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Abstract

The famous knot complement theorem by Gordon and Luecke states that two knots
in the 3-sphere are equivalent if and only if their complements are homeomorphic.
By contrast, this does not hold for links in the 3-sphere or for knots in general
3-manifolds.

In this thesis the same questions are studied for Legendrian and transverse knots
and links. The main results are that Legendrian as well as transverse knots in the
3-sphere with the unique tight contact structure are equivalent if and only if their
exteriors are contactomorphic, where the exteriors of the transverse knots have to
be sufficiently large. I will also present Legendrian links in the tight contact 3-sphere
and Legendrian knots in general contact manifolds that are not determined by their
exteriors.

It will turn out that these questions are closely related to the existence of cosmetic
contact surgeries, i.e. contact surgeries that do not change the contact manifold.
These are studied with new formulas for computing the classical invariants of Le-
gendrian and transverse knots in the complements of surgery links.

Another application of cosmetic contact surgeries is that one can switch the crossing
type of a given Legendrian or transverse knot by contact surgery without changing
the contact manifold. It follows that every Legendrian or transverse knot admits a
contact surgery description to an unknot. This yields connections of the classical
invariants of Legendrian and transverse knots to the unknotting information of the

underlying topological knot type.



Zusammenfassung

Der beriihmte Satz iiber das Knotenkomplement von Gordon und Luecke besagt,
dass zwei Knoten in der 3-Sphére genau dann dquivalent sind, wenn ihre Komple-
mente homéomorph sind. Im Gegensatz dazu gilt dies nicht fiir Verschlingungen in
der 3-Sphére und fiir Knoten in allgemeinen 3-Mannigfaltigkeiten.

In dieser Doktorarbeit werden die gleichen Fragen fiir Legendre- und transver-
sale Knoten und Verschlingungen untersucht. Die Hauptresultate sind, dass sowohl
Legendre- als auch transversale Knoten in der 3-Sphére mit ihrer eindeutigen straffen
Kontaktstruktur genau dann dquivalent sind, wenn ihre Aulenrdume kontaktomorph
sind, wobei die Auflenrdume der transversalen Knoten hinreichend grof3 sein miissen.
AuBlerdem werde ich Legendre-Verschlingungen in der straffen Kontakt-3-Sphére und
Legendre-Knoten in allgemeinen Kontaktmannigfaltigkeiten prasentieren, die nicht
durch ihre Auflenrdume bestimmt sind.

Es wird sich herausstellen, dass diese Fragen eng verkniipft sind mit der Existenz
von kosmetischen Kontaktchirurgien, d.h. Kontaktchirurgien, welche die Kontakt-
mannigfaltigkeit nicht &ndern. Um diese zu untersuchen, werden neue Formeln
hergeleitet, um die klassischen Invarianten von Legendre- und transversalen Knoten
in den Komplementen von Chirurgie-Verschlingungen zu berechnen.

Eine weitere Anwendung von kosmetischen Kontaktchirurgien ist, dass man mit
diesen den Kreuzungstyp eines gegebenen Legendre- oder transversalen Knotens
wechseln kann, ohne dabei die Kontaktmannigfaltigkeit zu dndern. Daraus folgt,
dass jeder Legendre- oder transversale Knoten eine Kontaktchirurgiebeschreibung zu
einem Unknoten besitzt. Dies fiihrt zu Zusammenhéngen zwischen den klassischen
Invarianten von Legendre- und transversalen Knoten und den Entknotungsinforma-

tionen des zugrunde liegenden topologischen Knotentyps.



Contents

Introduction

1 Dehn surgery and the knot complement problem
1.1 The knot complement problem . . . . . . . ... .. ... ... ....
1.2 Dehn surgery . . . . . . . . .

1.3 The knot complement problem and cosmetic Dehn surgeries . . . . .

2 Contact topology
2.1 Contact manifolds . . . . . . . ... ...
2.2 Legendrian and transverse knots . . . . . . ... ... ... L.
2.3 The classical invariants . . . . . . . . ... ... ... ...

2.4  Tight versus overtwisted and the classification of contact structures

3 Contact Dehn surgery
3.1 Contact Dehn surgery along transverse knots . . . . . . . . ... ...

3.2 Contact Dehn surgery along Legendrian knots . . . . . ... .. ...

4 Computing the classical invariants
4.1 Computing the homology class of a knot . . . . . . . ... ... ...
4.2 Computing the Thurston-Bennequin invariant . . . . . . . . ... ..
4.3 Computing the rotation number . . . . . . . . . ... ...
4.4 Computing the self-linking number . . . . . . . ... ... ... ...
4.5 Computing the rational invariants . . . . . . . .. ... ... .....
4.6 Extensions to general manifolds . . . . . . ... ... ... ... ...
4.7 Presenting knots in surgery diagrams . . . . . . ... ...

4.8 Computing the ds-invariant . . . . . .. .. ... o000

5 The Legendrian knot complement problem
5.1 The Legendrian knot exterior theorem . . . . . ... ... ... ...
5.2 The Legendrian link complement problem . . . ... ... ... ...
5.3 The Legendrian knot complement problem in general manifolds

5.4 Cosmetic contact surgeries . . . . . . . . .. ...

6 The transverse knot complement problem
6.1 The transverse knot exterior theorem . . . . . . . . . . . . .. . ...

6.2 The transverse link complement problem . . . . . ... .. ... ...

11

15
15
19
28
34

38
38
40

48
49
20
53
o7
29
63
64
66

72
72
76
80
33



6.3 The transverse knot complement problem

6.4 Complements and Exteriors . . . . . ..

in general manifolds . . . .

7 Surgery description of Legendrian and transverse knots

7.1 Surgery description of knots . . . . . . .
7.2 Surgery description of Legendrian knots
7.3 Surgery description of transverse knots .

7.4 Connection to the unknotting information
Acknowledgments

Bibliography

97
99

101
101
104
106
108

113

114



Introduction

The main goals in 3-dimensional topology are to understand 3-manifolds and surfaces
and knots in these 3-manifolds. One way to do this for orientable closed connected
3-manifolds is via Dehn surgery. Dehn surgery is an easy and effective method to
construct new 3-manifolds out of old ones. One takes a knot in a given 3-manifold,
cuts out a whole tubular neighborhood of this knot and glues it, in a different way,
back to the manifold. A fundamental result due to Lickorish-Wallace says that one
can get every oriented closed connected 3-manifold by a sequence of Dehn surgeries
from the 3-sphere S3. This gives a nice connection between 3-manifolds and knot
theory in S3.

One aspect of this is given by the so-called knot complement problem. The state-
ment of the knot complement conjecture is that two given knots in S® are equiva-
lent if and only if their complements are homeomorphic. It will turn out that this
conjecture is closely related to the existence of cosmetic Dehn surgeries, i.e. Dehn
surgeries along a knot in S® that yield again S3. A groundbreaking result of Gordon
and Luecke says that such cosmetic surgeries are only possible along the unknot.
Using this fact, it is easy to deduce that a given knot in S® is determined by its
complement or equivalently its exterior.

This fact turns out to have a big influence on knot theory in S® because knot
exteriors are Haken manifolds, and for Haken manifolds there exist algorithms to
check if two such manifolds are homeomorphic or not.

In Chapter 1 I will recall Dehn surgery and the knot complement problem in
more detail.

The main goal of this thesis is to generalize the knot complement theorem by
Gordon—Luecke to Legendrian and transverse knots in the unique tight contact struc-
ture of S3.

A contact structure is a completely non-integrable tangential 2-plane field on a
3-manifold. In particular, it follows that there exists no surface (no matter if closed
or open) embedded in this 3-manifold which is everywhere tangent to the 2-plane
field. In this sense a contact structure is the opposite of a codimension one foliation,
because a codimension one foliation gives, by considering the tangent spaces of the
leaves, a 2-plane field, such that at every point of the manifold there exists a surface
through this point that is everywhere tangent to this 2-plane field.

Already from the definition it becomes clear that contact structures are interest-
ing geometric objects, which is confirmed by the fact that there are a lot of natural

applications of contact geometry in low-dimensional topology and classical mechan-
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ics, where examples of contact manifolds appear as energy hypersurfaces in phase

spaces.

Much of the contact geometry is actually encoded in so-called Legendrian and
transverse knots. Legendrian knots are knots that are always tangent to the contact
structure, while a knot is called transverse if it is always transverse to the contact

structure.

In Chapter 2 definitions and some basic results about contact geometry and

Legendrian and transverse knots are given.

An obvious question is if the knot exterior problem holds true also for Legendrian
and transverse knots in contact manifolds, i.e. is a Legendrian or a transverse knot
determined by the contactomorphism type of its exterior? The main results in this
thesis are that Legendrian knots in the unique tight contact structure & of S3
are determined by their exteriors (see Chapter 5) and that the same holds true
for transverse knots, as long as the exterior of the transverse knot is sufficiently
big (see Chapter 6). In particular, this implies that all invariants of transverse or
Legendrian knots in the tight contact structure of S* are in fact invariants of the
contactomorphism type of their exteriors. On the way I will also present examples
to see that this fact is not true for Legendrian links in the tight contact structure of

S3 and for Legendrian knots in general contact manifolds.

The proof strategy is a similar one as in the topological case. First one translates
the knot exterior problem into the problem of excluding cosmetic contact Dehn
surgeries along Legendrian or transverse knots. Therefore, in Chapter 3 I will explain
the classical constructions how to do Dehn surgery along Legendrian or transverse

knots compatible with contact structures.

Then, the strategy to exclude cosmetic contact surgeries is first to use the topo-
logical result due to Gordon and Luecke about cosmetic contact surgeries to con-
clude that every cosmetic contact surgery along a Legendrian knot has to be along a
Legendrian unknot. The next step is to exclude cosmetic contact surgeries along Le-
gendrian unknots which are stabilized positively and negatively. For that one looks
at a Legendrian knot in the exterior of the surgery unknot. Then this Legendrian
knot represents also a Legendrian knot in the new surgered manifold. By showing
that the classical invariants of this knot violate the Bennequin inequality in this new
contact manifold it follows directly that this new contact manifold cannot be the
tight contact S3. The idea to exclude cosmetic contact surgeries along transverse
knots is the same.

Therefore, I will present in Chapter 4 new formulas (partly obtained in joint work
with Sebastian Durst and Mirko Klukas) for computing the classical invariants, i.e.

the Thurston—Bennequin invariant and the rotation number for Legendrian knots



and the self-linking number for transverse knots, in contact surgery diagrams.

On the way I will classify all cosmetic surgeries along Legendrian knots in (53, )
that result again in (53, &) (see Section 5.4). As an application it follows that a
given crossing of a Legendrian or transverse knot can be switched by inserting a
contact surgery that does not change the manifold. By doing this for finitely many
crossings of the given Legendrian or transverse knot one gets an unknot; such a
contact surgery diagram yielding again (53, &) but changing a given knot to an
unknot is called contact surgery description of the Legendrian or transverse knot.

By analyzing how the classical invariants of the given Legendrian or transverse
knot change, one gets connections of the classical invariants with the unknotting

information of the underlying topological knot type. This is explained in Chapter 7.
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Dehn surgery and the knot complement problem

In this chapter I want to present the known results about the topological knot
complement problem. In Section 1.1 the link complement problem for links in S is
discussed. First I give examples due to Whitehead of non-equivalent links in S? with
homeomorphic complements and then present the fundamental result of Gordon and
Luecke that the knot complement problem for knots in S® is true.

In Section 1.2 I will introduce Dehn surgery and show how to relate the knot
complement problem to a problem of excluding cosmetic Dehn surgeries.

Finally, in Section 1.3 I will give well-known counterexamples to the knot com-
plement problem in general manifolds and present a few known results in general
manifolds.

The main part of this chapter is based on and very similar to Sections 2, 3, 4
and 11 of my paper [54].

This chapter differs from the rest of this thesis in the way that I work here
in the topological category, i.e. I assume all maps, surfaces and 3-manifolds to be
continuous, and all knots and links to be tame. While in the other chapters I usually
work in the smooth category, i.e. I assume the same objects to be smooth.

Since I consider 3-manifolds only, it does not make a real difference, since every
3-manifold carries a unique smooth structure and two homeomorphic 3-manifolds
are also diffeomorphic.

I assume the reader to be familiar with the basic notions of low-dimensional
geometric topology on the level of the standard text books [70] and [73].

1.1 The knot complement problem

In this thesis links are mainly considered up to (coarse) equivalence.

Definition 1.1.1 (Coarse equivalence)
Let Ly and Ls be two links in an oriented closed 3-manifold M. Then L, is (coarse)

equivalent to L, if there exists a homeomorphism f of M
f M —M

that maps L to Ly. Then one writes Ly ~ L.
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Remark 1.1.2 (Coarse equivalence vs. isotopy)

The (coarse) equivalence is a weaker condition than the equivalence of knots up to
isotopy. For example, there is a reflection of S that maps the left-handed trefoil
to the right-handed trefoil, so these two knots are (coarse) equivalent, but one can
show that the left handed trefoil is not isotopic to the right handed trefoil (i.e. there
is no such homeomorphism isotopic to the identity).

One can also consider the oriented (coarse) equivalence, that means equiv-
alence where only orientation preserving homeomorphisms of M are allowed. In S3
oriented equivalence is equivalent to isotopy (because in S* every orientation pre-
serving homeomorphism is isotopic to the identity), but in general manifolds this is

a weaker condition than isotopy.

A first observation is that if two links L; and L, are equivalent, then the comple-
ments are homeomorphic. The following question, first proposed in 1908 by Heinrich
Tietze [80, Section 15], is well known as the link complement problem (or, for

one-component links, the knot complement problem):

Problem 1.1.3 (Link complement problem)

Are two links in the same manifold with homeomorphic complements equivalent?

Link complements are non-compact, but often it is much easier to work with
compact manifolds. Therefore, pick some regular (closed) neighborhood v L of a link
L in M and call the complement M \ vL of the interior vL of this neighborhood the
exterior of L.

The corresponding problem whether the equivalence class of a link is determined
by the homeomorphism type of its exterior is called the link exterior problem.
By work of Edwards [22, Theorem 3| these two problems are equivalent. So it does
not make a difference if one considers link complements or link exteriors. (However,
this is an important non-trivial point; for example in contact topology this is not

clear, as I will discuss later. See for example Section 6.4.)

Example 1.1.4 (The Whitehead links)

The first example of a link, that is not determined by its complement, was given in
1937 by Whitehead [85]. He considered the following two links L; and Ly in S%, now
called Whitehead links, see Figure 1.1.

If one deletes one component out of L; then the remaining knot is an unknot.
But if one deletes the unknot U out of Ly then the remaining knot is a trefoil. So
L, cannot be equivalent to Ly. But the exteriors of these links are homeomorphic,
as one can see as follows: Consider the exteriors S3 \ vU of the unknot U. Then cut

open this 3-manifold along the (Seifert) spanning disk of the unknot U, make a full
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2m-twist and re-glue the two disks. In this setting, this is often called a Rolfsen
twist and describes a homeomorphism of the link exteriors.
By twisting several times along U one can even get infinitely many non-equivalent

links all with homeomorphic exteriors.

D i

Li=K, UU Ly =KyUU

Figure 1.1: Two non-equivalent links with homeomorphic complements

The next natural question would be if this holds on the level of knots. This is

the so-called knot complement theorem by Gordon-Luecke [43].
Theorem 1.1.5 (Knot complement theorem by Gordon-Luecke)

Any two knots in S with homeomorphic complements are equivalent.

This highly non-trivial result does not seem to be useful at first glance, but in fact
it has a very big influence on knot theory. For example in a MathSciNet review [85]
Wilbur Whitten states: "The strongest and best result ever obtained in classical
knot theory states that (tame) knots in S® are determined by their complements."
The reason is that this theorem says that the knot exterior is a complete invariant
of the knot. A complete invariant of a knot is an invariant that can decide if two
knots are the same or not and that is also in practice computable. This invariant is
computable because knot exteriors are Haken manifolds, and for Haken manifolds
there exist algorithms to decide if two Haken manifolds are homeomorphic or not (in
terms of Thurston’s geometrization theorem for Haken manifolds, see [79] and [21,
Section 4], or in terms of Haken’s normal surface theory, see [44], [59] and [21,
Section 4]). As far as I know, the knot exterior is the only known complete invariant
of a knot.

A starting point for proving this theorem was to translate it into a problem

concerning Dehn surgery.
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1.2 Dehn surgery

In this section I recall the definition of Dehn surgery, which is a very effective
construction method for 3-manifolds (for more information see [70, Chapter VI]
or [73, Chapter 9]). First it was used by Max Dehn [12] in 1910 to construct homology
spheres (see Remark 1.2.3). Roughly speaking one cuts out the neighborhood of a
knot and glues a solid torus back in a different way to obtain a new 3-manifold.

More precisely:

Definition 1.2.1 (Dehn surgery)
Let K be a knot in a closed oriented 3-manifold M. Take a non-trivial simple closed

curve r on J(vK') and a homeomorphism
¢: 0(S' x D*) — O(vK)

such that
{pt} x OD* =: pig —> 7.

Then define

Mg(r) = St x D? + M\ vK /N,
IS'x D*)>3p ~ ¢(p) € OVK).

One says that Mg (r) is obtained from M by Dehn surgery along K with slope r.

One can easily show that M(r) is again a 3-manifold independent of the choice
of ¢ (see [73, Chapter 9.F]). A fundamental result due to Lickorish-Wallace says that
every (closed orientable connected) 3-manifold can be obtained from S* by Dehn
surgery along a link (see [70, Corollary 12.4.]). So to specify a 3-manifold one only
has to describe a link (in S?) together with the slopes r; of the link components. To

do this effectively one observes that there are two special kinds of curves on (v K):

e The meridian u: A simple closed curve on 9(vK) that is non-trivial on (v K)

but trivial in v K.

e The longitudes \: Simple closed curves on J(vK) that are non-trivial on

J(vK) and intersect u transversely exactly once.

The curves shall be oriented in such a way that the pair (i, \) represents the positive
orientation of (vK) in M. One can show that up to isotopy the meridian pu is
uniquely determined. But for the longitudes there are different choices. For a given
longitude X one gets all infinitely many other longitudes by A = A + qu, for ¢ € Z.

Given such a longitude A one can write r uniquely as

r = pu + g, for p, q coprime.
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For knots in S (or more general nullhomologous knots in general manifolds)
the usual choice for a longitude is the so-called Seifert longitude \g, obtained
by pushing the knot into a Seifert surface of the knot, i.e. a compact orientable
surface with boundary the knot. (It is easy to show that a knot is nullhomologous
if and only if it admits a Seifert surface and that the Seifert longitude does not
depend on the choice of the Seifert surface, see for example the text before Propo-
sition 4.5.5 in [41].) It is easy to show that (with given Seifert longitude Ag) for
a slope r = pu + gAs the surgered manifold Mg(r) is already determined by the
rational number p/q € QU {oo} called the (topological) surgery coefficient (see
for example [73, Section 9.G]). Depending on the context, I will denote by r the
slope or the corresponding surgery coefficient.

