Differentialgeometrie I

Exercise sheet 9

Exercise 1.

(a) Show that the antipodal map - id: $S^{n} \rightarrow S^{n}$ is an isometry and use this to construct a Riemannian metric on $\mathbb{R} P^{n}$ such that the quotient map $\pi: S^{n} \rightarrow \mathbb{R} P^{n}$ is a local isometry.
(b) Construct the flat Riemmanian metric on the n-torus as in the lecture.
(c) Show that the quotient of \mathbb{R}^{2} under the antipodal map is homeomorphic to \mathbb{R}^{2}.
(d) Show that the quotient of \mathbb{R}^{3} under the antipodal map is not homeomorphic to a manifold.
(e) Can you generalize the statement from (a) and (b) to more general settings?

Exercise 2.

Let M_{1} and M_{2} be Riemannian manifolds. Construct from this a natural Riemannian metric on $M_{1} \times M_{2}$. Use this to construct a Riemannian metric on the n-torus T^{n} and show that this metric is isometric to the flat metric on T^{n} constructed in the lecture (see Exercise 1 (b)).

Exercise 3.

(a) Let $f: M \rightarrow N$ be an immersion and let g be a Riemannian metric on N. If f would be an embedding then we have defined the induced Riemannian metric $f^{*} g$ in the lecture. Show that for an immersion the same construction yields a Riemmanian metric on M. Then

$$
f:\left(M, f^{*} g\right) \rightarrow(N, g)
$$

is called an isometric immersion.
(b) Describe an isometric immersion of the flat n-torus T^{n} into $\mathbb{R}^{2 n}$.

Exercise 4.

We consider the map $f: S^{2} \rightarrow \mathbb{R}^{4}$ given by

$$
(x, y, z) \longmapsto\left(x^{2}-y^{2}, x y, x z, y z\right)
$$

Show that f induces an embedding of $\mathbb{R} P^{2}$ into \mathbb{R}^{4}. Compute the metric coefficients and the Christoffel symbols of the by f induced metric in a suitable atlas of $\mathbb{R} P^{2}$.

Exercise 5.

Let (M, g) be a Riemannian manifold. The unit tangent bundle is

$$
T^{1} M:=\bigcup_{p \in M}\left\{X \in T_{p} M \mid g_{p}(X, X)=1\right\} \subset T M
$$

(a) $T^{1} M$ is again a smooth manifold. What is its dimension?
(b) If M is compact then $T^{1} M$ is compact.
(c) Determine the diffeomorphsism type of the unit tangent bundle of S^{1} and \mathbb{R}^{n}.
(d) Show that $T^{1} S^{2}$ is diffeomorphic to $S O(3)$.

Hint: Consider the map

$$
\begin{aligned}
S O(3) \times S^{2} & \longrightarrow S^{2} \\
(A, x) & \longmapsto A \cdot x .
\end{aligned}
$$

Exercise 6.

(a) Prove Lemma 6.4: Let Y_{1} and Y_{2} vector fields that agree on an open neighborhood of $p \in M$ and let X be another vector field on M. Then

$$
\left(\nabla_{X} Y_{1}\right)(p)=\left(\nabla_{X} Y_{2}\right)(p)
$$

(b) Show that the covariant derivative from the first part of the lecture defines a covariant derivative with respect to the definition from Chapter 6. Generalize the definition for surfaces in \mathbb{R}^{3} from the first part of the lecture to a general Riemmanian submanifold.

Exercise 7.

Let $\mathbb{H}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>0\right\}$ denote the upper half space model of the hyperbolic space with its standard Riemannian metric

$$
g_{x}\left(v_{1}, v_{2}\right)=\frac{\left\langle v_{1}, v_{2}\right\rangle}{x_{n}^{2}}
$$

where $v_{1}, v_{2} \in T_{x} \mathbb{H}^{n} \cong \mathbb{R}^{n}$ and $\langle\cdot, \cdot\rangle$ denotes the standard Euclidean inner product. Calculate the metric coefficients and the Christoffel symbols with respect to the canonical global coordinate chart $\phi: \mathbb{H}^{n} \rightarrow V \subset \mathbb{R}^{n}$ given by $\phi(x)=x$.

