Marc Kegel Theo Müller

Exercise 1.

We denote by $D^n := \{x \in \mathbb{R}^n : |x| \le 1\}$ the closed unit ball in \mathbb{R}^n and by $S^{n-1} := \{x \in \mathbb{R}^n : |x| = 1\}$ the unit sphere.

- (a) \mathbb{R}^n is homeomorphic to $D^n \setminus S^{n-1}$.
- (b) The line through the north pole N := (0,...,0,1) ∈ Sⁿ ⊂ ℝⁿ⁺¹ and another point (x₁,...,x_{n+1}) ∈ Sⁿ intersects the equatorial plane {x_{n+1} = 0} in exactly one point. This defines a map Sⁿ \ {N} → ℝⁿ, the so-called stereographic projection. Give an explicit formula for this map and use it to show that ℝⁿ is homeomorphic to Sⁿ \ {p} for any point p in Sⁿ.

Exercise 2.

(a) Describe a space-filling curve, i.e. a continuous and surjective map

$$[0,1] \to [0,1] \times [0,1].$$

- (b) Show that \mathbb{R} is homeomorphic to \mathbb{R}^n if and only if n = 1.
- (c) Later in the lecture, we will prove invariance of dimension, i.e. we will show that \mathbb{R}^n is not homeomorphic to \mathbb{R}^m for $n \neq m$. Convince yourself that this is a non-trivial statement.

Bonus Exercise 1.

Let X and Y be topological spaces. We denote by $\pi_X: X \times Y \to X$ and $\pi_Y: X \times Y \to Y$ the canonical projections. The **product topology** on $X \times Y$ is the **coarsest** topology (i.e., the topology with the fewest open sets) on $X \times Y$ for which π_X and π_Y are continuous. Describe the open sets in this topology and explicitly show that this defines a topology.

Bonus Exercise 2.

Show that the following statements about a topological space X are equivalent:

- (i) X is connected.
- (ii) The only subsets of X that are both open and closed are \emptyset and X.
- (iii) If $X = A \cup B$ with $A, B \neq \emptyset$ subsets of X, then $\overline{A} \cap B \neq \emptyset$ or $A \cap \overline{B} \neq \emptyset$. Here \overline{A} denotes the closure of A.

Bonus Exercise 3.

A topological space is called **discrete** if every subset is open, or equivalently: if all singletons are open. This is the **finest** possible topology, i.e. the one with the most open sets. One imagines the points of such a space as lying discretely, as opposed to being continuously distributed. A space is called **totally disconnected** if every connected component consists of exactly one point. Show:

- (a) Every discrete space is totally disconnected.
- (b) The set \mathbb{Q} of rational numbers, with the topology induced from the real numbers \mathbb{R} , is totally disconnected but not discrete.

Bonus Exercise 4.

Work out the details of the sketch of the proof of Theorem 4 (the ham sandwich theorem).