Example 1.2.2 (Surgeries along the unknot)

I want to describe surgeries along the unknot U in S®. In this case there is a special
description of the Seifert longitude on d(vU). To see this, note that the exterior
S3\ vU is again homeomorphic to a solid torus S' x D?. This corresponds to the

trivial genus-1 Heegaard splitting of S? (see for example [70, Example 8.5.]). Write

Ty:= wU =8'xD?
Ty:= S3\vlU =S'x D2

Then, the Seifert longitude A, of T} is given by the meridian s of Ts (see for example
[70, Figure 8.7.]). So for surgeries along the unknot in S® one can write the slope r
uniquely as r = puy + gA1.

Now, I want to show that S5 (1 +¢);) is homeomorphic to S®. For that, one first
considers the so-called trivial Dehn surgery S} (u;), where one cuts out a neigh-
borhood of the knot and glues it back in the same way as before. So the manifold
is not changing at all, and in this case it is again S3. Then the idea is to do again
a Rolfsen twist along the unknot to obtain a homeomorphism from S% = S3 (1) to

S3-(j11 +qA1). Therefore, consider the diagram that will be specified in the following.

§* = Sh(m) = S'x D’ + n /.
: o ¢ - 1
\ Ao A
\
%: Id O h

\
: )\OI 2 )\1
% Mo+ w1+ qh

S (1 +qh1)i= St x D? + Ty

~

First, one chooses the gluing maps ¢; such that they map the meridians po as
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determined by the slope. Hence, the manifolds are fixed, but the maps ¢; are not.
There are many possibilities to what a longitude Ay can map, but the homeomor-
phism type of the resulting manifold is not affected by this choice. In this example
one can choose the maps ¢; such that they map Ay to A;.

To construct a homeomorphism between the two resulting manifolds, one uses
on the (S x D?)-factor the identity map. If one finds a homeomorphism A of the
Ts-factor such that the diagram commutes, then these two maps fit together to a
homeomorphism of the whole manifolds. For the map A one can choose a ¢g-fold Dehn

twist of the solid torus 75, i.e.

h: T2 — T2
p1= A2 —— 1+ A= A + Qo
Al =g = A = [lo.

So the diagram gives rise to a homeomorphism between the two manifolds.

Remark 1.2.3 (The homology of the surgered manifolds)

For a general surgery along a knot K in S® one computes the homology as
Hy(Sk(pps + aM); Z) = 2,

So the surgeries from the above example are the only surgeries along the unknot
that lead again to S®. Such Dehn surgeries which do not change the manifold are
called cosmetic Dehn surgeries. In fact, the cosmetic Dehn surgeries along the
unknot from the foregoing example are the only ones in S3, as the following deep

theorem shows.

Theorem 1.2.4 (Surgery theorem by Gordon—Luecke)
Let K be a knot in S®. If S3.(r) is homeomorphic to S* for r # p, then K is

equivalent to the unknot U.
Proof. see [43] O

The knot complement theorem 1.1.5 now follows easily from the surgery theo-
rem 1.2.4. The connection is as follows. Assume first that the meridian p of the knot
K is marked on the boundary of the knot exterior. Then the knot can be recovered
easily because there is a unique way to glue in a solid torus by requiring that the
meridian of the solid torus should map to the meridian of the knot K. (First use the
Alexander trick in dimension 2 to fill in a unique disk bounding the meridian. Then
the boundary of the resulting object is a 2-sphere. By again using the Alexander
trick, this time in dimension 3, there is a unique way to fill this 2-sphere with a

3-ball. This is exactly the proof why for a Dehn surgery it is enough to know the
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image of the meridian.) Then, one gets back the knot K as the spine of the newly
glued-in solid torus. In the language of Dehn surgery this was nothing but a trivial
Dehn surgery along the knot K to get back S3.

If the meridian is not given, then the question is of course how many different
curves on the boundary of the knot exterior give back S* by doing Dehn surgery
along K with this slope. The surgery theorem says exactly that this is only possible

for the unknot. To be more precise:

Proof of Theorem 1.1.5.
Choose a homeomorphism
h: S3\ vk, — S%\ v,
and write
S* = S% (m) = ' x D* + $*\ vk, /
where the gluing map is ¢1: pg — 1. Then consider the surgery along K, with

respect to the composition of maps
0(S'x D?) - 9(SP\vky) s 9(SP\ vky)
Lo — L1 — h(uy) =: ro.

To determine the homeomorphism type of this new manifold S%, (r2) look at the

following diagram:

§3 2 S% (1) :==8" x D? + S3\ vk, /N
: Ho t o Ha
!
!
!, 1d O h

\
!
I o
Y Mot hogs o = h(/lq) i

Sk, (r2) =51 x D? + 3\ ik,

With similar arguments as in Example 1.2.2 this induces a homeomorphism f from
S3 =2 S (1) to Sk, (r2) and with the surgery theorem 1.2.4 it follows that r, is
equal to uo or Kj is equivalent to the unknot U.

If ro = po, then the surgery S;’(Q(’I"g) is the trivial surgery, so the spines
Stx{0ycS'xD*cs?
of the new solid tori are equal to the knots K. Therefore f sends K; to K.

In the other case (K3 ~ U), one does the same argument again but with K; and
K5 reversed. It follows then that K; ~ U ~ K. O
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Remark 1.2.5 (Oriented knot complement theorem)

Exactly the same argument works also with orientations. The surgery theorem 1.2.4
also holds for oriented homeomorphism from S3.(r) to S® and oriented equivalence
from K to U. Then the same steps as before shows that two knots with orientation
preserving homeomorphic complements are orientation preserving equivalent. For

S3 this is the same as isotopic knots (see also Remark 1.1.2).

1.3 The knot complement problem in general manifolds and

cosmetic Dehn surgeries

Instead of looking only at knots in S one can also look at knots in general 3-
manifolds and study the knot complement problem for these knots. Of course, one
can transfer this problem in an arbitrary manifold to a problem concerning Dehn
surgery like before in the proof of Theorem 1.1.5 and gets by exactly the same
methods the following lemma.

Lemma 1.3.1 (Criterion for the knot complement problem)
Let K be a knot in a 3-manifold M such that there is no non-trivial Dehn surgery
along K resulting again in M. Then the equivalence type of K is determined by the

diffeomorphism type of its complement.

But to check the hypothesis of this lemma turns out to be very difficult and
in general, both the conclusion and the hypothesis of the lemma are not true. The

following counterexample illustrates this (see also [74]).

Example 1.3.2 (Two non-equivalent knots with the same complements)
Consider two different Dehn surgeries along the unknot U in S? with surgery coeffi-
cients r; = —5/2 and ry = —5/3, leading to the lens spaces L(5,2) and L(5, 3). By
the classification of lens spaces [41, Exercise 5.3.8.(b)] these two lens spaces are orien-
tation preserving homeomorphic and the homeomorphism is given by interchanging
the two solid tori (see also [39, Section 2]).

From this Dehn surgery example it is easy to find two non-equivalent knots with
the same exteriors. For this write (i = 1,2)

L(5,2) = S¥(r) == S'xD* -+ S\ /.

Mot T

and consider the knots

K;:=8"x {0} c S'x D*C L(5,2).
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The knots K7 and K, given as the spines of the newly glued-in solid tori represent
the spines of the genus-1 Heegaard splitting of L(5,2). As tubular neighborhood of
K; one chooses the whole newly glued-in solid tori S* x D?, therefore the exterior
is 53\ vU = S x D? in both cases.

It remains only to show that these two knots are not equivalent. Therefore,

assume that there is an orientation preserving homeomorphism
f:L(5,2) — L(5,2)
mapping K; to Ks. By restricting f to the complementary solid tori
L(5,2) \vEK; = S*\vU =T,

one gets a homeomorphism of 75 which maps the slope 71 = —5Xy + 245 to the slope
ro = —bAy 4+ 3ue. But such a map cannot exist because all orientation preserving
homeomorphisms of solid tori are isotopic to Dehn twists along meridians. So K
is not orientation preserving equivalent to Ky in L(5,2). (Similarly one shows that
there do not exist orientation reversing homeomorphisms doing this.)

With the same methods as above it is easy to show (see [74]) that if K; and K,
are the cores of the two solid tori in the standard Heegaard splitting of L(p, q), then
they have homeomorphic complements, but there is an orientation preserving (or
reversing) homeomorphism of L(p, ¢) mapping K; to K» if and only if ¢* = 1 (mod p)
(or ¢ = —1 (mod p)).

The key point in the foregoing example is that there is a so-called exotic cos-
metic surgery, that means two surgeries along the same knot resulting in the same
manifold but with different slopes such that there is no homeomorphism of the knot
exterior mapping one slope to the other (see [7]). One can show that every knot
in a given 3-manifold is determined by its complement if and only if this manifold

cannot be obtained by exotic cosmetic surgery from another manifold.

Theorem 1.3.3 (Exotic cosmetic surgeries)

The following two claims are equivalent.

1. Any two knots K1 and Ky in a closed 3-manifold M with homeomorphic com-

plements are equivalent.

2. For any knot K' in a closed 3-manifold M' such that M. (r1) and My (rs)
are both homeomorphic to M (for ri # ry), there exists a homeomorphism of

the knot exterior ) )
h: M\vK' — M\vK'
(8] — T9

mapping one slope to the other.
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Remark 1.3.4 (Oriented exotic cosmetic surgeries)
(1) The statement holds true in the oriented and unoriented case.
(2) Observe that the term ’cosmetic surgery’ is used a bit more general than before

because the manifolds M and M’ are not assumed to be homeomorphic in general.

Proof of Theorem 1.3.3.
The proof of (1) = (2) works exactly as in the foregoing example. The implication
(2) = (1) is similar to the proof of Theorem 1.1.5. O

Consequently, the study of the knot complement problem is equivalent to the
study of exotic cosmetic surgeries. In the topological setting the following is known.
Gabai showed in [33] that knots in S* x S? (or more generally in a connected sum
of arbitrary T?- or S?-bundles over S') are determined by their complements.

But in general manifolds this will not hold. Building up on work by Mathieu [58],
Rong classified in [74] all knots in 3-manifolds with Seifert fibered complements that
are not determined by their complements. These knots are given by the spines of
the solid tori in the standard Heegaard splitting of some special lens spaces L(p, q)
as described at the beginning of this section or as exceptional fibers of index 2 in
special Seifert fibered manifolds. But all these homeomorphisms sending one of the
exceptional fibers to another one have to be orientation reversing.

Later Matignon [60] proved that all knots whose exteriors do not carry a complete
hyperbolic metric in atoroidal irreducible Seifert fibered 3-manifolds are determined
by their oriented complements (except the cores of the standard Heegaard splittings
in lens spaces).

For knots whose exterior carry a complete hyperbolic metric there is only one
counterexample until now. In [7] Bleiler, Hodgson and Weeks construct two non-
equivalent hyperbolic knots in L(49, 18) with orientation reversing homeomorphic
complements. They also give very good reasons for the conjecture that all knots in
hyperbolic 3-manifolds are determined by their oriented complements. Recently Ichi-
hara and Jong [49] found examples of knots in hyperbolic manifolds with orientation
reversing homeomorphic complements.

All together this leads to the still open oriented knot complement conjecture in

general manifolds:

Conjecture 1.3.5 (Oriented knot complement conjecture)
If Ky and K5 are knots in a closed oriented 3-manifold M with orientation preserving
homeomorphic complements (not homeomorphic to S* x D?), then the knots are

orientation preserving equivalent.

By Theorem 1.3.3 and Remark 1.3.4 this is equivalent to the cosmetic surgery

conjecture formulated in [7]:
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Conjecture 1.3.6 (Oriented cosmetic surgery conjecture)
Ezotic cosmetic surgeries (not resulting in a lens space) are never orientation pre-

serving (or truly) cosmetic.

Many of the mentioned results rely on the classification of all Dehn surgeries in
a solid torus resulting again in a solid torus by Berge [5] and Gabai [34]. But in
the last years also Heegaard Floer homology turned out to be a very useful tool
to study such problems. For example, Wang [84] showed that there are no exotic
Dehn surgeries along Seifert genus-1 knots in S®. The same holds for non-trivial
algebraic knots in S® by [71]. Finally, in [35] and [72] it is shown that knots in L-
space homology spheres are determined by their complements. In particular, knots
in the Poincaré sphere are determined up to orientation preserving equivalence by

the oriented homeomorphism types of their complements.



2
Contact topology

In this chapter I want to present a short introduction to some aspects of 3-dimension-
al contact topology. The outline follows at some points [52] and [53]. The standard
reference for contact topology, Legendrian and transverse knots and the main source
for most of the material presented here is [38]. Other very useful references for
Legendrian and transverse knots are [69, Chapter 12] and [27].

In the first section I will explain what a contact structure is. Section 2.2 intro-
duces Legendrian and transverse knots in contact manifolds and states the main
results of this thesis, namely the extensions of the knot exterior theorem to Le-
gendrian and transverse knots. To distinguish these knots normally one uses the
so-called classical invariants, i.e. the Thurston—Bennequin invariant and the rota-
tion number for Legendrian knots and the self-linking number for transverse knots.
The definitions and some standard properties about them are given in Section 2.3.
In Section 2.4 it is explained how these knots (and their classical invariants) are used
to distinguish contact structures into so-called tight and overtwisted ones which is
a crucial concept in contact topology.

Except the main theorems about the exteriors of Legendrian and transverse links
(which will be proven later) the only new results are the facts about front projections
of Legendrian knots together with transverse knots in a single front projection in
Section 2.2. Everything else is well known.

From now on I will work in the smooth category, i.e. all maps, manifolds, etc.

are assumed to be smooth.

2.1 Contact manifolds

The central object in contact topology is a contact structure, but before giving the
precise definition I want to present the standard model of a contact structure in the

3-dimensional space R3.

Example 2.1.1 (The standard contact structure on R3)
Consider R? with Cartesian coordinates (x,y, z). The so-called standard contact
structure on R3 is the 2-plane field £;; C TR? given by the following linear span of

two nowhere vanishing vector fields,

gst = <axa ay - xaz>;
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where 0, 0, and 0, denote the coordinate vector fields. In Figure 2.1 small parts of
these planes are pictured along the xy-plane. One observes that the contact planes
along the y-axis coincide with the zy-plane. If one moves along the z-axis in any
direction the contact planes twist to the left and as |x| gets big become arbitrary
close to the xz-plane, but never tangent to it. Along all other lines parallel to the x-
axis the situation is the same. (Therefore, it is enough to picture the contact planes

along the zy-plane.)

N

Figure 2.1: The standard contact structure &; on R3. This figure is (except for
some small changes in colors and axes) retrieved from Wikipedia (2016, August
31) created by user Msr657 available online at https://en.wikipedia.org/wiki/

File:Standard_contact_structure.svg.

A special class of 2-plane fields are the integrable ones, i.e. 2-plane fields that
arise by considering the tangent spaces of the leaves of a codimension one foliation
of the manifold.

The main property of a contact structure is that it does not come from a codi-
mension one foliation, not even locally. For the standard contact structure it can be
seen in Figure 2.1 that there exists no surface (no matter if closed or open) in R3
that is everywhere tangent to the contact planes.

Moreover, if a surface is tangent to the contact structure at a single point then it
cannot be tangent up to second order, meaning that the angle between the contact
plane and the tangent space of the surface vanishes only up to first order in the
point (see [38, Section 1.6]).

A way to prove that £, admits this properties is to use the Frobenius integrability
condition. For that, one first shows that every 2-plane field locally can be written

as the kernel of a 1-form (see [38, Lemma 1.1.1]). For a coorientable 2-plane field,
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i.e. a 2-plane field that has a well defined normal vector field, this is even possible

globally. For example the standard contact structure & can be written as
Eq = ker(zdy + dz).

Now a 2-plane field £ = ker « is integrable if and only if « satisfies the Frobenius
integrability condition (see [38, Section 1.1])

aAN da=0.

But for the standard contact structure &, on R? given by the kernel of the 1-form

g = x dy + dz, one computes that
ag N\ dag =dx Ndy N\dz

is the standard volume form on R?® and therefore vanishes at no point.

In this example one sees already that it is comfortable to work with 2-plane
fields presented as kernels of 1-forms. Normally the definition is also given in terms

of these forms.

Definition 2.1.2 (Contact manifold)
A 2-plane field ¢ = ker « given by the kernel of a 1-form « on a 3-manifold M is
called contact structure if o Ada is a volume form of M. Then « is called contact

form and the pair (M, ¢) is called contact manifold.

Remark 2.1.3 (Contact forms and orientations)

(1) The contact form to a given contact structure £ is not unique. The contact form
can be changed by multiplication with any function A\: M — R\ {0}, but the sign
of the volume form does not change as

(Aa) A d(Aa) = XNa A da.

So a contact structure induces an orientation on the manifold M. Given an oriented
manifold one can speak of positive or negative contact structures, depending on
whether the orientation given by the contact structure coincides with the given
orientation or not.

(2) In this thesis I only want to consider (as usual) coorientable contact structures,
i.e. contact structures globally given as the kernel of a 1-form.

(3) A given contact form defines also an orientation and a coorientation of the
contact structure. I implicitly assume that a contact structure given as the kernel

of some 1-form is oriented and cooriented by this contact form.
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Example 2.1.1 is fundamental because every contact structure looks locally like
the standard contact structure & on R3. This is called the Theorem of Darboux
(see [38, Theorem 2.5.1]).

Theorem 2.1.4 (Theorem of Darboux)
Let p be a point in an arbitrary contact manifold (M,§). Then there exists an open
3-ball B* around p and coordinates (x,vy,z) on B* such that the contact structure &

on B3 is given by ker(x dy + dz).
The next natural step is to define maps that preserve contact structures.

Definition 2.1.5 (Contactomorphisms and isotopies)
Let (Mo, &) and (Mj, &) be contact manifolds.
(1) A diffeomorphism f: My — M, is called contactomorphism if it preserves the
contact structures. For given contact forms & = ker oy and & = ker a; this means
that there exists a function A: My — R\ {0} such that f*a; = Aag. Then these two
contact manifolds are called contactomorphic.
(2) Two contact structures & and & on the same manifold M are called isotopic
if there exists a smooth family of contact structures & (¢ € [0,1]) connecting these
two contact structures.

For closed manifolds this is equivalent to the existence of a contactomorphism
[ (M, &) — (M, &) that is isotopic (through contactomorphisms) to the identity
by Gray’s theorem (see [38, Theorem 2.2.2]).

A main goal in contact topology is to classify contact structures up to isotopy

or contactomorphisms.

Example 2.1.6 (The standard contact structure on S?)
Consider the 3-sphere S? as a subset of R* with Cartesian coordinates (z,y, z,1).

Then the contact form
ag =xdy —ydr+zdt —tdz

defines the standard contact structure & on S%. Since (S®\ {p}, &) is contac-
tomorphic to (R3, &) for every point p € S® (see [38, Proposition 2.1.8]), this name

makes sense.

