Marc Kegel Theo Müller

Exercise 1.

The **dunce hat** is the topological space obtained from a triangle by identifying the sides as suggested in Figure 1.

Compute the fundamental group of the Klein bottle and of the dunce hat using the Seifert–van Kampen theorem.

Figure 1: The dunce hat.

Exercise 2.

Let G be any finitely presented group. Construct a path-connected topological space X whose fundamental group is isomorphic to G.

Bonus: Is the same true for groups that are not finitely presented?

Exercise 3.

Show that S^n and $\mathbb{R}P^n$ are compact *n*-dimensional (smooth) manifolds without boundary.

Exercise 4.

Show that the coordinate cross $\{xy = 0\}$ in \mathbb{R}^2 , the dunce hat, and the cone over $\mathbb{R}P^2$ are not manifolds.

Bonus Exercise.

Show that the comb with infinitely many teeth is contractible, but that not every point of it is a strong deformation retract.

Puzzle Exercise.

Describe the free group F_n with n generators explicitly as a subgroup of the free group F_2 with 2 generators.

These exercises will be discussed in the session on Thursday, June 5.

 $\mathrm{SS}~2025$