to get an embedding into \mathbb{R}^{4} from it.
Challenge: Describe an immersion of $\mathbb{R} P^{2}$ into \mathbb{R}^{3} and describe how to get an embedding into \mathbb{R}^{4} from it.
Hint for the challenge: The immersion can be described for example by drawing a detailed figure of its image after watching the Youtube video [J. Leys: The Boy surface] or reading [R. Kirby: What is ... Boy's Surface, Notices of the AMS, 54 (2007), 1306-1307].
Another method is to build an explicit 3-dimensional model, see for example [A. Chéritat: A model of Boy's surface in constructive solid geometry, available on his webpage].
If you are not interested in understanding the construction you can alternatively prove that

$$
\begin{aligned}
f: D^{2} & \longrightarrow \mathbb{R}^{3} \\
w & \longmapsto \frac{1}{g_{1}^{2}+g_{2}^{2}+g_{3}^{2}}\left(g_{1}, g_{2}, g_{3}\right)
\end{aligned}
$$

induces an immersion $\mathbb{R} P^{2} \rightarrow \mathbb{R}^{3}$, where

$$
\begin{aligned}
& g_{1}:=-\frac{3}{2} \operatorname{Im}\left[\frac{w\left(1-w^{4}\right)}{w^{6}+\sqrt{5} w^{3}-1}\right] \\
& g_{2}:=-\frac{3}{2} \operatorname{Re}\left[\frac{w\left(1+w^{4}\right)}{w^{6}+\sqrt{5} w^{3}-1}\right] \\
& g_{3}:=\operatorname{Im}\left[\frac{1+w^{6}}{w^{6}+\sqrt{5} w^{3}-1}\right]-\frac{1}{2} .
\end{aligned}
$$