Example 2.1.7 (Contact structures on S! x R?)

Consider S* x R? with angular coordinate § on S* = R/27Z and Cartesian coor-
dinates (x,y) on R2% For n € Z\ {0} one can define a contact structure &, as the
kernel of the 1-form

ay, := cos(nb) dx — sin(nd) dy.
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All these contact manifolds (S! x R? &,) are contactomorphic, as one can see as
follows. Consider the diffeomorphisms of S! x R? defined by

(0, 2,y) = (9, x cos(nb) + % sin(nf), —x sin(nf) + %cos(n&)).

Then f, is a contactomorphism of (S* x R? ker(dz + ydf)) to (St x R%&,). In

particular all the &, are contactomorphic.

2.2 Legendrian and transverse knots

As explained in Example 2.1.1 there exists no surface tangent to a contact structure.
But for knots this is possible. Such knots always tangent to the contact planes are
called Legendrian. In this section I will introduce these knots as well as the so-called
transverse knots which are always transverse to the contact planes. These two special
classes of knots fitting nicely to the contact structure are not only useful for better
understanding contact structures but they also carry a lot of information about the

contact structures and appear naturally in many areas of low-dimensional contact

topology.

Definition 2.2.1 (Legendrian and transverse knots)
A smooth knot K C (M, £ = ker @) in a contact manifold is called

e Legendrian if TK C & (or equivalently a(T'K) = 0);
e transverse if TK is transverse to & (or equivalently o(TK) # 0).

Remark 2.2.2 (Positively transverse knots)

If the contact structure is cooriented (i.e. if a special contact form is given) then
a transverse knot admits a canonical orientation, given by the requirement that
the orientation of the transverse knot should coincide with the coorientation of the
contact structure. Therefore, for oriented transverse knots it makes sense to speak of
positively and negatively transverse knots. Usually, in this thesis a transverse knot
is assumed to be a positive transverse knot. On the other hand, Legendrian knots

do not admit a canonical orientation.

Example 2.2.3 (A Legendrian unknot)
Consider the unknot K in (R3,&,;) from Figure 2.2 given by

[0,27] 5 t — (x(t) = 3sin(t) cos(t), y(t) = cos(t), z(t) = sin3(t)> € R®.

One computes ag(TK) = x(t)y'(t) + 2/(t) = 0. Therefore, this unknot represents a
Legendrian unknot in (R?, ).



20 Contact topology

10

Figure 2.2: A Legendrian unknot in (R3 )

Example 2.2.4 (Standard models)

(1) Consider the contact manifold (S* x R?,&,) from Example 2.1.7. The knot given
by St 360~ (0,0,0) € S* x R? is a Legendrian knot because its tangent vector dp
lies in the kernel of a,, = cos(nf) dx — sin(nf) dy.

(2) Consider the contact manifold

(Sl x R? ker(df + r* dga)),

where 6 is an angular coordinate on S' and (r, ) are polar coordinates on R?. Then
the knot S* 3 6 — (0,0,0) € S* x R? is a transverse knot because its tangent vector
never lies in the kernel of the contact form.

In fact every Legendrian or transverse knot locally looks like the knots in these
two examples (for proofs see [38, Corollary 2.5.9 and Example 2.5.16]).

Theorem 2.2.5 (Neighborhood theorems)

(1) Let K C (M,€) be a Legendrian knot in a contact manifold. Then there exists
a standard tubular neighborhood vK of K in M such that (VK &) is contacto-
morphic to (S' x D,,&,) for an arbitrary r > 0 and an arbitrary n € Z \ {0} where
D, denotes the disk with radius v in R%. Moreover, this contactomorphism sends K
to S* x {0} c S* x D,.

(2) Let T be a transverse knot in (M,&). Then there exists a standard tubular
neighborhood vT of T in M and an € > 0 such that (vT,&) is contactomorphic to

(Sl x D? ker(df + r* dga)),

and the contactomorphism maps T to S* x {0}.
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Remark 2.2.6 (Size of the standard neighborhoods)

(1) Since the map (0, x,y) — (0,rz,ry) is, for every r > 0, a contactomorphism for
the contact structures &,,, the size of a tubular neighborhood of a Legendrian knot
is arbitrary.

(2) But in contrast to Legendrian knots, the size € of such a neighborhood vT for
transverse knots 7' is not arbitrary. The maximal value of this size is an invariant
of the transverse knot 7', as studied in [64], [11, Section 1.6] and [4].

Definition 2.2.7 (Complements and exteriors)

Let K be a Legendrian or transverse knot in (M, ¢). Then one calls (M \ K, &) the
complement of K and (M \ VK, ¢) an exterior of K. If K is a Legendrian knot,
then the exterior is independent of the chosen standard neighborhood. But if K is

transverse then it depends on the size € of this neighborhood.

In this thesis I want to consider Legendrian and transverse knots up to coarse

equivalence.

Definition 2.2.8 (Coarse equivalence)
Let K7 and K3 be two Legendrian or transverse knots in (M, £). Then K; is (coarse)

equivalent to K, if there exists a contactomorphism f of (M, ¢)

fo(M,€§) — (M.€)
K| — Ky

that maps K7 to K5. Then one writes K| ~ K.

Remark 2.2.9 (Coarse equivalence versus isotopy)

Coarse equivalence is in general a weaker condition than equivalence given by Le-
gendrian or transverse isotopy (for example in overtwisted contact structures on S%).
But one can show that in (S, &,;) these two concepts are the same. (The contacto-
morphism group of (53,&,) is trivial, but on the other hand the contactomorphism

group of an overtwisted contact manifold is never trivial, see [26, Section 4.3]).

If two Legendrian or transverse knots are coarse equivalent, their complements
and exteriors are contactomorphic. The Legendrian or transverse knot complement
or exterior problem asks if the reverse also holds. The main results of this thesis are

the following two theorems.

Theorem 2.2.10 (Legendrian knot exterior theorem)
Let Ky and Ky be two Legendrian knots in (53, &st) with contactomorphic exteriors.

Then K1 is equivalent to Ks.
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The Legendrian knot complement problem was also mentioned by Etnyre [27].
But he only discusses the relation between coarse equivalence and isotopy of Legen-
drian knots (compare Remark 2.2.9).

Note also that for Legendrian links Theorem 2.2.10 is in general wrong. In Sec-
tion 5.2 I will give some examples of Legendrian links in (S3,&,;) that are not
determined by the contactomorphism type of their exteriors. Also for Legendrian
knots in general contact manifolds the Legendrian knot exterior theorem is not true.
Examples of non-equivalent Legendrian knots in lens spaces with contactomorphic
exteriors are presented in Section 5.3. In Section 5.1 I will give the proof of this

result and also explain why this does not hold true for links in (53, &y).

Theorem 2.2.11 (Transverse knot exterior theorem)
Let Ty and Ty be two transverse knots in (S3,&,) with contactomorphic sufficiently
big exteriors (meaning that the size of the tubular neighborhoods is sufficiently small).

Then Ty and T, are equivalent.

The proof of the transverse knot exterior theorem is given in Section 6.1. Coun-
terexamples to the transverse link complement problem in (53, £y) and to the trans-
verse knot complement problem in general contact manifolds are discussed in Sec-
tions 6.2 and 6.3. For transverse knots it is not clear if the knot exterior theorem even
holds for small exteriors. Also the question remains open whether this holds in both

the Legendrian and the transverse case also for the complements (see Section 6.4).

Problem 2.2.12 (Contactomorphisms of closed and open knot complements)
If (M\ vy, €) is contactomorphic to (M \ vK,,€), is (M \ K1, €) also contactomor-
phic to (M \ K5,£)?

Remark 2.2.13 (Unoriented Legendrian links)

(1) The exterior of a knot cannot determine the orientation of the knot, so here the
Legendrian knots K; and K5 are normally understood to be unoriented knots. But
since transverse knots carry a canonical orientation, it is sufficient to restrict in the
transverse case to positive transverse knots and consequently Theorem 2.2.11 holds
also for oriented transverse knots. In the Legendrian case one can fix an oriented
longitude of the knot in its exterior and then the same result holds also for oriented
Legendrian knots.

(2) The significance of the topological knot exterior theorem is, as explained earlier,
the fact that there are algorithms to determine whether two knot exteriors are home-
omorphic. One of these algorithms due to Matveev [59] (following the fundamental
ideas of Haken [44]) works very roughly like this: One cuts open the knot exteriors

along special so-called normal surfaces in such a way that the result is a collection of
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3-balls together with a way to glue them together again. By cutting in a clever way,
it is enough to consider only finitely many possibilities for cutting. Instead of com-
paring the knot exteriors it is then enough to compare only the resulting collections
of 3-balls.

By doing the same to exteriors of Legendrian or transverse knots one ends up with
collections of contact 3-balls together with a way to glue them back to the contact
knot exterior. It should be possible to compare these results also in the contact
case. This would result in an algorithm to determine whether two Legendrian or

two transverse knots in (5%, &) are isotopic or not.

Next, I want to present a way to describe and study Legendrian and transverse
knots in diagrams. On the way I will present many examples of such knots (for more
details see [38, Chapter 3]).

Given a Legendrian or a transverse knot K in (S®,&,;), by Example 2.1.6 one
can view this knot also as a knot in (R3, £,;). These knots are usually presented in

the front projection
(x,y,2) — (y, 2).
For a generic Legendrian knot K (t) = (x(t),y(t), 2(t)) C (R? &) one can assume

y'(t) to vanish only in isolated points and then one can recover the Legendrian knot

completely from its front projection via

and its smooth extension (in the isolated points where 3/(¢) = 0). From this equation
one also sees that in the front projection crossings as in Figure 2.3 are forbidden.

Moreover, there are no vertical tangencies.

Figure 2.3: Impossible front projections of Legendrian knots

Instead of vertical tangencies a Legendrian knot has so-called cusps like in Fig-
ure 2.4. Typical front projections of Legendrian knots are pictured in Figure 2.4.
Conversely, every such front projection containing only semi-cubical cusps (see [38,
Lemma 3.2.3]) and crossings as described above represents a unique Legendrian
knot.
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() (i) (i)
Figure 2.4: Typical Legendrian front projections

For transverse knots in the front projection the above construction works similar.
The condition for a knot K to be positively transverse (negatively works similar) is
given by 2/(t) + x(t)y'(t) > 0. So the situations shown in Figure 2.5 are not possible

in the front projection of positive transverse knots.

R0

Figure 2.5: Impossible front projections of positive transverse knots

All other situations are possible, but in this case one cannot recover the transverse
knot from its front projection (because there is only an inequality for the z-value).
However, it is easy to show that every such diagram represents a unique positively
transverse knot up to transverse isotopy. Typical examples of positively transverse

knots are shown in Figure 2.6.

/

(iid)

Figure 2.6: Typical front projections of positively transverse knots
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From now on, Legendrian and transverse knots are normally depicted in their
front projection diagrams.

By changing the front projections of an arbitrary topological knot like in Fig-
ure 2.7 one can realize every topological knot type as a Legendrian knot (and very
similar also as a transverse knot). This can even be done arbitrarily close to the

original knot as the next theorem shows.

A
(o

|
= L

Figure 2.7: Transforming a topological knot into a Legendrian knot

Theorem 2.2.14 (Approximation theorem)
Let K C (M,€) be a knot in a contact manifold. Then K can be C°-close approxi-

mated by a Legendrian as well as by a transverse knot topologically isotopic to K.

Sketch of proof.
By the theorem of Darboux 2.1.4 it is sufficient to consider Legendrian knot segments
in (R3 &y).

By approximating a given topological knot K as in Figure 2.8 by a Legendrian
knot L (with the negative slope of L arbitrarily close to the z-coordinate of K') one
can stay arbitrarily close to the original knot.

The next step is to show that a given oriented Legendrian knot L can be ap-
proximated arbitrarily close by a transverse knot T'. Therefore, look at a standard

neighborhood (see Theorem 2.2.5) of the Legendrian knot L given by
(Sl x D2 ker cos() dz — sin(6) dy).
The two knots Tl given by
0— T.(0) = (9, r = tesin(f),y = +e cos(@))

are positive/negative transverse knots since «,,(7'.) = +¢. Different choices of ¢ give
isotopic transverse knots which become for small values of € > 0 arbitrarily close to

the original Legendrian knot L. O
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Figure 2.8: Approximating a topological knot by a Legendrian knot

Definition 2.2.15 (Transverse push-off)
The positively/negatively transverse knots 7% constructed in the sketch of the proof
of Theorem 2.2.14 are called the positively/negatively transverse push-off of the

oriented Legendrian knot L.

Remark 2.2.16 (Transverse push-offs in front projections)
In a front projection of a Legendrian knot L one can construct the positively (and

similar the negatively) transverse push-off 7" as in Figure 2.9 (compare [69, Sec-

tion 12.5]).
C\ % < > T
Figure 2.9: Constructing the front projection of the positively transverse push-off

By working Figure 2.9 backwards it is not hard to see that every transverse knot
can be obtained as the push-off of a Legendrian knot, see [69, Section 12.5], but this

Legendrian knot is not unique.
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Next, I want to study links in contact manifolds consisting of Legendrian and
transverse knots at the same time. Although this is very easy and similar to the other
cases, the following results are new and only appeared very briefly in my paper in
joint work with Sebastian Durst [18]. In Section 6.1 the following will be used to
prove the transverse knot exterior theorem.

One wants to present these links in front projections. Therefore, one has to
find out how Legendrian and transverse knots behave together in a front-projection
diagram. A parametrized knot (x(t),y(t), 2(t)) is Legendrian if and only if 2/(¢) +
z(t)y'(t) = 0. And similarly such a knot is (positively) transverse if and only if
2'(t) + z(t)y'(t) > 0. In Figure 2.10 one can see the four possible intersections of
a Legendrian knot L and a transverse knot T in the front-projection. From the
conditions above it follows immediately that the intersection of type (2) and (4)

are uniquely determined, but in type (1) and (3) in general both are possible. For

negatively transverse knots it is similar, see Figure 2.10.

(1) (2) (3) (4)

Figure 2.10: Crossings between Legendrian and transverse knots. The transverse

knots in the second row are positive, the ones in the third row negative.

So in a front projection of a link consisting of positively transverse and Legen-
drian knots the configurations in Figure 2.11 can never occur (and neither, of course,
the old forbidden configurations of Legendrian and transverse knots). On the other
hand, every front projection without such a configuration represents uniquely such
a link.

Similar to the case for Legendrian or transverse knots (see for example [69,
Appendix B]) one can also prove a Reidemeister-type theorem for links consisting

of Legendrian and transverse knots.
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Figure 2.11: Impossible crossings of positive transverse with Legendrian knots

2.3 The classical invariants

A natural question is how to distinguish two knots from each other which are both
Legendrian or transverse. Of course, if they do not represent the same topological
knot type then they cannot be equivalent as Legendrian or transverse knots, either.
But what for example about the Legendrian unknots in Figure 2.47

To distinguish such knots one usually uses the so-called classical invariants which

I will define in this section.

Definition 2.3.1 (Contact longitude and Thurston-Bennequin invariant)

Let K be a Legendrian knot in (M, ). Then one obtains the so-called contact
longitude \¢ by pushing K into a direction transverse to the contact structure. So
if K is nullhomologous and Legendrian then there exist two special longitudes, the
Seifert longitude Ag and the contact longitude A¢, which differ only by a multiple
of the meridian. Then the so-called Thurston—-Bennequin invariant th(K) € Z
is defined by the equation

Ao = th(K)u + As € Hi(vK, Z).

Figure 2.12: The contact and the Seifert longitude of a Legendrian unknot
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A Legendrian knot in (R3, &) is always nullhomologous, so it is natural to ask

how to compute the Thurston-Bennequin invariant in front projections.

Example 2.3.2 (The Thurston—Bennequin invariant of a Legendrian unknot)
Let L C (R3,£,;) be the Legendrian unknot in Figure 2.4(i). The contact longitude
A¢ is obtained from L by pushing it into a direction transverse to the contact
structure. For & one can use the 0,-direction and obtain the contact longitude A¢
as a Legendrian knot again (see Figure 2.12).

This new Legendrian knot is also called a Legendrian push-off and is Legen-
drian isotopic to the old one. In Figure 2.13 one can compare on d(rvL) the contact
longitude A with the Seifert longitude A\g to obtain

)\C = —/L+>\S.

Therefore, it follows that th(L) = —1.

vL

Figure 2.13: The contact and the Seifert longitude on a tubular neighborhood

By using the same method as in this example one gets the following formula for

computing the Thurston—-Bennequin invariant in the front projection.

Lemma 2.3.3 (Computation of tb in front projections)
Let K be a Legendrian knot in (R3, &) represented in the front projection. Then the

Thurston—Bennequin invariant is given by
1
th(K) = —5¢ +w

where ¢ denotes the number of cusps in the front projection and w is the writhe,

i.e. the signed sum over all self-crossings in the front projection.
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With this lemma it is easy to distinguish many Legendrian knots of the same
topological knot type. For example the Legendrian unknots in Figure 2.4 have tb
equal to —1 and —2, so they are different. On the other hand, there exist different
Legendrian knots with the same tb numbers. For example the Legendrian unknots in
Figure 2.14 both have tb = —3, but they will turn out to be different. To show this
one can use the other classical invariant for Legendrian knots, the so-called rotation

number.

Ll L2

Figure 2.14: Different Legendrian unknots with same tb invariants

Definition 2.3.4 (Rotation number)
Let K be a nullhomologous oriented Legendrian knot in (M,¢) and ¥ a Seifert
surface for K. The rotation number of K with respect to the Seifert surface ¥ is
defined by

rot(K, X) := (e(§, K), [X]) = PD(e(§, K)) @ [X]

where e(£, K) is the relative Euler class of the contact structure £ relative to the
trivialization given by a positive tangent vector field along the knot K and [X] the

relative homology class represented by the surface X.

This definition of the rotation number is useful for calculations (see also [69]). For
an alternative equivalent definition see [38, Definition 3.5.12]. The rotation number
depends only on the homology class of the chosen Seifert surface, not on the partic-
ular choice of the surface itself. Note also that the rotation number is independent
of the class of the Seifert surface if the Euler class e() of the contact structure
vanishes (see Proposition 3.5.15 in [38]). Moreover, the rotation number changes its
sign if the orientation of the knot changes. Therefore, the absolute value |rot | is an
invariant for unoriented Legendrian knots.

Since in (R?, ;) there exists a global trivialization of the contact structure, one
can give (using the above-mentioned equivalent definition of the rotation number)

a formula to compute rot in front projections (see [38, Proposition 3.5.19]).
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Lemma 2.3.5 (Computation of rot in front projections)
Let K be a Legendrian knot in (R3 &) represented in the front projection. Then the

rotation number is given by
1
rOt(K) = 5(07 — C+)

where cy denotes the total number of cusps oriented upwards or downwards in the

front projection.

