$\mathrm{SS}~2025$

Marc Kegel Theo Müller

Exercise Sheet 0

This sheet will be discussed in the first exercise session on Thursday, April 17.

Exercise 1.

- (a) Let X be a topological space. Show:
 - (i) \emptyset and X are closed,
 - (ii) the union of any two closed sets is closed,
 - (iii) the intersection of arbitrarily many closed sets is closed.
- (b) A map $f: X \to Y$ between topological spaces X and Y is continuous if and only if the preimage $f^{-1}(A) \subset X$ of every closed set $A \subset Y$ is closed.

Exercise 2.

Let (X, d) be a metric space. A subset $U \subset X$ is called **open** if for every point $x \in U$ there exists $\varepsilon > 0$ such that the open ε -ball around x,

$$B_{\varepsilon}(x) := \big\{ p \in X \big| d(x, p) < \varepsilon \big\},\$$

is entirely contained in U.

- (a) This defines a topology on X, called the **metric** topology.
- (b) An open ball is open.
- (c) From introductory courses you know the ε - δ definition of continuity for maps between metric spaces. Show that a map between metric spaces is continuous in the ε - δ sense if and only if it is continuous with respect to the metric topologies.
- (d) A subset $U \subset X$ is called a **neighborhood** of a point $x \in X$ if there exists an open set V with $x \in V \subset U$. A topology is called **Hausdorff** if any two distinct points have disjoint neighborhoods. Show that every metric topology is Hausdorff.
- (e) Describe topological spaces that are **not** Hausdorff.

Exercise 3.

Show that the surfaces in Figure 1 are homeomorphic.

Exercise 4.

- (a) The relative topology on a subset A of a topological space X is indeed a topology on A.
- (b) Let O be the standard topology on \mathbb{R}^2 , i.e., the topology defined by the Euclidean metric. Then the induced topology on $\mathbb{R} = \mathbb{R} \times \{0\} \subset \mathbb{R}^2$ is the standard topology on \mathbb{R} .
- (c) Let $f: X \to Y$, where $X = A_1 \cup A_2$ is the union of two closed sets $A_1, A_2 \subset X$. If the restrictions $f|_{A_i}: A_i \to Y$ are continuous for i = 1, 2, then $f: X \to Y$ is also continuous.

Figure 1: Homeomorphic surfaces

Exercise 5.

Let X be a topological space. A set B of open sets is called a **basis** of the topology if every open set is a union of sets from B.

- (a) Convince yourself that every topology has a basis.
- (b) \mathbb{R}^n with the standard topology (with respect to the Euclidean metric) has a countable basis.
- (c) Describe topological spaces that do not have countable bases.