Marc Kegel Theo Müller

Exercise 1.

- (a) Verify that the quotient topology really defines a topology.
- (b) The quotient topology is the finest topology (i.e. the topology with the most open sets) for which the canonical projection $\pi: X \to X/_{\sim}$ is continuous.
- (c) Let Y be another topological space. A map $f: X/_{\sim} \to Y$ is continuous if and only if $f \circ \pi: X \to Y$ is continuous.
- (d) Show that the quotient space D^n/S^{n-1} is homeomorphic to S^n . (Here, X/A denotes the quotient space under the equivalence relation $x \sim y :\Leftrightarrow (x = y \text{ or } x, y \in A)$.)
- (e) Show that the suspension ΣS^n of the *n*-sphere S^n is homeomorphic to S^{n+1} .

Exercise 2.

A map $f: X \to Y$ is called an **embedding** if it is injective and $f: X \to f(X)$ is a homeomorphism when f(X) is equipped with the subspace topology from Y.

- (a) Closed subsets of compact spaces are compact.
- (b) Compact subsets of Hausdorff spaces are closed. In particular, singletons are closed sets.
- (c) Use parts (a) and (b) to show that every continuous and injective map from a compact space to a Hausdorff space is an embedding.
- (d) The map

$$\begin{split} f \colon [0,2\pi] \times [0,\pi] &\longrightarrow \mathbb{R}^5 \\ (x,y) &\longmapsto (\cos x, \cos 2y, \sin 2y, \sin x \cos y, \sin x \sin y) \end{split}$$

induces an embedding of the Klein bottle into \mathbb{R}^5 . *Hint:* Use part (c) and Exercise 1(c). **Bonus Exercise:** Can the Klein bottle be embedded into \mathbb{R}^4 ?

(e) Describe continuous bijective maps that are not homeomorphisms.

Exercise 3.

The boundary of a Möbius band is homeomorphic to a circle S^1 . Describe an embedding of a Möbius band in \mathbb{R}^3 such that its boundary is a standard circle. Create a 3D model of this embedding (e.g. out of paper).

SS 2025

Exercise 4.

The *n*-dimensional real projective space $\mathbb{R}P^n$ is the quotient of S^n under the identification of antipodal points, i.e. $\mathbb{R}P^n := S^n/_{\sim}$ with $x \sim y$ for $x, y \in S^n$ if and only if y = x or y = -x.

- (a) Show that the following definitions are equivalent to this one, i.e., they describe spaces homeomorphic to $\mathbb{R}P^n$:
 - (i) Start with $\mathbb{R}^{n+1} \setminus \{0\}$ and identify points lying on the same line through the origin, i.e., consider the quotient space $(\mathbb{R}^{n+1} \setminus \{0\})/_{\sim}$ with $x \sim y$ iff there exists $\lambda \in \mathbb{R} \setminus \{0\}$ such that $x = \lambda y$. (This describes $\mathbb{R}P^n$ as the space of lines through the origin in \mathbb{R}^{n+1} .)
 - (ii) Start with the *n*-dimensional closed disk D^n and identify antipodal points on the boundary $\partial D^n = S^{n-1}$, i.e. define $D^n/_{\sim}$ with $x \sim y$ if y = x or $y \in S^{n-1}$ with y = -x.
- (b) Let M be a Möbius band. Its boundary is $\partial M = S^1$. Attach M to a 2-disk D^2 along their boundaries via the identity map, i.e., form $D^2 \cup_{\varphi} M$ with $\varphi = \mathrm{id}_{S^1}$. Show that this space is homeomorphic to $\mathbb{R}P^2$.
- (c) Gluing two Möbius bands along their boundaries yields a Klein bottle.

Bonus Exercise.

- (a) Revisit the proof of the Heine–Borel theorem.
- (b) Every compact, locally Euclidean space has a countable basis for its topology. A space is called **locally Euclidean** if every point has an open neighborhood homeomorphic to an open subset of \mathbb{R}^n .
- (c) A topological space X is called **sequentially compact** if every sequence $\{x_i\}_{i \in I}$ has a convergent subsequence. Define what a convergent sequence in a topological space should mean, and show that subsets of \mathbb{R}^n are compact if and only if they are sequentially compact.
- (d) Thus, we have seen three notions of compactness (which coincide in \mathbb{R}^n): closed and bounded subsets in metric spaces, sequential compactness, and (open cover) compactness. Describe topological spaces in which these notions of compactness do not coincide.