With this lemma the rotation numbers of the Legendrian unknots in Figure 2.14
compute as rot(L;) = 0 and rot(Ly) = £2 (depending on the orientation), so they
represent different Legendrian knots.

For transverse knots there exists only one classical invariant, the so-called self-

linking number.

Definition 2.3.6 (Self-linking number)

Let K be a nullhomologous transverse knot in a contact manifold (M, &) and let
Y be a Seifert surface. The self-linking number sl(K,Y) of K is defined as the
linking number of K and K’ where K’ is obtained by pushing K in the direction of

a non-vanishing section of ¢|s.

The self-linking number of a knot is independent of its orientation and only
depends on the homology class of the chosen Seifert surface (cf. Section 3.5.2 in [38]).
Again, if e(§) = 0 then the self-linking number is independent of the Seifert surface.

There is also a simple formula for computing the self-linking number of a trans-

verse knot in its front projection.

Lemma 2.3.7 (Computing sl in front projections)
Let K be a transverse knot in (R3, &) represented in the front projection. Then its
self-linking number is given by

sI(K) =w

where w denotes again the writhe of the front projection.

Proof.

From Example 2.1.1 it follows that 0, is a global section of &;. That means that
the parallel knot K’ from the definition can be obtained by pushing K into the
O,~direction. Therefore, the linking number 1k(K, K') is given by the writhe of this

front projection. [l

It follows that the self-linking numbers of the transverse unknots in Figure 2.6

are —1 and —3, so these transverse knots are different.
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Given an oriented Legendrian knot L in (R? ;) one can compute (using Fig-
ure 2.9 and the formulas for computing the classical invariants in front projections)
the self-linking number of its positive/negative transverse push-offs T, easily as

sl(Ty) = tb(L) F rot(L).
This also holds in general contact manifolds (see [38, Proposition 3.5.36]).
Lemma 2.3.8 (Self-linking number of transverse push-offs)
Let L be an oriented nullhomologous Legendrian knot in a contact manifold (M, &)

with Seifert surface ¥. Denote by Ty its positive/negative push-off. Then 3 can also
be seen as a Seifert surface for Ty and

sl(Ty, X) = th(L) F rot(L, [X]).

A natural question arising now is which values can be realized as classical invari-
ants of Legendrian or transverse knots.
First one observes that one can change the classical invariants by local moves,

so-called stabilizations, depicted in Figure 2.15 in its front projections.

HCQ T mm

Figure 2.15: Stabilizations of a Legendrian knot L and a transverse knot T’

The classical invariants change under stabilizations as
th(L3) = th(L) — 1,
rot(L3) = rot(L) 1,
sI(T9) = sI(T) — 2.
So in particular it is easy to give a Legendrian or transverse realization of a given
topological knot type with arbitrarily small classical invariants. But on the other

hand, it is not always possible to make them larger. The first result in this direction

is the following theorem due to Bennequin.

Theorem 2.3.9 (Bennequin inequality)
Let K be a topological knot in R®. Then for every Legendrian realization L of K and
every transverse realization T of K in (R3 &) the following inequalities hold
sI(T') < 2g(K) — 1,
€b(L) + [ 1ot(L)] < 2g(K) — 1.
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where g(K) denotes the genus of the knot K, i.e. the smallest genus of a Seifert
surface of the knot K.

This theorem can be seen as the starting point of contact topology. It connects
contact geometry (in terms of the classical invariants of Legendrian and transverse
knots) to topology (in terms of the genus of a knot). In the next section it is explained
how one can use this result and a generalization by Eliashberg to distinguish contact
structures.

In particular, this theorem says that the Legendrian unknot from Figure 2.4(i)
and the transverse unknot from Figure 2.6(i) represent the maximal values of tb,
tb 4| rot | and of sl. But for a general topological knot type this bound is far from
optimal (see for example [63] for other bounds). Observe also that the so-called
Bennequin bound 2¢(K) — 1 is at least —1, but in general the maximal value is
much smaller.

It follows also that for a given topological knot type K in S? the maximal value of
sl of all its transverse realizations in (5%, &) is an invariant of K, denoted by SL(K).
(And similarly one defines TB(K) to be the maximal value of tb of all Legendrian
realizations of K.)

-2 —1 0 +1 +2
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Figure 2.16: A complete list of Legendrian unknots

rot
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On the other hand, one could also ask if the classical invariants classify Legen-

drian or transverse knots. The primary results in this direction are:

Theorem 2.3.10 (Classification of Legendrian unknots)
Every oriented Legendrian unknot in (R3, &) or (S3,&4) is isotopic to exactly one
in Figure 2.16. In particular, two oriented Legendrian unknots are isotopic if and

only if tb and rot coincide.
Proof. see [26] O

Theorem 2.3.11 (Classification of transverse unknots)
Every positive transverse unknot in (R3, &) or (S3,&4) is isotopic to exactly one in
Figure 2.17. In particular, two positive transverse unknots are isotopic if and only

if their self-linking numbers coincide.

Proof. see [24] O

Figure 2.17: A complete list of transverse unknots

Similar results have been obtained for other knot types, for example torus knots
are also classified by their classical invariants by work of Etnyre and Honda [29].
But in general this is not true; Chekanov [9] constructed examples of topologically
isotopic Legendrian knots in (R3, &) with the same classical invariants which are not

Legendrian isotopic. For similar examples of transverse knots see for example [68].

2.4 Tight versus overtwisted and the classification of

contact structures
In this section I will explain how Legendrian and transverse knots influence the
global contact topology. The starting point is the Bennequin inequality 2.3.9. By
this inequality every Legendrian unknot in (R3,&,;) has tb < —1. This can be used

to distinguish contact structures from each other.

Example 2.4.1 (The standard overtwisted contact structure)

Consider R? with cylindrical coordinates (r, ¢, 2). Define a 1-form by

Qot = cosT dz + rsinrdp.
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For r = 0 it is not clear that «,; is well defined, since dy is not well defined for r = 0.

sinr
r

But the 1-form r?dyp = xdy — ydx is smooth and the function r admits a
smooth extension to r = 0. Therefore, a,; is a well-defined contact form and defines
the so-called overtwisted contact structure &, := ker ;.

In terms of non-vanishing vector fields this overtwisted contact structure, for

r # 0, can be written as
ot = (O, cos70, — rsinrd,).

First observe that &, does not depend on z, so the contact planes look the same
on every plane parallel to the xy-plane. Therefore, it is enough to understand the
contact planes in the xy-plane. For r = 0 the contact plane coincides with the zy-
plane. If one moves outward along a ray in the zy-plane, the contact planes twist to
the left and will make a full turn for every integer multiple of 27 distance from the
origin. These infinitely many full twists are the reason for the name. In Figure 2.18

a few contact planes are pictured in the xy-plane.

Figure 2.18: An unknot with tb = 0 in an overtwisted contact structure. This fig-
ure is (except for a small change in color) retrieved from Wikipedia (2016, August
31) created by user Pmassot available online at https://commons.wikimedia.org/

wiki/File:0Overtwisted_contact_structure.png?uselang=fr.


https://commons.wikimedia.org/wiki/File:Overtwisted_contact_structure.png?uselang=fr
https://commons.wikimedia.org/wiki/File:Overtwisted_contact_structure.png?uselang=fr

36 Contact topology

The difference to the standard contact structure lies in the fact that the standard
contact structure never makes a full twist, while the overtwisted one twists infinitely
many times. Using the Bennequin inequality one can distinguish these two contact

structures. To do so, consider the unknot given by

{(ﬂ,gp,O) €R? ‘ € Sl}.

In Figure 2.18 one observes that this knot (pictured in red) is Legendrian and that
the contact longitude coincides with the Seifert longitude. So this knot is an unknot
with tb = 0. Therefore, the overtwisted contact structure cannot be contactomorphic

to the standard contact structure by the Bennequin inequality 2.3.9.

Later the concept of studying Legendrian unknots with tb = 0 was generalized
by Eliashberg to arbitrary contact manifolds and this turned out to be the starting

point of the classification of contact structures.

Definition 2.4.2 (Tight and overtwisted)

A contact manifold (M, ¢) is called overtwisted if there exists a tb-0-unknot in
(M,€). (Then an embedded disk bounded by a tb-0-unknot is called overtwisted
disk.) Otherwise, a contact manifold is called tight.

Example 2.4.3 ((S3,&,) is tight)
Due to Example 2.1.6 every Legendrian unknot in (S%,&) also represents a Le-
gendrian unknot in (R3, £,;) with the same Thurston-Bennequin invariant. Conse-

quently, (53, &) is also tight.

The importance of the definitions of tightness and overtwistedness are demon-

strated in the following deep results due to Eliashberg.

Theorem 2.4.4 (Classification of overtwisted contact manifolds)
Let M be a closed orientable manifold. Then in every homotopy class of 2-plane
fields tangential to M there exists (up to isotopy) exactly one overtwisted contact

structure.
Proof. See [38, Chapter 4.7]. O

So two overtwisted contact structures are isotopic if and only if they are homo-
topic as tangential 2-plane fields. In particular, there exists an overtwisted contact
structure on every 3-manifold. But observe that this theorem does only hold for
closed manifolds. For example there exist infinitely many overtwisted contact struc-
ture on R? as shown in [25].

On the other hand, the tight contact structures are much more related to the
topology of the underlying manifold, as can be seen for example from the following

result.
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Theorem 2.4.5 (Bennequin—Eliashberg inequality)

Let (M, &) be a contact manifold. Then the following statements are equivalent.
1. (M,€) is tight.

2. sl(K,X) <2¢g(K) — 1 for all nullhomologous transverse knots K and all their
Seifert surfaces ¥ in (M, ).

3. th(K) + | rot(K, [X])| < 29(K) —1 for all nullhomologous Legendrian knots K
and all their Seifert surfaces ¥ in (M, §).

4. tb(K) < 2g(K) — 1 for all nullhomologous Legendrian knots K in (M,§).

5. There do not exist tb-0-unknots in (M,§).

Sketch of proof.

The only non-trivial implication is (1) = (2) (see proof of Theorem 4.6.43 in [38] for
more information). (For (2) = (3) one uses Lemma 2.3.8 for both the positive and
the negative transverse push-off.) The idea to prove (1) = (2) is to take a Seifert
surface 3 of a transverse knot K in a contact manifold (M, £). Then the intersections
of the contact planes with the tangent space T of ¥ give a vector field X on X
(called the characteristic foliation). On the one hand the Poincaré—Hopf Index
Theorem relates the genus of ¥ to a signed count of zeros of X and on the other hand
it is possible to compute also the self-linking number as a signed count of zeros of
X. By putting these together one gets an equation with the self-linking number, the
genus and some signed counts of zeros of X. Using now the tightness of the contact
structure one can exclude several configurations of the zeros of X (because these
configurations would yield an unknot with tb = 0). This allows one to cancel all
zeros of X that contribute with a negative sign. By ignoring all remaining positive

counting zeros of X one gets the desired inequality. O]

The classification of tight contact manifolds is only known for a few simple mani-

folds. The most fundamental result is the following theorem again due to Eliashberg.

Theorem 2.4.6 (Classification of tight contact structures on R® and S?)
S3 and R3 both admit only one positive tight contact structure, the standard contact

structure.

Proof. See for example [38, Theorem 4.10.1]. O

Later (see the sketch of proof of Theorem 3.2.1) I will also use the classification of
tight contact structures on solid tori S* x D? due to Honda [46]. On these there exist
infinitely many different tight contact structures. There also exist closed manifolds
with either no (see for example [30]) or infinitely many tight contact structures (see

for example [50]).
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Contact Dehn surgery

In this chapter I explain how to generalize the Dehn surgery construction from
Section 1.2 to contact manifolds. There are two natural settings to do this. The
first setting is to do a topological Dehn surgery along a transverse knot in a contact
manifold and the second one is to do the same along a Legendrian knot. (Because of
the approximation Theorem 2.2.14 this is topologically no restriction.) The question
is then if one can extend the old contact structure over the newly glued-in solid torus,
and if so, if the resulting contact structure is unique.

In Section 3.1 I will recall the classical construction due to Martinet to extend a
given contact structure on the exterior of a transverse knot to a new glued-in solid
torus of an arbitrary Dehn surgery. As a corollary one obtains that every closed
orientable 3-manifold carries a contact structure. However, this resulting contact
structure is in general not unique.

For Legendrian knots it is also possible to always extend a given contact structure
on a knot exterior to the surgered manifold. The advantage here is that for special
slopes this new contact manifold is unique.

A fundamental theorem due to Ding and Geiges states that one can get every
closed contact 3-manifold by contact Dehn surgery along a Legendrian link out of
(53, &t). The proof of this theorem together with the basic facts about contact Dehn
surgery along Legendrian knots and several examples are presented in Section 3.2.

A surprising theorem due to Etnyre-Ghrist (Theorem 3.1.3) states that there
are transverse knots in (53, &) such that for every surgery coefficient there exists
a surgery along this knot with this coefficient resulting in a tight contact manifold.

Such knots are called tight transverse knots.

3.1 Contact Dehn surgery along transverse knots

A Dehn surgery along a transverse knot that results again in a contact manifold
with contact structure outside the new glued-in solid torus coinciding with the old

contact structure is called contact Dehn surgery. More precisely:

Theorem 3.1.1 (Contact Dehn surgery along transverse knots)
Let T be a transverse knot in (M,£) and vT a standard tubular neighborhood of T
Then the result Mp(r) of an arbitrary surgery along T with respect to this chosen
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tubular neighborhood carries again a contact structure & (r) which coincides with the
old contact structure & on M\ VT. One says (Mg (r), ér(r)) is obtained from (M, €)
by contact Dehn surgery along the transverse knot T with tubular neighborhood

vT and slope r.

Sketch of proof.
By the neighborhood theorem 2.2.5 one can assume (v7,&) C (M, §) to look like

(Sl x D? ker(df + r2d<,0)) C (Sl x D2 ker(df + ergp)).

Now take another copy Vj of S* x D? and denote its meridian by i and its longitude
St x {pt} by \¢ and similarly write (u, \) for the same meridian and longitude of
vT. Then glue V; to M \ VT with an arbitrary gluing map of the boundaries given
by

fo D+ gA

Ao —>mpL + nA

with pn — gm = 1. If one denotes the coordinates on Vy by (g, ro, ¢0), the gluing

map can be written as

0 =nby + qpo,
© =mby + ppo.

Now one pulls back the contact form df + r?dy representing the contact structure
¢ along the boundary oM \ VT to the boundary 0Vy. Then it is not difficult to
construct in a local computation a contact form on V} coinciding with this pulled
back contact form along the boundary (see for example the proof of Lemma 4.1.3
in [38]). This contact structure on Vj fits together with the old contact structure on

M\ VT to a global contact structure on the new surgered manifold. O

But observe that this contact structure is not unique. Therefore, the resulting
contact structure {7 (r) on the new manifold is also not unique. Moreover, the size
of the tubular neighborhood T is not arbitrary as described in Remark 2.2.6. Be-
cause of that the resulting contact structure depends also on the chosen tubular
neighborhood T

Since the resulting contact structure is not unique, this construction is difficult
to use in explicit constructions. But if one is only interested in the existence of
contact structures, this is very useful. For example there is the following theorem
due to Martinet.

Corollary 3.1.2 (Martinet’s Theorem)

On every closed oriented 3-manifold there exists a contact structure.
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Proof.

By the theorem of Lickorish-Wallace [70, Corollary 12.4.] every closed oriented 3-
manifold can be obtained by Dehn surgery along a link in S®. Now equip S?® with
the standard contact structure and make the surgery link with the Approximation
Theorem 2.2.14 to a transverse link. By doing contact Dehn surgery along this

transverse link one obtains a contact structure on the resulting 3-manifold. O]

But in general the resulting contact structures will be overtwisted. It is much
harder to construct tight contact structures in this way. However, there is the fol-

lowing result due to Etnyre and Ghrist.

Theorem 3.1.3 (Existence of tight transverse knots)

There exists a transverse unknot T in (S3, &) such that for every surgery coefficient
r € QU {oo} there exists a contact Dehn surgery along T yielding a tight contact
manifold. In particular there are cosmetic contact surgeries from (S3, &) to itself

for every surgery coefficient of the form 1/n.

Such a transverse knot is called tight knot. But the surgeries here are done
with respect to a sufficiently big tubular neighborhood of the knot T to ensure
tightness of the resulting manifold as explained in [28, Remark 2.1]. For small tubular
neighborhoods this theorem is not true, as we will see in Chapter 6.

In Section 6.1 I will present another application of contact Dehn surgery along
transverse knots, namely the proof of the transverse knot exterior theorem 2.2.11.

Other applications are given for example in [11] by constructing tight contact

structures and in [36] and [37] by constructing symplectic manifolds.

3.2 Contact Dehn surgery along Legendrian knots

First, I want to recall the definition of contact Dehn surgery along Legendrian knots
following [13], [14], [17], [52] and [53].

Recall first from Definition 2.3.1 that every Legendrian knot admits a specified
longitude, the so-called contact longitude Ao.

Now one wants to do Dehn surgery along Legendrian links with respect to this
contact longitude. For an expression of a slope r with the contact longitude Ao
as 7 = pp + gA¢ the corresponding rational number p/q € Q U {oo} is called the
(contact) surgery coefficient.

When doing Dehn surgery along K one can show that the contact structure of

the old manifold extends to a contact structure of the resulting manifold.
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Theorem 3.2.1 (Contact Dehn surgery along Legendrian knots)

Let K be a Legendrian knot in a contact 3-manifold (M, §).

(1) Then Mk (r) carries a contact structure k(1) which coincides with the old con-
tact structure & on M \ VK.

(2) For r # £Ac one can choose {k (1) to be tight on the new glued-in solid torus.
(8) Forr = u+ q\¢ this tight contact structure on the new solid torus is unique.
One says (Mg (r),&x(r)) is obtained from (M, ) by contact Dehn surgery along
the Legendrian knot K with slope r.

Sketch of proof.
The neighborhood v K is chosen such that its boundary is a convex surface (see [38,
Section 4.8]). The germ of a contact structure along a convex surface is determined
by some simple data on that surface. Therefore, it is easy to glue contact struc-
tures along convex surfaces. Tight contact structures on solid tori with prescribed
boundary conditions have been classified by Honda [46]. In particular, such a con-
tact structure always exists if r # +A¢ and is unique if r = p 4 gA¢. But in general
there are more possibilities to choose this contact structure, so for other slopes the
result of contact Dehn surgery is in general not unique. For details see [13] or [52].
For r = £)\¢ it is also easy to construct a contact structure on the new glued-
in solid torus that fits together to a global contact structure on the new surgered
manifold (see [14, pages 586-587]), but this contact structure has to be overtwisted.
Therefore, one usually does not discuss this case and only considers tight contact

structures on the new glued-in solid tori. O]

Notice that as a corollary one gets another proof of Martinet’s theorem 3.1.2
completely similar to the proof given before.

Before I discuss some examples of contact Dehn surgeries along Legendrian knots,
I want to present some basic properties. In order to do this, it is useful to introduce
the following notation. Let K be a Legendrian knot in (M, &), then one can write

also as short notation
K(r) == (Mg(r),&x(r)),

where it is important to notice that the contact structure {x(r) is in general not
unique. For K together with a Legendrian push-off of K I write K X K, compare
Example 2.3.2. A copy of K with n extra stabilizations I denote by K, if this knot
K, is again stabilized m-times this is denoted by K, ,,. For example let U be a
Legendrian unknot in (S?, &) with th = —1, then

U(+1) X Uy(=1) X Up1(—1)

denotes the collection of the surgery diagrams in Figure 3.1.
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Figure 3.1: Different choices of stabilizations in surgery diagrams

The following three lemmas due to Ding and Geiges are fundamental in the study

of contact Dehn surgeries along Legendrian links.

Lemma 3.2.2 (Cancellation lemma)
Contact (1/n)-surgery (n € Z\{0} ) along a Legendrian knot K C (M, &) and contact
(—1/n)-surgery along a Legendrian push-off of K cancel each other, i.e. the result

is contactomorphic to (M, ). In the notation introduced above this reads

0 (2) < (-0) e

n

Lemma 3.2.3 (Replacement lemma)

Contact (£1/n)-surgery (n € N) along a Legendrian knot K C (M,§) yields the
same contact manifold as contact (£1)-surgeries along n Legendrian push-offs of
K, ie.

K (i—;) = K (1) X -+ X K(+1).

Lemma 3.2.4 (Transformation lemma)

(1) Let K be a Legendrian knot in (M,§) with given contact surgery coefficient

re Q\{0}. Then
K(r)zK(}{) X K<1ik>

holds for all integers k € 7.

(2) If the contact surgery coefficient v is negative, one can write r as a conlinued

fraction

T:T1+1—

ro —

with integers ri,...,r, < —2. Then

K(T) et K|2+7.1‘(—1) x t x K‘2+r1| ..... ‘2+Tn‘(_]')
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Remark 3.2.5 (Choices of stabilizations in the transformation lemma)

Observe that by choosing k such that % — k is negative one can transform with
the transformation lemma every contact r-surgery (for r # 0) into a sequence of
contact (1/n)-surgeries along a different Legendrian link. Moreover in [14] and [17]
it is shown that all the different choices of stabilizations in this Legendrian link
correspond exactly to the different tight contact structures one can choose on the
new glued-in solid torus in the contact r-surgery (compare the sketch of the proof
of Theorem 3.2.1).

For a proof of the cancellation and the replacement lemma see [13] or [52] and
compare also [17, Section 1]. The proof of the transformation lemma is given in [14]
(see also [17, Section 1]). The ideas of the proofs of all three lemmas are the same.
One chooses a standard neighborhood of the Legendrian knot K and does the cor-
responding contact surgeries completely inside this local model. By analyzing the
boundary convex surfaces of the new glued-in solid tori and by using the classi-
fication of tight contact structures on solid tori with prescribed boundary convex
surfaces by Honda [46] it is easy to compare the resulting contact manifolds.

Observe that the first part of the transformation lemma in [14] and [17, Sec-
tion 1] is only formulated for natural numbers k € N and positive contact surgery
coefficients r < 0, but the proof given there works exactly the same for all integers
k € Z and all surgery coefficients r € Q \ {0}.

Next it is interesting to understand how the properties of the contact structures
behave under contact Dehn surgery. Since contact (—1)-surgery corresponds to a
symplectic handle attachment (see [14, Section 3|), contact (—1)-surgery preserves
Stein fillability, strong symplectic fillability [13, Proposition 10] and weak symplec-
tic fillability [38, Lemma 6.5.2] of a given contact manifold. And because of the
replacement lemma 3.2.3 and the transformation lemma 3.2.4 the same holds true
for every negative contact surgery coefficient.

Recently, Wand [83] proved with completely 3-dimensional methods that even

tightness is preserved by negative contact surgeries.

Theorem 3.2.6 (Negative contact surgery preserves tightness)
Let K be a Legendrian knot in a tight contact manifold (M,&). Then the result of
contact (—1)-surgery (Mg(—1),&x(—1)) is also tight (and hence the same is true

for every contact surgery coefficient r < 0).

Example 3.2.7 (Contact Dehn surgeries along Legendrian unknots)
(1) Consider the contact (—1)-surgery along the Legendrian unknot in (53, &,;) with
tb = —1 as shown in Figure 3.2. The resulting contact manifold has to be a lens

space (since it is a surgery along the unknot) with tight contact structure (due to
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Theorem 3.2.6). To determine the exact lens space one can recompute the contact
surgery coefficient into the topological surgery coefficient.

In general it works like this: Let rc = pc/qe be the contact surgery coefficient
(measured with respect to the contact longitude A¢) and rg = ps/gs be the topo-
logical surgery coefficient (measured with respect to the Seifert longitude \g). This

means [ is glued to the curve

Poph + goAe = psph + gsAs.

Since the contact longitude A¢ and the Seifert longitude Ag are related by

)‘C :tb:u_’_)‘Sa
one gets
th
ds qc

Therefore, this contact (—1)-surgery corresponds to a topological (—2)-surgery yield-
ing the lens space L(2,1) = RP3. Since this lens space is known to admit only
one tight contact structure [46] (denoted by ), the resulting contact manifold is
RP 3 fst

C +
RPg fét (L(5 2) Eti,qht) (Sda got)
i % +1 i j
S% gm‘ I X S Esf Sg get

Figure 3.2: Some examples of contact Dehn surgeries along unknots

(2) With the same methods one can show that contact (—1/2)-surgery along a Legen-
drian unknot with tb = —2 as in Figure 3.2 yields a tight contact structure on L(5, 2).
But this time the classification of tight contact structures on lens spaces [46] says
that on this lens space there are two different tight contact structures distinguished

by their Euler classes. In Section 4.8 I will explain how to compute this Euler class
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to determine which of the two tight contact structures on L(5,2) is given by this
contact surgery.

(3) A contact (+1/2)-surgery along a Legendrian unknot with tb = —1 corresponds
topologically to a (—1/2)-surgery, so yields by Example 1.2.2 a contact 3-sphere. I
want to show that the resulting contact structure has to be overtwisted. Therefore,
look at a Legendrian unknot with tbh = —1 in the complement of the surgery unknot

as in Figure 3.3 on the left.

1 - 1 —
\ ) / N P \\\ . S
Ao = —p+ Ag Ao = —1+ Ag Ao = Fp+ As

Figure 3.3: A contact Dehn surgery yielding (52, &,)

I want to compute the new Thurston—Bennequin invariant of this knot in the

new contact S3. The contact longitude and the Seifert longitude before the surgery
are related by A\ = —pu + Ag. The contact longitude depends only on the contact
structure in the neighborhood of the knot, and, since this contact structure in the
neighborhood of the knot does not change under the surgery, the contact longitude
stays the same. However, the Seifert longitude changes under the surgery, but only
depends on the topological information. Therefore, it is enough to look at the topo-
logical picture in the middle of Figure 3.3. By doing a 2-fold Rolfsen twist along
the surgery knot one obtains again S® and sees that the knot in the complement is
again an unknot. But the longitudes changes as A\¢ = +p + Ag. Hence, the resulting
contact 3-sphere contains a Legendrian unknot with tb = 1, which is the boundary
of an overtwisted disk after stabilizing once.
(4) With the same argument as above one shows that contact (+1)-surgery along
a Legendrian unknot with tb = —2 yields also an overtwisted 3-sphere. This idea
of computing the Thurston-Bennequin invariant of Legendrian knots in the com-
plements of surgery links is explained in more detail in Section 4.2 (where also a
general formula is given). This is one of the main ingredients to prove the knot
exterior theorems for Legendrian and transverse knots.

Observe also that knowing that the contact structure is overtwisted does not de-
termine the contact structure, since overtwisted contact structures on closed mani-
folds are in one-to-one correspondence with tangential 2-plane fields (Theorem 2.4.4).
In Section 4.8 I will present how to compute the so-called dz-invariant to distinguish

such tangential 2-plane fields which is well-known to be a complete invariant for
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overtwisted contact structures on S3.

(5) But there are also positive contact surgeries yielding tight contact manifolds. An
important example is given by contact (+1)-surgery along the Legendrian unknot
with tb = —1. Topologically this corresponds to a O-surgery along the unknot re-
sulting in S! x S2. One can show that the resulting contact structure is the unique
tight & on S' x S? (see [17, Lemma 4.2.]).

(6) Consider the contact surgery along the Legendrian unknot U with tb = —1 and
contact surgery coefficient +2 (see Figure 3.4). The resulting manifold is topologi-

cally again S3.

W

1

o

+2
<S37 gst)

z

1

Figure 3.4: A unique contact (+2)-Dehn surgery resulting again in (5%, &)

Next I want to show that the resulting contact structure is unique and leads
again to g (if one requires as usual the contact structure on the new glued-in solid
torus to be tight). In general a contact Dehn surgery with surgery coefficient not of
the form 1/¢ is not unique. But actually in this example it is. Too see this, one first
uses the transformation lemma 3.2.4 to change the contact surgery diagram into
contact surgeries along a link with only 1 surgery coefficients (see Figure 3.4) and
gets

UH2)=U(+1) XU(=2) =U(+1) X Uy (-1).

Observe that different choices of stabilizations yield different contact structures in
general (and correspond exactly to the different contact structures on the glued-in
solid torus), but in this case the resulting contact structures are contactomorphic.
The contactomorphism of the resulting manifold is induced by the contactomorphism
(z,y,2) = (—x,—y,z) of the old (S3 &) that maps one link to the other (see
also [16, Section 9]).

Since by the foregoing example the contact (41)-surgery yields a tight manifold

and by Theorem 3.2.6 contact (—1)-surgery preserves tightness, the claim follows.
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With this background now it is not difficult to prove the fundamental theorem
due to Ding and Geiges that it is not only possible to construct a contact structure
on every closed contact 3-manifold, but it is also possible to get every given contact

structure on every given closed contact 3-manifold by contact Dehn surgery along a
Legendrian link in (5%, &,).

Theorem 3.2.8 (Theorem of Ding—Geiges)
FEvery closed contact 3-manifold (M,€) can be obtained from (S3 &) by contact
(£1)-surgery along a Legendrian link.

Proof.

Let (M, £) be some arbitrary closed contact 3-manifold. By the theorem of Lickorish—
Wallace there exists a link in M such that one can get S® by Dehn surgery along
this link. By the approximation theorem 2.2.14 one can approximate this link by a
Legendrian link with the same topological link type. By stabilizations one can avoid
contact O-surgeries and by the transformation lemma one can obtain a contact 3-
sphere out of (M, &) by contact (1/n)-surgery along a Legendrian link.

Because of the cancellation lemma and because there exists only one tight contact
structure on S®, it is now enough to give contact (1/n)-surgery diagrams along
Legendrian links in (S3,&) to every overtwisted contact 3-sphere. This is done in
Remark 4.8.4 with help of the ds-invariant. O]
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Computing the classical invariants

As explained in Chapter 2 a main method to study contact manifolds is via the
classical invariants of their Legendrian and transverse knots. In this chapter [ want to
explain how to compute the classical invariants of knots in contact surgery diagrams.
A given knot in the exterior of a surgery link can be seen as a knot in the new
resulting manifold. Here I want to present formulas for computing the classical

invariants of such knots in the new surgered manifold.

The main problem is that the classical invariants are only defined for nullhomo-
logous (or more general rationally nullhomologous) knots, and a surgery in general
destroys this property. But as long as the resulting manifold is a homology sphere
(or a rational homology sphere) every knot has to be nullhomologous (or rationally
nullhomologous). In this case formulas for computing the new Thurston-Bennequin
invariant and the new rotation number out of the old ones and out of the algebraic

surgery data are given in [55, Lemma 6.6], [39, Lemma 2] and [11, Lemma 6.4].

Here, I first want to give an easy (and easy to check) condition (out of the
algebraic surgery data) when such a knot is nullhomologous in the new manifold. In

this case I show how to compute out of these data the new classical invariants.

Finally, in Section 4.7 I explain that every knot in a given manifold can be

presented, as a knot in the exterior of a surgery link.

There is another useful homotopical invariant of tangential 2-plane fields (with
Euler class torsion), the so-called ds-invariant. Many contact structures can be dis-
tinguished by this invariant. In [17] a formula is given how to compute the ds-
invariant out of a contact (£1)-surgery diagram. This turns out to be closely related
to the rotation numbers. In Section 4.8 we generalize this result to arbitrary contact
(1/n)-surgeries, which often simplifies combined with the replacement lemma 3.2.3

computations a lot.

The formulas to compute the Thurston-Bennequin invariant are based on Sec-
tion 8 in my paper [53]. The formulas for the rotation, self-linking number and the
ds-invariant were obtained in joint work with Sebastian Durst. They appeared in
very similar form in our paper [18]. The part on the rational invariants (Section 4.5)

is partially based on joint work with Sebastian Durst and Mirko Klukas [19].

If no coefficient group is specified, in the whole chapter homology groups are

understood to be over the integers.
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4.1 Computing the homology class of a knot

Let L =L,U---UL, CS3be an oriented link (where the choice of the orientations
is needed for the computations but does not affect the final result). Let M be the
3-manifold obtained from S® by Dehn surgery along L with topological surgery
coefficients 7; = p;/q;, for i = 1,...,n. Denote by Ly C S3\ vL an oriented knot
in S or M, depending on the context. For simplicity write the linking numbers as
lij :==1k(L;, L;), for i = 0,...,n. Also set

1 @l o @ulin
qQilor P2 ‘o
1
Q= 1' and 1:=
' lOn
qilm Pn

The matrix () is a generalization of the linking matrix, since for integer surgeries
(¢; = 1) the matrix @ is the linking matrix.

The knot Ly is called nullhomologous in M if [Ly] = 0 € H,(M;Z). As already
mentioned this is equivalent to the existence of a Seifert surface for the knot.

With the following lemma one can decide from the algebraic surgery data if such

a knot is nullhomologous in the surgered manifold.

Lemma 4.1.1 (Nullhomologous knots)
Ly is nullhomologous in M if and only if there exists an integer solution a € Z™ of

the equation 1 = Qa.

Proof.
It is easy to compute the homology of M (see for example [41, Proposition 5.3.11])
as
Hl(M,Z> IZM @"'@Zun/<pi,ui+%zlijﬂj IO|i: 1,...,n>,
2
where the generators of the Z-factors are given by right-handed meridians p; corre-
sponding to the components L;. Next we express Ly as a linear combination of the

1. One can show that the coefficients are the linking numbers [;g, i.e.
[Lo] = Z Liopbi-
i=1

So Ly is nullhomologous if and only if one can express [Lo] = 3 liop; as a linear
combination of the relations, i.e. if there exists integers a;, i = 1,...,n, such that

n

Xn: Liops = Y _ a; (piul- + q; z”: lijuj) = 2": (&ipi + z": leijaj)ﬂi.
i=1 =1

i=1 j= i=1 J=1
J# J#
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By comparing the coefficients and by writing the corresponding equations in vector
form one sees that this is true if and only if there exists a vector a € Z" such that
l1=Qa. n

4.2 Computing the Thurston—-Bennequin invariant

Now assume Ly is a Legendrian link in (53 \ vL,&,) C (S%,&y), and let € be a
contact structure on M that coincides with & outside a tubular neighborhood of
L, for example if L is also a Legendrian link in (5%, &) and (M, €) is the result of
a contact Dehn surgery along L. But it is important to notice that the setting here
is more general, one can also use contact surgery along transverse knots or surgery
along a knot that is not adapted to the contact structure.

As explained in Chapter 3 the contact structure ¢ is not unique, but it will turn
out that the value of the Thurston—Bennequin invariant of the knot is the same for
all choices of contact structures.

Here all surgery coefficients are understood to be topological surgery coefficients,
i.e. with respect to the Seifert longitude A;. (So if one has a Legendrian surgery
diagram one first has to change the contact surgery coefficients to topological surgery

coeficients with the formula 7; ¢0, = 7 cont + tb(L;).)

Lemma 4.2.1 (Computing the Thurston-Bennequin invariant)
If Ly is nullhomologous in M, then one can compute the new Thurston—Bennequin
number tbpew of Lo in (M, &) from the old one tbyy of Ly in (S3,&4) as

n
thyew = thoa — Y aigilio
i=1

where a € Z™ is a solution vector from the formula of Lemma 4.1.1.

Proof.
Let \; be the Seifert longitude of Ly in S® and let A\, be the contact longitude of Lg
in (53,&;). Then tb,y is given by

Ae = tboa Mo + As € Hy ((9VL0).

Since the contact longitude is defined by the contact structure along Ly and the
contact structure does not change near Ly by doing the surgery along L, the contact
longitude A. also represents the contact longitude in (M, £). But in general the Seifert
longitude A changes. Since the knot Ly is nullhomologous in M, there is a unique
f € Z such that fuo+ A, =0 € Hy(M \ vLy; Z) (this is the new Seifert longitude).
Then tb,,.,, is given by

)\c = tbnew Ko + (fMo + >\s) € Hl<8VLO)-
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Putting this together leads to
tbnew = tbold _f

So it is only left to compute f. Similar to the proof of the previous lemma one

computes the homology of M \ vLo as

H(M\vLy,Z) =2y @ - ® Ly, [{pipi + S lgi; = 0]i = 1,...,n)
j=0
J#i

and expresses g as
s = Liop.
i=1

So flp+As is zero in Hl(M\VzO; 7) if and only if there exist integers b;, 71 = 1,...,n,
such that

fro+ Lops =Y bi (pi“i +4i ) lij'uj)
i=1 i=1 j=0
J#

= (Z ijjljo)Mo +> (bipi +> leijbj),ui-
j=1 i=1 j=1
J#
By comparing the coefficients this is equivalent to the existence of a vector b € Z"
such that

1= @b and
f=">"bigljo.
j=1
If one chooses for b a solution a from Lemma 4.1.1 the formula follows. O]

Example 4.2.2 (Computing th-numbers with these formulas)

(1) Consider the surgery diagram from Figure 4.1(i). The old Thurston-Bennequin
invariant of Ly is —1. Since the surgery along the unknot L; with topological coeffi-
cient 1/n leads again to S the knot L is again nullhomologous in the new manifold.
This can be checked also with the formula from above. For a one gets the equation
1 = lip = Qa; = prax = ay. Therefore tb,., = —1 — lipqna; = —1 — n. Observe
again that this result does not depend on the explicit contact structure chosen for
the surgery.

(2) Consider the surgery diagram from Figure 4.1(ii). Again the surgery leads to
S3. 50 the resulting knot is again nullhomologous. The new Thurston-Bennequin in-

variant can be computed as follows. First one looks for a solution a of the equation
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2 =119 = Qa; = pra; = a; and then th,., = —1 — lijgq1a; = —1 — 4n.

(3) There are also examples where the solution a of 1 = Qa is not unique, but the
result of th,.,, of course, is not affected by this. For example consider the surgery
diagram from Figure 4.6(i). First, one has to check if the knot L is again nullho-

mologous in the surgered manifold. In order to do this, one has to check if there

(e 36)
)t

So the new knot is nullhomologous and the new Thurston-Bennequin invariant can

exists a solution a € Z of

Two obvious solutions are

be computed out of the old one as follows:

l 2
tbnew = tbold —<a, (ql 10) > = tbold —(a, (2) > = tbOld -2

galao

Observe that this result does not depend on the choice of a.

L, 1/n
1/n

(7) (i7)

Figure 4.1: Computing tb-numbers in surgery diagrams

Remark 4.2.3 (Different choices of solution vectors yield the same result)
The particular choice of a solution a does not influence the result since two different
solutions differ only by a vector ¢ in the kernel of @) and the vector (g;lio)i=1,..n lies

in the image of (). Thus, the scalar product of (¢;li0)i=1,..» and c vanishes.



4.3.  Computing the rotation number 53

4.3 Computing the rotation number

In the previous section we saw that the Thurston-Bennequin invariant does not
depend on the special choice of the contact structure on the new glued-in solid torus,
but it will turn out (see Example 4.3.3) that the rotation number does. Therefore,
a formula for the rotation number makes sense only if the contact structure on
the new glued-in solid tori is unique, for example for contact (1/q)-surgeries along
Legendrian knots.

So assume now that the surgery link L and the knot L in its exterior are
Legendrian and that the contact surgery coefficients are all of the form 1/¢; for
q; € 7.

Lemma 4.3.1 (Computing the rotation number)

The knot Lo is nullhomologous in M if and only if there is an integral vector a
solving 1 = Qa as above, in which case its new rotation number rot_ < in (M,§)
with respect to a special Seifert class S s equal to 7

n
rot & = Iotyg — Z a;q; rot;

new,>
=1

where rot; denotes the rotation number of L; in (S3,&4).

Recall again that if the Euler class of the contact structure vanishes (see Sec-
tion 4.8 how to compute this), then the rotation number does not depend on the
homology class of the particular Seifert surface. The proof proceeds in two steps.
First, following [11], we construct the class of a Seifert surface for Ly in M. We
then use the description of the rotation number in terms of relative Euler classes to

compute rot.

Proof.
Assume that Ly is nullhomologous in M and fix Seifert surfaces >,...,%, for
Ly,...,L, in S? such that intersections of surfaces and link components are trans-

verse. Our aim is to use these surfaces to construct the class of a Seifert surface for L
in the surgered manifold M. By abuse of notation, we will identify >; with its class
in H,(S*\ vL;,dvL;) and we will denote the class in Hy(S?\ (vLoUvL),dLoLIAvL)
induced by restriction also as ;.

The idea is to construct a class of the form
i=1

such that its image under the boundary homomorphism 0 in the long exact sequence

of the pair (53 \ (vLoUvL),dLyLUAvL) is a linear combination of the surgery slopes
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r; and a longitude of Ly, i.e. we want

O = fuo+ o+ Y miri = fro+ Ao+ > ma(pipi + ai)i).
im1 izl

The surgery longitudes r; bound discs in the surgered manifold M, so ¥ can be ex-
tended to give rise to a class in Hy (M \ vLg, v Lg) which we denote by 3. Geomet-
rically, the boundary homomorphism sends 3. to its intersection with the boundary

of the link complement. So we have:

0: Zj — )\j — Zl,],u“

i#]
and thus
i=0 3=0 ij
=— Z kilojpo + Ao + Z kiXi — Z loipe; — Z Z kjilijpui,
j=1 i=1 i=1 i=1 j£i

where we set kg = 1. Note that the minus sign stems from the induced boundary
orientation of ¥ (see Figure 4.2).

By comparing the coefficients and using that 1 = Qa since L is nullhomologous

in M, we obtain kl = —Qa;q;, M; = —Aa; and f = Z?:l Cqu]'l()j.
/ L;
n
%
4
R
1

Figure 4.2: Orientation of the meridian induced by the intersection

Observe that we can also directly obtain an embedded surface representing the
capped-off class 5 by resolving self-intersections in 3. In particular, f is the negative
change of the Thurston-Bennequin number of L; in the surgery, i.e. we get again

the formula from Lemma 4.2.1

n
tbpew = thoa — Z a;q;ljo.
j=1
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Moreover, observe that one can give an upper bound on the new genus ¢,e, of
the knot Ly in the new surgered manifold since resolving the singularities is done
by removing annuli and gluing them back in a different way. Therefore, the Euler

characteristic of the surface with resolved singularities computes as
X(E) = x(Zo) = Y aigix(E
i=1

which leads to a bound on the genus as required in the Bennequin inequality (by

choosing Seifert surfaces ¥; of minimal genus)

20new — 1 < =X(2) = 2000 — 1 — D> a;qi(29; — 1).
=1

Sometimes this bound can be used to prove overtwistedness of surgered contact
manifolds (compare [11]).

Now take L and Ly to be Legendrian in (53, &,;) and the surgeries to be contact
(1/q)-surgeries. We claim that the rotation number of Ly in the surgered contact

manifold (M, ) with respect to S s equal to

rotnew 5= thew Z a;q; TOt;.

In complete analogy to [55], [39] and [11] we have the following lemma.

Lemma 4.3.2 (Behavior of the relative Euler classes under surgery)
The homomorphism Hy (S \ (Lo U L)) — H{(M \ Ly) induced by inclusion sends

D(e(€y, Lo LI L)) to PD(e(€, Lo)).

The proof is completely analogous to the proof of Lemma 3 in [39], where one
uses the Legendrian rulings of the surgery tori induced by (1/q)-surgery instead of
(£1)-surgery.

We thus have

which proves the theorem. O
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If the contact surgeries are not unique the rotation number is — in contrast to the
Thurston—Bennequin invariant — not independent of the chosen contact structures

on the solid tori, as the following example illustrates.

Example 4.3.3 (Rotation depends on the choice of the contact structure)
Consider the diagram depicted in Figure 4.3, where L is a Legendrian trefoil with

contact surgery coefficient —3/4 and Ly a Legendrian unknot in its complement.

L /

Figure 4.3: Non-unique contact surgery yielding a homology sphere

We have tb(L) = 1, so the topological surgery coefficient is 1/4. Thus, the surg-
ered manifold M is a homology sphere and the rotation number of L is independent

of the choice of the Seifert surface. The contact surgery coefficient —3/4 has a con-

1
4>

are three distinct tight contact structures on the solid torus compatible with the

tinued fraction expansion 1 — 2 — so by the transformation lemma 3.2.4 there

surgery resulting in the contact manifolds which are shown in Figure 4.4.

L] L[

Figure 4.4: Three unique contact surgeries corresponding to Figure 4.3

Topologically these are the same, i.e. for all three diagrams we have

0 1 1
() ()
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and hence a = (3, 1). Furthermore, we have rot,;q = 0, rot; = 0 and roty € {—2,0, 2}.
This yields
0t = TObog —3TOt; — oty € {—2,0, 2},

depending on the chosen contact structure.

Example 4.3.4 (Computing the classical invariants after a single surgery)

We consider the case of L being a one component link with contact surgery coefficient
i% and classical invariants tb and rot, so the topological surgery coefficient is %.
We then have Q = p = ntb £1 and L is nullhomologous in the surgered manifold

if and only if the linking number of Ly and L is divisible by ntb +1, in which case

a is the quotient — th —7- Then the rotation number of Ly in the surgered manifold is
nlk
rotnewi = 10ty1q —m rot,
and its Thurston-Bennequin invariant is
nlk?
th =1 -
new old ntb+1

Observe that if ntb 41 is non-zero, the knot L is rationally nullhomologous. Then

the computed numbers represent the rational invariants (cf. Section 4.5).

4.4 Computing the self-linking number

The computation of self-linking numbers of transverse knots is similar to rotation
numbers of Legendrian knots. Therefore, we consider a similar setting.

Let L = L,U---UL, be an oriented Legendrian link in (53, ;) and T an oriented
transverse knot in its complement. Let (M, &) be the contact manifold obtained
from S3 by contact (1/¢)-surgery along L and write p;/g; for the topological surgery
coefficients.

Lemma 4.4.1 (Computing the self-linking number)

The knot Ty is nullhomologous in M if and only if there is an integer vector a solving
1 = Qa as above, in which case its new self-linking number sl < in (M,&) with
respect to a special Seifert class S s equal to 7

Slnew,§ = sloig — Z a;qi (L0 F rot;)
i=1

where the sign is — when Ty is positively transverse and + when Lo is negatively

transverse.
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Proof.
As explained in Remark 2.2.16, any transverse knot is a transverse push-off of a
(non-unique) Legendrian knot. Now for LF the positive or negative push-off of the

Legendrian knot Ly and ¥ a Seifert surface we have
SI(LE, [5]) = th(Lo) F 10t(Lo, [5])
in any contact manifold (see Lemma 2.3.8). Hence,
Slpew (LE, 2) = thpew(Lo) T r0tpew (Lo, %)

Z(tbold(Lo) - z”: anjle) F (fotozcz(Lo) - z”: a;q; YOti)
j=1 i=1

=slaa(Ly) — > aiq; (liO F rot; ) O
i=1

Remark 4.4.2 (Orientations of Legendrian knots)
An oriented transverse knot 7' is either positively or negatively transverse. If we pick
a Legendrian knot L such that T' is a transverse push-off, we orient L accordingly.
Then the class of an oriented Seifert surface of T is also the class of an oriented Seifert
surface of L and vice versa. With these orientations, 7" is a positive (negative) push-
off of L if T is positively (negatively) transverse. In particular, the topological data

used in the formula in Corollary 4.4.1 coincides for the two knots.

Example 4.4.3 (Computing the self-linking number with this formula)
(1) The left diagram in Figure 4.5 shows a positive transverse knot Tj in an over-
twisted 3-sphere. We have 1 = —1, ) = p = —1, and thus a = 1. The rotation

number of L is 1, so we have
Slhew = Sloig —a1q1(lio —roty) = =1 — (-1 —-1) = 1.

Therefore, Tj violates the Bennequin inequality in the surgered 3-sphere.

Lo
+1 / +1

Figure 4.5: Computing the self-linking number
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Alternatively, we can consider a Legendrian unknot such that L is its positive
push-off, as shown on the right in Figure 4.5, and one can compute again (compare
Example 3.2.7(4)) its Thurston-Bennequin invariant in the surgered 3-sphere as
—1+4+ 1 =1, and its rotation number is 0 — 1 = —1.

(2) We can also consider Tj as a negative transverse knot by reversing its orientation.
Thenl=1,Q=p=—-1anda= —1, so

Slnew = Slold —a1q1 (ll(] - rOtl) =-1- (1 + 1) = 17

as expected, since the self-linking number is independent of the choices of orientation.
We can again consider the corresponding Legendrian knot, which then has vanishing
Thurston-Bennequin invariant and rotation number 1. As Ly is now its negative
push-off, we also get

Slnew = tbnew +10tpew = 1.

4.5 Computing the rational invariants

The results in the previous sections can easily be generalized to rationally nullho-
mologous knots. A knot Ly in M is called rationally nullhomologous if there
exists a natural number d € N such that d[Ly] =0 € H;(M;Z), i.e. [Lo] vanishes in
Hi(M;Q).

One of the most fundamental examples of rationally nullhomologous knots are
given by the spines of the standard genus-1 Heegaard tori of lens spaces.

For rationally nullhomologous Legendrian knots in contact 3-manifolds one can
generalize the classical invariants to the so-called rational classical invariants
tbg, rotg and slg (see for example [3], [2] and [39]). We first review these definitions

and then extend the results from the previous sections to this setting.

Definition 4.5.1 (Rational Seifert longitude and surface)
A (rational) Seifert longitude of an oriented rationally nullhomologous knot K
of order d is a class r € Hy(OvK) such that

per=d and r=0in Hi(M \ vK).

A rational Seifert surface for an oriented rationally nullhomologous knot K is a
surface with boundary in the exterior of K whose boundary represents a (rational)
Seifert longitude of K.

It is obvious that every rationally nullhomologous knot has a Seifert longitude.
However, its uniqueness was not clear but appeared recently in my paper in joint
work with Sebastian Durst and Mirko Klukas [19].
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Lemma 4.5.2 (Uniqueness of the Seifert longitude)

The Seifert longitude of a rationally nullhomologous knot is unique.

Proof.
Let r and r9 be Seifert longitudes. Let (1, A) be an oriented basis of H;(0vK) where

1 is represented by a meridian of K. Then we can write

i = Dilt + A

As r; is a Seifert longitude we have ¢; = d with d the order of K. The classes r; and r
are equal if considered in Hy (M \ vK), therefore we have pyp = pop in Hy (M \ vK).
But a meridian of K intersects a rational Seifert surface non-trivially, so 1 cannot

be a torsion element. Hence, p; = po, i.e. the longitudes coincide. [

Existence and uniqueness of the Seifert longitude enable us to define the rational
Thurston-Bennequin invariant tbg, which coincides with the usual definition in the

nullhomologous case and is well defined in arbitrary contact 3-manifolds.

Definition 4.5.3 (The rational Thurston-Bennequin invariant)
The rational Thurston—Bennequin invariant of a rationally nullhomologous

Legendrian knot K is defined as

1

the(K) = = (A e7)

where A, denotes the contact longitude and r the Seifert longitude, and the inter-

section product e is taken in H;(OvK).
In the same situation as in Lemma 4.2.1 one gets the following generalization.

Lemma 4.5.4 (Computing the rational Thurston-Bennequin invariant)

(1) Lo is rationally nullhomologous in M if and only if there exists a natural number
d and a vector a € Z" such that dl = Qa.

(2) If Ly is rationally nullhomologous in M, then one can compute the new rational
Thurston—Bennequin number tbg new of Lo in (M, &) from the old one tbyy of Lo in
(93, &) as follows

1
tmeew = thoig _g Z aiqili[)-
=1

Proof.
The proofs are similar to the ones in the foregoing subsections. For the first part one
has to change the condition [Ly] = 0 to d[Ly] = 0 and do the same computations

again.
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The second part works similar. If Ly is only rationally nullhomologous in M
then the Thurston-Bennequin invariants are related as follows (see also [39, Proof

of Lemma 2])
dAs + dtbed fro = dA\e = dtbg new o + (f1o + dXs).
Then the same computations as in the proof of Lemma 4.2.1 yield the result. O

Example 4.5.5 (Computing thb-numbers of rationally Legendrian unknots)

This formula for computing the rational Thurston—Bennequin invariant is very useful
for calculating tbg in lens spaces. For example, consider the surgery diagram from
Figure 4.6(ii). The (—p/q)-surgery along L; leads to the lens space L(p, q). To check if
the knot Ly is nullhomologous one has to solve the equation 1 =1 = Qa = —pa;. For
p # 1 this equation has no integral solution and therefore Ly is not nullhomologous
in the surgered manifold. But for p # 0 the equation d = dl = QQa = —pa; has
a solution, for example d = p and a; = —1. So Ly is rationally nullhomologous in

L(p, q). The rational Thurston—Bennequin invariant is computed as follows

1 q
tho new = thoig —=a1l = thoqg+-—.
Q, ld dal 01491 ld P

Observe again that the result is independent of the chosen solution a and indepen-

dent of the chosen contact structure on the new glued-in solid torus.

Ly
1/2

Lo K_/ Ly
2 >
—p/ q Lo
~5 /
(4)

(i)

Figure 4.6: Computing rational th-numbers in surgery diagrams

The definition of the rational rotation number also generalizes naturally to Le-

gendrian knots which are only rationally nullhomologous.
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Definition 4.5.6 (The rational rotation number)
The rational rotation number of an oriented rationally nullhomologous Legen-

drian knot K of order d with respect to a rational Seifert surface ¥ is equal to

tot(K, %) = ~{e(€, K, [5]) =  PD(e(&, K)) o5

where e(, K) is the relative Euler class of the contact structure £ relative to the
trivialization given by a positive tangent vector field along the knot K and [X] the

relative homology class represented by the surface ¥, and the intersection is taken
in Hy(OvK).

Again in the same situation as in Lemma 4.3.1 one can generalize this result.

Lemma 4.5.7 (Computing the rational rotation number)
The knot Lo is rationally nullhomologous of order d in M if and only if there is
an integer vector a solving dl = Qa as above with d the minimal natural number

for which a solution exists, in which case its rational rotation number 0t e s

) )

(M, &) with respect to a special (rational) Seifert class S is equal to

1 k
rotQﬁnew’g = rotyy 7 Z a;q; rot;.
i=1

Proof.

Again following [11], we want to construct a rational Seifert class of the form

k
Y=dXy+ Z ki3,
i=1
such that its image under the boundary homomorphism 0 in the long exact sequence
of the pair (S®\ (vLoUvL), dvLeLIAvL) is a linear combination of the surgery slopes
r; and a rational longitude of Ly. Exactly the same computations as in the proof of
Lemma 4.3.1 lead to the result. O]

The definition of the self-linking number of a transverse knot also generalizes to
the setting of rationally nullhomologous knots by choosing a rational Seifert surface
and doing the same construction as in the nullhomologous case. Furthermore, the
rational invariants of a Legendrian knot and the rational self-linking of a transverse

push-off are, as in the nullhomologous case, related by
slo(Lg, [%]) = tho(Lo) F rota(Lo, [2])

(see Lemma 1.2 in [2]). Hence, we have the following corollary.
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Lemma 4.5.8 (Computing the rational self-linking number)

In the situation of Lemma 4.4.1 the knot Ty is rationally nullhomologous of order d in
M if and only if there is an integral vector a solving dl = Qa as above, in which case
its rational self-linking number s, . < in (M,§) with respect to a special (rational)

Seifert class S s equal to

1 k
Sl@,new,i = sl4 —3 ; a;q;(l; F rot;).
Remark 4.5.9 (Solutions over Q)
Observe that the formulas for rationally nullhomologous knots coincide with the
ones for nullhomologous knots presented in previous sections if one allows rational

coefficients.

4.6 Extensions to general manifolds

One can also study the same problem for a surgery in a general contact manifold
(not in (S®,&)). This is motivated by and similar to [11, Lemma 6.4].

Consider now an oriented nullhomologous link L = L, Ll --- U L, C N? in some
contact 3-manifold (N,&y). Denote by (M, &) the result of some contact surgery
along L and by Ly C (N \ VL, & ~) an oriented nullhomologous Legendrian knot in
(N,&n) or (M, &), depending on the context. Then one gets exactly the same formula
for tb as before.

The same is true if L = L; U--- 1 L, C N? is an oriented nullhomologous
Legendrian link in some contact 3-manifold (IV,£y). Denote by (M, §) the result of
contact (1/q)-surgery along L and by Lo C (N'\ VL, ¢ ~) an oriented nullhomologous
Legendrian or transverse knot in (N, {y) or (M, §), depending on the context. Then
one gets exactly the same formula for rot and sl as before.

The only parts changing in the proofs are that the homologies are different, for

example

Hy(M;Z) = Hi(N;Z) @ Ly, @ -+ © Ly, [ {pibti + @ Dl = 0]i =1,... ).
i

For more details see [11, Proof of Lemma 6.4].

If one has a surgery diagram with 1-handles included, then one can use the
methods above as well. The first possibility is to change all 1-handles into topological
O-surgeries along unknots (observe that this is also possible for contact surgery along
Legendrian knots, see [15]), and the second possibility is to think of the surgery
diagram as a surgery diagram in (#,S' x S? &) (represented by n 1-handles) and

then use the extensions above.
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4.7 Presenting knots in surgery diagrams

In the previous sections I explained how to study knots in a surgered manifold
presented as knots in the exterior of the surgery link. In this section I want to
explain that this is no restriction, i.e. that every knot in a given manifold can be
presented like this.

The purely topological case is easy. Let L be a link in S® such that a Dehn
surgery along L yields M. By pushing K out of the new glued-in solid tori in M
one can assume that K lies completely in the exterior of L in S3.

This works similar for Legendrian knots in surgery diagrams.

Lemma 4.7.1 (Presenting Legendrian knots in contact surgery diagrams)

Let K be an arbitrary Legendrian knot in a general contact manifold (M,). Then
there exists a surgery diagram L in (S3,&y) such that K can be presented as a knot
in the exterior (S®\ vL,&y).

Proof.

By the Ding—Geiges theorem 3.2.8 there exists a contact (£1)-surgery diagram of
(M,€). Then by the classification result of Honda [46] for tight contact structures
on S!' x D? all new glued-in solid tori are standard neighborhoods of Legendrian
knots L; in (M, ) and by the cancellation lemma 3.2.2 contact (F1)-surgeries along
the Legendrian knots L; in (M, &) reproduces (53, &y).

Since the standard neighborhoods of the Legendrian knots L;, used to construct
(53, &), can be chosen arbitrary small it is enough to show that an arbitrary Le-
gendrian knot K in an arbitrary contact manifold (M, &) can made disjoint (by a
Legendrian isotopy) of an arbitrary Legendrian link L = Ly U --- U L,.

As in the proof of the approximation theorem 2.2.14 it is by the theorem of
Darboux 2.1.4 sufficient to show the same statement for Legendrian knot segments
in (R3,&y).

For this consider the front projection of the Legendrian knot segment of K and
the Legendrian link segments L;. By the transversality theorem K can be C'*°-close
approximated by a curve that is transverse to all L; and represents a Legendrian
knot segment in (R3, &), which is in (R3, ;) disjoint from the L;. O

This proof shows a bit more. Namely, that one can represent any Legendrian knot
K in a contact manifold (M,¢) in every contact (£1)-surgery diagram of (M, ¢).
The same argument works for a contact surgery diagram with only (£1/n)-contact
surgeries. But in contrast to the topological case in surgery diagrams with general
surgery coefficients this is in general not possible, as one can see in the following

example.
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Example 4.7.2 (A contact surgery diagram with non-unique contact structure)
Consider contact Dehn surgery along a Legendrian unknot with tb = —2 and surgery
coefficient +3 (see Figure 4.7 on the left). Then by the transformation lemma 3.2.4
there are two different tight extensions over the new glued-in solid torus, represented
in Figure 4.7 on the right.

By changing these two surgery diagrams into open book decompositions it is
casy to show that one of them represents the tight contact structure on S and the

other an overtwisted contact structure on S°.

12
—~
nn
\.03
Iy
o«
N

+3

Figure 4.7: A contact surgery with non-unique contact structure

Since there exists an extension over the solid torus such that the whole surgered
manifold is tight it follows from Lemma 4.2.1 that every Legendrian knot in the new
surgered manifold represented in a contact surgery diagram fulfills the Bennequin
inequality tb < 2¢g — 1.

On the other hand in every overtwisted contact manifold there exist Legendrian
knots violating the Bennequin inequality. Since the Thurston-Bennequin invariant of
a Legendrian knot represented in a surgery diagram depends only on the topological
surgery diagram (as explained in Section 4.2), such a knot cannot be realized in the
surgery diagram of Figure 4.7 on the left. (However, in Figure 4.7 on the right this
is possible by the argument before.)

For example the purple Legendrian knot Ly in the contact surgery diagram of
(53, &) in Figure 4.7 represents a tb-0-unknot in the new manifold (as can be seen
by the methods developed before), but one cannot represent this knot in the other

two surgery diagrams in Figure 4.7.



66 Computing the classical invariants

By describing a transverse knot as the transverse push-off of a Legendrian knot
the same results also hold for transverse knots presented in the exterior of a Legen-
drian contact surgery diagram. But in contrast to this it is in general not possible
to present a Legendrian knot in the exterior of a transverse surgery link. This is

explained in Remark 6.1.2.

4.8 Computing the ds-invariant

The so-called dsz-invariant is a homotopical invariant of a tangential 2-plane field on a
3-manifold which is defined if the Euler class (or first Chern class) of the 2-plane field
is torsion, see [41, Definition 11.3.3]. Many contact structures can be distinguished
by computing the ds-invariants of the underlying topological 2-plane fields. In [17,
Corollary 3.6] Ding, Geiges and Stipsicz, building on work of Gompf [40], present a
formula to compute first the Euler class and then the ds-invariant of a contact struc-
ture given by a (£1)-contact surgery diagram. Both invariants are closely related to
the rotation numbers of the surgery links.

By expressing an arbitrary (1/n)-contact surgery diagram as a (%1)-contact
surgery diagram and then using the result of Ding—Geiges—Stipsicz, we obtain a
similar result for arbitrary (1/n)-contact surgery diagrams, which often simplifies
computations a lot.

First we recall some results from [17]: For L = LyLl- - -LIL, an oriented Legendrian
link in (S3,&,;) and (M, €) the contact manifold obtained from S® by contact (£1)-

surgeries along L, the Poincaré dual of the Euler class is given by

k
PD (e()) = Yot p; € Hy(M).
i=1
The meridians p; generate the first homology H; (M), and the relations are given by
Qu = 0. Observe that the generalized linking matrix ) coincides with the ordinary
linking matrix since we only have integer surgeries here. Then e(&) is torsion if and
only if there exists a rational solution b € Q* of Qb = rot. If this is the case, the

dz-invariant computes as
d L ((b t) — 30(Q) 2k> L +
= - T —_ p— PR
3 4 , IO g 9 q

where o(Q) denotes the signature of ) (i.e. the number of positive eigenvalues minus
the number of negative ones), and ¢ is the number of Legendrian knots in L with
(+1)-contact surgery coefficient.

With the help of these results we can now state and prove a corresponding

theorem for arbitrary (1/n)-contact surgeries.
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Lemma 4.8.1 (Computing the ds-invariant)

Let L = Ly U ...U Ly, be an oriented Legendrian link in (S%,&,) and denote by
(M, €) the contact manifold obtained from S3 by contact (d=1/n;)-surgeries along L
(ni € N)

1. The Poincaré dual of the Fuler class is given by

k
PD (e(f)) = n;rot; p; € Hi(M).
i=1
The first homology group Hi(M) of M is generated by the meridians p; and

the relations are given in terms of the generalized linking matriz QQ by Qu = 0.

2. The Euler class e(&) is torsion if and only if there exists a rational solution
b € Q% of Qb = rot. In this case, the ds-invariant computes as

1 (& , 3 1
ds =~ [ > _nb;rot; +(3 — n;) sign; | — =0(Q) — 3

4\ = 4
where sign; denotes the sign of the contact surgery coefficient of L;.

Remark 4.8.2 (The signature of the generalized linking matrix)
In the proof we will show that all eigenvalues of () are real. Therefore, it makes sense

to speak of the signature, even if () is not symmetric.

Proof.

The replacement lemma 3.2.3 states that a contact (£1/n)-surgery along a Legen-
drian knot L is equivalent to n contact (41)-surgeries along Legendrian push-offs of
L. Using this, we translate the contact (£1/n;)-surgeries along L in contact (£1)-
surgeries along a new Legendrian link L' and compute the invariants there.

Denote by Lg (j =1,...,n;) the Legendrian push-offs of L; in the new Legendrian
link L. Write p; for the meridian of L; (i = 1,...,k) and g for the meridian of L
(t=1,...,k;7=1,...,n;). We now have two surgery descriptions of the manifold
M — one in terms of L and one in terms of L’ — and hence two presentations of its

first homology:

Hy (M)
H, (M)

(u; | Qu = 0) for the surgery presentation along L,

(1] | @'/ = 0) for the surgery presentation along L.

An isomorphism between these two presentations is given by uf — p; for all 4, 7,

and hence, as rot! = rot;,

kony k
PD (e(ﬁ)) =Y : rot? p/ — > n;rot; ;.

i=1j5=1 =1
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And part (1) of the lemma follows.

The numbers k£ and ¢ compute easily as
k

k=2,

%

> 50

=1

3

(1 + sign,)

l\')\»—t

For reasons of readability we will assume k£ = 3 in the following. The general case
works exactly the same. Write 1,, for the vector (1,...,1)T € Q.
Let b € Q? a solution of Qb = rot, i.e

+1+ ny tbl nzllg n3113 bl I'Otl
Qb = n1l12 +1+ No tbQ n3l23 bQ = |roty | = rot
n1l13 nglgg +1+ UE; tbg b3 I"Otg

Then for b’ := (by, ..., b1, by, ... by, bs, ..., b3)T € QU213 we have

+E,, +tb 1,17 lio1,, 17 l131,,17 m
Q'b' = l121,,17 m +E,, + thy 1,17 lp31,, 17 b’
lis1,, 17 lp31n, 17, +E,, +tby 1,17
rot; 1,
=|roty 1, | =rot’.
rots 1,,

And therefore,
b’ rot’) = Z n,;b; Tot; .

It remains to compute the signature o(Q’) from o(Q). Let A be an eigenvalue of

@ with eigenvector v. Similarly to above, one computes
QIV/ _

for v/ i= (v1,...,01,02,...,02,03,...,v3)] € Qutnztns Thus, every eigenvalue of
Q is also an eigenvalue of @)’. In particular, all eigenvalues of @) are real. Now we
only have to find the other 3% |(n; — 1) eigenvectors of @’. To that end, consider
the vector vy € 1 and write v} := (v1,0,...,0,0,...,0)" € Q™+ Then, as
before, one computes

Q'vy = sign; vi,

and therefore
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With this formula for the ds-invariant it is often easy to distinguish contact

manifolds given as surgery diagrams.

Example 4.8.3 (Computing the ds-invariants for contact 3-spheres)

(1) Consider the contact (1/2)-surgery along the Legendrian unknot with tb = —1
in (53, &) from Figure 3.2 resulting in a contact 3-sphere (52, ;). By computing the
dz-invariant one can see again that the resulting contact structure is overtwisted. In

this case () is given by —1, so the dz-invariant computes as

d3(S%, &) = i(3—2)+i— ; =1 ;

On the other hand the ds-invariant of (5%, &) can be computed by looking at the
empty diagram or at the contact (+2)-surgery along the Legendrian unknot with
tb = —1 (see Example 3.2.7(6)) as

0(5°, 6) = —3.
Therefore, the contact manifold (S3,&;) is different from (53, &,;), and since &, is the
only tight contact structure on S2, the contact structure &; has to be overtwisted.
(2) Consider the contact surgery in Figure 4.8 along a Legendrian unknot with
tb = —3 and rot = —2. Topologically this surgery corresponds to a (—1)-surgery
and therefore represents S®. Using the transformation lemma 3.2.4 one gets two
different surgery diagrams with only (£1)-surgery coefficients, both representing

contact structures on S®. By computing the ds-invariants one can distinguish these

Q- (j :i)

The determinant of @) is equal to 1 and the trace is —10. Since the determinant is

contact structures.

In both cases one gets

the product and the trace the sum of the eigenvalues, the signature o(Q) has to be

—2. So the formula for the dz-invariant simplifies to

ds = éll(bl rot; +bgroty +(3 — 1) — (3 — 1)) + Z - ; = i(bl roty +by roty +6) — ;
By solving the equation (@b = rot one gets
by = — Hrot; +3roty
by =3 rot; —2roty .
For both surgery diagrams one has rot; = —2. But rot, is in the first case —3 and

in the second case —1. Therefore one gets two different values for the dsz-invariants:
(—2+6)—3=1—13; for roty = —3

(—14+4+6)—3=—-1—1; for roty=—1

ds =

el Ll
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Figure 4.8: Surgery diagrams for (S2,£;) and (S3,£_4)

Remark 4.8.4 (Surgery diagrams of all contact structures on S%)

(1) Let K, and Ky be two Legendrian knots in S? divided by an embedded 2-sphere.
Then this 2-sphere is an embedded 2-sphere in the new surgered manifold which
divides the manifold into two parts. Therefore, the result of contact r;-surgery along

K, and contact ro-surgery along K5 is contactomorphic to the contact connected
sum (S?q (7“1)#5?(2 (r2), §xc, (1) ##E i (r2))-

If ds(S%,(ri), €k, (i) = di — 1/2, the formula for computing ds yields that the
ds-invariant for the contact connected sum is given by d3 = dy + dy — 1/2.
(2) By taking several connected sums of the contact structures (53, ¢;) from Ex-
ample 4.8.3(1) and (S3,£_ 1) from Example 4.8.3(2) one gets overtwisted contact
structures &, on S® with ds-invariant equal to n — 1/2 for all n € Z.
(3) Moreover, it is easy to show that for any tangential 2-plane field on S® the
quantity d3 —1/2 is an integer (see for example [67, Page 199]). By the classification
theorem for overtwisted contact structures of Eliashberg 2.4.4 the contact structures
&, represent all overtwisted contact structures on S3. In particular, we constructed
contact surgery diagrams for all overtwisted contact structures on S3. This was the
last part missing in the proof of the theorem of Ding—Geiges 3.2.8.
(4) Note also that the two contact structures from Example 4.8.3(1) and (2) both
denoted by & are really the same. It is also easy to compute that the ds-invariant of
the contact 3-sphere from Example 3.2.7(4) is 1 — 1/2, too. Therefore, this contact
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structure is also contactomorphic to &;.

Example 4.8.5 (Computing the Euler class of contact structures)
In manifolds with H; # 0 the Euler class is often also a very good invariant to
distinguish contact structures. In [46] for example it is proven that the Euler class
is a complete invariant for tight contact structures on a given lens space.

Consider for example the tight contact structure £ on the lens space L(5,2) from
Example 3.2.7(2). Since there rot = £1 and @ = —5, the Euler class computes as

PD (e(¢)) = rot p = sy € Hy(M) = (| —5p) = Zs.
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The Legendrian knot complement problem

In this chapter the Legendrian link exterior problem is discussed. In Section 5.1 1
will prove the Legendrian knot exterior theorem for knots in (S3,&). This is done
very similarly to the topological case by first generalizing the surgery theorem of
Gordon—Luecke.

Then in Section 5.2 T want to present counterexamples in the case of Legendrian
links in (S3,&,;). For doing this I will develop a move for contact surgery diagrams
along Legendrian knots corresponding to a topological (—1)-Rolfsen twist.

The Legendrian knot exterior problem is also not true for Legendrian knots in
general contact manifolds. Counterexamples in lens spaces are presented in Sec-
tion 5.3. Also the relation to exotic cosmetic contact surgeries is discussed. But it
will turn out that, in contrast to the topological case, the non-existence of these is
not equivalent to the Legendrian knot exterior problem.

However, cosmetic contact surgeries are interesting on their own. In Section 5.4
I present examples of exotic cosmetic contact surgeries resulting in lens spaces, and
finally I will classify all surgeries along a Legendrian knot in (S, &,;) resulting again
in a contact S3. In particular there exist infinitely many contact surgeries resulting
again in (S3,&,).

Sections 5.1, 5.2 and 5.3 are based on and very similar to my paper [54].

5.1 The Legendrian knot exterior theorem

In this section we want to give a proof of the Legendrian knot exterior theorem 2.2.10,
namely that two Legendrian knots in (53, &) are equivalent if and only if their
exteriors are contactomorphic. To prove this we generalize the surgery theorem by
Gordon-Luecke 1.2.4.

For stating this result we introduce the Legendrian knots U,, as Legendrian un-
knots with classical invariants tb(U,,) = —n and rot(U,,) = |n — 1].

The classification of Legendrian unknots in (S3,&,;) by Eliashberg—Fraser (The-
orem 2.3.10) says that two Legendrian unknots are equivalent (as oriented knots) if
and only if they have the same tb and rot where the orientation of the knot is given
by the sign of rot.

Here we want to prove that two Legendrian knots are equivalent if and only

if their exteriors are contactomorphic. Since a knot exterior cannot determine the
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orientation of the knot this result can only hold for equivalence as unoriented knots.
This is the reason why we consider Legendrian knots up to equivalence as unoriented
knots.

From the theorem of Eliashberg-Fraser 2.3.10 it follows that the knots U, are
unique up to equivalence (of unoriented Legendrian knots). A front projection of a

Legendrian unknot of type U, is shown in Figure 5.1.

n—times

Figure 5.1: A front projection of a Legendrian unknot of type U,

The generalization of the surgery theorem by Gordon-Luecke 1.2.4 is as follows.

Theorem 5.1.1 (Contact Dehn surgery theorem)

Let K be a Legendrian knot in (S3,&y). If (S3(r),&x(r)) is contactomorphic to
(S3,&s) for some v # u, then K is equivalent to a Legendrian unknot U, with
tb(U,) = —n and rot(U,) = |n — 1|.

Remark 5.1.2 (Non-uniqueness of the contact structure)

For general slopes the contact structure i (r) is not unique. So one should read
Theorem 5.1.1 as follows: If there is a contact structure &x(r) on S%(r) such that
(S3-(r), £k (r)) is obtained from (M, &) by contact Dehn surgery along K with slope
r and if (S3(r), £k (r)) is contactomorphic to (S?, &) for r # u, then the conclusion
holds.

Proof of the contact Dehn surgery theorem 5.1.1.
Let K be a Legendrian knot in (5% &) such that S3.(r) is diffeomorphic to S*
for some r # p. From the (topological) surgery theorem 1.2.4 it follows that K
is topologically equivalent to an unknot U. (So I will write U instead of K.) In
Remark 1.2.3 T explained that the topological surgery coefficient (with respect to
the Seifert longitude Ag) has to be of the form 1/n, for n € Z.

Now I want to show that every resulting contact structure & (r) is overtwisted
if U is not coarse equivalent to an unknot of the form U,. To do this I will show
that in the resulting contact 3-spheres there exist Legendrian knots that cannot be

realized in &g.
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For this consider Examples 4.2.2(1) and (2). By doing a Rolfsen twist along U
one sees that the Legendrian knot L, from the first example remains an unknot in
the new surgered manifold. For n < 0 one gets tb,e, = —n — 1 > 0 (independent of
the choice of the contact structure on the new glued-in solid torus).

According to the Bennequin inequality this knot cannot lie in a tight contact
structure. So for n < 0 it is not possible to have a non-trivial contact surgery from
(93, &) to itself.

For n > 0 one looks at Example 4.2.2(2). In Figure 5.2 it is shown (again by
doing a Rolfsen twist) that Ly becomes a negative (2,2n + 1)-torus knot 75 9,41 in
the new surgered manifold.

In [29, Section 1] it is shown that the maximal Thurston-Bennequin invariant of
such a knot in (S3, &) is given by —2 — 4n, which is smaller than tb,., = —1 — 4n.
For U not coarse equivalent to an Legendrian unknot of the form U, this example
can be realized as a contact surgery along a Legendrian knot, which proves the
result. O

The proof of the Legendrian knot exterior theorem 2.2.10 is now similar to the

topological case.

Proof of the Legendrian knot exterior theorem 2.2.10.

Pick a contactomorphism
h: (53 \ V[o(l, §St) — <S3 \ V[o(g, §St).

Then consider again the following diagram:

(9% ) 2 (Sk, (), & (m))i= (ST x D2 g)  + (SP\wki &) /.

\ Mot o M1

|

\

|

fl Id O h

\

|

! ho

v fo ——2 > py = h(py)

(%, (r2), 6 (r0)) = (S" x D2 &)  +  (SP\wkn &) /_

Here the contact structure £ denotes the unique tight contact structure on S* x D?
with convex boundary corresponding to the slope ;. Because the contactomor-
phisms Id and A on the two factors agree on the boundary convex surfaces which
determine the germ of the contact structures, these two maps glue together to a con-
tactomorphism f of the whole contact manifolds. From the contact Dehn surgery

theorem 5.1.1 it follows that ry is equal to ps, or K is equivalent to U, for some n.
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/ Ly / I

Figure 5.2: The unknot Ly becomes a (2,2n + 1)-torus knot after surgery

If ro = us then this is the trivial contact Dehn surgery, and so the contactomor-
phism f maps K; to K.

In the other case one makes the same argument with K; and K, reversed and
concludes that K is equivalent to U, for some m. Again the classification result of
Eliashberg—Fraser (Theorem 2.3.10) implies that Ky ~ U, is equivalent to U,, ~ K,
if and only if n = m. To show the last statement one observes that (S vK 1,&st) 18
a solid torus with tight contact structure and convex boundary. Therefore, one can
compute —n = tb(U,,) also as half the number of intersection points of the Seifert
disk of U,, with the dividing set of the convex boundary (see [51, Proposition 6.6]).
Because the Seifert disks of U, and U, are both given by the D?-factors of the
exterior solid tori and because the exteriors are contactomorphic, the number of

intersection points stays the same. O

Remark 5.1.3 (Dependence on the classification of Legendrian unknots)
Observe that these theorems (both the contact surgery theorem and the Legendrian
knot exterior theorem) use the classification of Legendrian unknots by Eliashberg—
Fraser. So for proving this classification result of unknots one cannot use the Legen-
drian knot exterior theorem. For example, assuming the Legendrian knot exterior
theorem there is an easy proof that there exists a unique Legendrian unknot with
tb = —1 and rot = 0. Since the knot exterior of such a knot is a tight solid torus with
longitudinal dividing curves, the contact structure on the knot exterior is unique [46]
and therefore the corresponding Legendrian knot is by the Legendrian knot exterior
theorem also unique.

It would be nice to find an argument for proving the Legendrian knot exterior
theorem without using the classification of Legendrian unknots.

Observe also that the original proof of Eliashberg-Fraser [26], as well as the
proofs by Etnyre [27] and Etnyre-Honda [29] do not use the Legendrian knot exterior

theorem.
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5.2 The Legendrian link complement problem

The next natural question is if there exist (like in the topological case) Legendrian
links not determined by the contactomorphism type of their exteriors. If one wants
to generalize the examples of Whitehead one needs a contact analogue of a Rolfsen
twist.

In Example 3.2.7 T gave a contact surgery from (53, &) to (53, &,). Topologically
this surgery represents a (41)-Dehn surgery along an unknot. Deleting such compo-
nents from contact surgery diagrams leads to a contact analogue of a (—1)-Rolfsen
twist. But it is not clear how the rest of the diagram changes then.

The next lemma answers this question and will also be used in Chapter 7 to

realize crossing changes of Legendrian and transverse knots.

Lemma 5.2.1 (A contact Rolfsen twist)
Figure 5.3 shows two mowves for contact Dehn surgery diagrams. There, L is an
arbitrary Legendrian link with surgery coefficients 1, that can go arbitrarily often

through the unknot.

Remark 5.2.2 (Doing n-fold contact Rolfsen twists)

Of course one can do such a contact Rolfsen twist more than once, this corresponds to
doing (+2)-contact Dehn surgeries along n disjoint copies of the Legendrian unknot.
By translating the contact surgery diagram into an open book as in the following
proof one can show that this is the same as doing a single contact Dehn surgery

along the unknot with contact surgery coefficient 1 + %

L L

. /i///ﬂ”& &
k//i 7

L

Figure 5.3: A contact Rolfsen twist
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Proof of Lemma 5.2.1.

First observe that the first row in Figure 5.3 maps to the second row under the
contactomorphism (x,y, z) — (—x, —y, z). So it is enough to prove the second row.

For this, one observes that one can put the whole Legendrian link L together
with the Legendrian unknot U on the pages of an abstract open book for (52, &)
(see for example [1, Proof of Theorem 5.5]). A part of this abstract open book is
shown in Figure 5.4. The page is pictured in gray and a part of the monodromy is
described as a right-handed Dehn twist along the blue curve. One has to read the
red curve in the open book as that many parallel copies as in the surgery diagram
on the left. Observe that the abstract open book determines the contact manifold

only up to contactomorphism, as the surgery diagram does.

Figure 5.4: Putting L and U on an open book for (53, £,)

Next one constructs from this an abstract open book for the surgered manifold as
explained in [66]. First, one puts the Legendrian link L together with the Legendrian
unknots U; and U from the (£1)-surgery diagram on the page of an abstract open
book for (53, £;). This is shown in Figure 5.5 on the upper right side. The additional
stabilization of the Legendrian unknot U, corresponds to a stabilization of the open
book as shown in [66, Figures 1 and 2].

The monodromy of the open book for (S%,&,) is given by right-handed Dehn
twists along the blue curves. The monodromy of the surgered manifold is obtained
by composing this old monodromy with right-handed Dehn twists along the (—1)-
surgery knot and left-handed Dehn twists along the (41)-surgery knot (see [66,
Proposition 8]).

Two of the Dehn twists cancel each other and one gets the open book in the
bottom right corner of Figure 5.5. That open book represents the surgery diagram
of the once stabilized Legendrian link L shown in the bottom left corner of Figure 5.5.

Observe also that the topological surgery coefficients of L change exactly as

prescribed by the topological Rolfsen twists. O]
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112

+1

RS

Figure 5.5: Proof of the contact Rolfsen twists via open book decompositions

Example 5.2.3 (Counterexamples to the Legendrian link complement problem)
With this contact Rolfsen twist one can give counterexamples to the Legendrian link
complement problem, but it is not as easy as in the topological setting. The main
point there was that the new glued-in solid tori is again a tubular neighborhood of
the spine of this torus. This is not the case in the contact setting.

To see this, consider a Legendrian knot K in a contact 3-manifold (M, ¢) and
the result of contact surgery along this knot (Mg (r), &k (r)). Then the slope of the
new glued-in solid torus is . But if this new glued-in solid torus were the standard
neighborhood of a Legendrian knot then the slope were of the form A + nu. So for
general r this is not the case.

Therefore, one looks at the contact surgery diagram with one (+1)-surgery along

U; and one (—1)-surgery along Us. The new glued-in solid tori are again standard
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I

Figure 5.6: The spines of the new glued-in solid tori

neighborhoods of the Legendrian spines U] and Uj in a canonical way. From the
proof of the lemma it follows that these spines U] and UJ lie in the resulting surgery
diagram as shown in Figure 5.6.

Observe also that by doing a contact (+1)-surgery along Uj and a contact (—1)-
surgery along U] one gets the old picture back by the cancellation lemma 3.2.2.
(1) Consider the two Legendrian links L U U; U Us and L' U U] U US in (S3, &) as
depicted in Figure 5.7. These two links are not equivalent because their triples of tb-
numbers are different: tb(LUULUy) = (=1, —1, —=2); th(L'UULUYL) = (=2, -2, —1).

But their exteriors are contactomorphic, as one can see as follows. One does a
(+1)-surgery along U; and a (—1)-surgery along Us,. The resulting manifold is again
(53, &) in which the Legendrian knot L now looks like L’ in Figure 5.7 on the right.
So in the exteriors of Uy U Uy and Uy U Uj the Legendrian knots L and L’ are the

same.

Figure 5.7: Two different Legendrian links with contactomorphic exteriors
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(2) One can also get examples with different topological types and the same tb-
numbers. For that consider the Legendrian links in Figure 5.8 similar to the White-
head links as in the example from Section 1.1. In the left Legendrian link in Figure 5.8
all three knots are unknots, but in the right link the knot L’ is non-trivial, so they
cannot be equivalent. But their exteriors are contactomorphic by the same argument

as in the foregoing example.

L/

Figure 5.8: Two different Legendrian links with contactomorphic exteriors

(3) By doing contact Dehn surgeries corresponding to an n-fold Rolfsen twist for
n > 0, one gets in both foregoing examples infinitely many different pairs of Legen-
drian links such that each pair has contactomorphic exteriors. But it is not clear
if there also exist infinitely many different Legendrian links whose exteriors are all

contactomorphic to each other.

5.3 The Legendrian knot complement problem in general

manifolds

As far as I know, nothing is known about this in the contact setting. The question is
which results from the topological setting generalize to the contact setting and where
the differences are. In Section 1.3 I presented examples of non-equivalent knots in
lens spaces with homeomorphic exteriors. The first interesting question is if one can

generalize these examples to the contact setting.
Example 5.3.1 (Non-equivalent Legendrian knots with the same complements)
Consider a Legendrian knot K with tb(K) = n. A standard neighborhood of K is
given by

(Sl x D? ker(cosnf dz — sinnf dy))
The Seifert longitude is given by A = S* x {p} and the contact longitude by X + nu.
Take two copies (V1,&1) and (V5, &) of this standard neighborhood and glue them
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together along their boundaries to obtain the lens space L(p, q) as follows:

Lip,q) = W + ./
Pl ————> —qpia + pAa,
A b s + SAa,
where —gs — pr = 1. The contact structures on the solid tori fit together to a

contact structure on the new lens space L(p, q) if the gluing map sends the contact
longitude of V; to the contact longitude of V5. (Since the contact longitude represents
the dividing curves of the boundary convex surface.) This leads to the conditions
r —qgn =n and s + pn = 1. Putting this together it follows that ¢ = —pn — 1.

In particular, it follows that if a contact lens space is obtained by gluing together
two copies of a standard neighborhood of a Legendrian knots then the lens space is
of the form L(p,p — 1). But in this case the spines K; and K5 of the Heegaard tori
are topologically equivalent, as was explained in Section 1.3.

To distinguish the Legendrian knots K; and K, one can compute their rational
Thurston-Bennequin invariants.

Therefore consider the following gluing:

Lipp—1) = W - . o/
1 ———— (1 +pn)uz + pAs,
A ———— —pn2uy + (1 — pn)Xs.

This gluing map sends the contact longitude of V; to the contact longitude of V;
and leads therefore to a contact structure on the lens space. The Legendrian knots
K, and K, represent the spines of the Heegaard tori in this lens space. Therefore
they both have order p in Hy(L(p,p — 1);Z). The extended Seifert longitude 7o of
K, is given by

rg = (1 +pn)ua + pla.

(It is nullhomologous in the exterior of Ky and s @ r9 = p.) So one computes
1 1
tho(Ks) = 2—9(/\2 + n,uQ) ° ((1 + pn) s —|—p)\2) = —
To compute thg(K7) one first computes the inverse gluing map as:

po ——— (1 — pn)uy — pAy,

Ay ————pn?uy + (1 + pn) ;.
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Then one sees that the extended Seifert longitude of K is given by

r1 = (pn — 1)p + pAq,

and so ) .
tho(K1) = E(Al + n,ul) ° ((pn — D +p/\1) = 5

So the rational Thurston-Bennequin invariants are different, therefore K; and K,

are not coarse equivalent.

So in contrast to the topological case one gets obvious counterexamples to the
Legendrian knot exterior conjectures exactly in the lens spaces L(p,p —1). It would
be interesting if one can generalize the examples from this section to a general
classification result in lens spaces.

Problem 5.3.2 (The Legendrian knot exterior problem in lens spaces)
Can one classify all Legendrian knots in contact lens spaces (or general Seifert fibered

spaces) that are not determined by their exteriors?

A first step to study the Legendrian knot exterior problem in general contact
manifolds would be a generalization of Theorem 1.3.3. The generalization of the

implication (2) = (1) one can prove similarly to the proof of Theorem 2.2.10.

Lemma 5.3.3 (Criterion for the Legendrian knot exterior problem)
Let K be a Legendrian knot in a contact manifold (M, &) such that there is no non-
trivial contact Dehn surgery along K resulting again in (M, £). Then the equivalence

type of K is determined by the contactomorphism type of its exterior.

But the other implication does not generalize. The problem is again that the
new glued-in solid torus is in general not a standard neighborhood of a Legendrian
knot, as explained in Example 5.2.3.

So it is not directly clear if exotic cosmetic contact surgeries give negative an-
swers to the Legendrian knot exterior problem. But cosmetic contact surgeries are
interesting on their own and studied in the next section.

Moreover, in Section 5.2 we saw that all topological examples of links not deter-
mined by their complements, where one does a composition of (—1)-Rolfsen twist
along unknot components, works also for the contact case. But in the topological
category there are also examples that do not arise in this way.

Teragaito [78] and Ichihara [48] construct, building up on unpublished work of
Berge, links in S® with no unknot components such that non-trivial Dehn surgery
along that link leads again to S®. Similar to the arguments in Theorem 1.3.3 this

leads to links not determined by their complements.



5.4. Cosmetic contact surgeries 83

Gordon proves in [42] that for every such link (not determined by its complement,
but without unknot components) there exist only finitely many other links with
homeomorphic complements. Finally in [61] the reverse question is considered. They

study links that are determined by their complements.

Problem 5.3.4 (The Legendrian link exterior problem)

Which of these statements also hold for Legendrian links in contact manifolds?

5.4 Cosmetic contact surgeries

In this section I want to give examples of exotic cosmetic contact surgeries and
classify all contact surgeries from (5%, ;) along a single Legendrian knot resulting
again in a contact S3. This will give another prove of the contact Dehn surgery
theorem 5.1.1.

The following example was obtained earlier by Geiges and Onaran (see also [39]).

Example 5.4.1 (Exotic contact surgeries)
Consider the two different contact Dehn surgeries along the Legendrian unknot U
with tb = —1 in (53, &) with respect to the contact surgery coefficients ry = —3/2
and ry = —2/3 (see Figure 5.9).

By expressing the surgery coefficients with respect to the surface longitude one
sees that the resulting manifolds are topologically the manifolds from Example 1.3.2,

i.e. the homeomorphic lens spaces L(5,2) and L(5, 3).

O
O

I

O

Figure 5.9: Two surgery diagrams of the same tight contact structure & on L(5,2)

The next thing I want to show is that the two contact surgeries are unique

and represent the same contact manifold. To this end, one uses the same approach
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as in Example 3.2.7. The same argument as in that example shows that the two
surgery diagrams both represent a unique contact structure £ on L(5,2). The (£1)-
contact surgery diagrams resulting from the transformation lemma 3.2.4 are shown
in Figure 5.9 in the middle (for both contact surgeries only one of the two possible
stabilizations is drawn). Both surgery diagrams contain only (—1)-contact surgeries,
so the resulting contact structures have to be tight. But the classification of tight
contact structures on lens spaces [46, Theorem 2.1] says that on L(5,2) there are
two non-contactomorphic tight contact structures, so in this case this is not enough
to conclude that these surgery diagrams represent the same contact manifold.

To show that the contact structures of the two different surgeries really are con-
tactomorphic one changes the contact Dehn surgery diagrams into compatible open
book decompositions (for details see for example [66]). The resulting open books are
shown in Figure 5.9 on the right. All colored curves represent right-handed Dehn
twists, the blue ones correspond to the monodromy of the open book decomposition
of (83,&) and the red and purple curves represent the Dehn twists corresponding
to the same colored Legendrian links. All Dehn twists together represent the mon-
odromy of (L(5,2),¢). By interchanging the holes, these two open books are the
same, and therefore represent the same contact manifolds.

These cosmetic contact surgeries are exotic because the corresponding topological
cosmetic surgeries are exotic (i.e. there is no homeomorphism of the exterior of the
unknot that maps one slope to the other).

With exactly the same methods one can get many other examples of this kind.
For example, by contact Dehn surgery along U with contact surgery coefficients
ry = —2/5 and ro = —3/4 one gets contactomorphic contact structures on the lens
spaces L(7,5) and L(7,3).

An easy consequence of the contact Dehn surgery theorem 5.1.1 is that the only
possible candidates for Legendrian knots in (S?, £,;) admitting a (non-trivial) contact
surgery resulting again in (5%, ¢,;) are the Legendrian unknots of type U,.

That cosmetic contact surgeries along such knots really exist was shown in Ex-
ample 3.2.7. In the following I will classify all contact Dehn surgeries along a single
Legendrian knot in (53, ;) resulting again in a contact 3-sphere. The main tool for
doing this will be the formula for computing the ds-invariant from Section 4.8. As a
corollary it will turn out that every Legendrian unknot of type U,, admits (infinitely
many) cosmetic contact surgeries resulting again in (S, £,;) and that infinitely many
overtwisted contact structures on S® cannot be obtained by a single contact Dehn
surgery from (S%,&y).

Let K be a Legendrian knot in (53, &) such that the result of a contact r-

surgery along K is again a contact 3-sphere. From the topological surgery theorem
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by Gordon-Luecke 1.2.4 and Remark 1.2.3 it follows that K is a Legendrian unknot
and that the contact surgery coefficient has to be of the form 1/q (for ¢ € Z \ {0}).
If one denotes by t > 1 the negative Thurston—-Bennequin invariant of K, then it

follows that the contact surgery coefficient is of the form

1+qt

q

Here I chose t to be the negative of tb because the formulas later are easier to read.

The following results fit naturally into a more general framework. Thurston pro-
posed in an unpublished note a graph called the Dehn surgery graph (see for
example [45]). This graph has a vertex for every closed oriented 3-manifold. Two
vertices M and N are connected by an edge if and only if there exists a Dehn-
surgery along a knot in M yielding N. A similar graph can be defined for contact

manifolds. Here it is natural to orient the edges and to define different types of edges.

Definition 5.4.2 (Contact Dehn surgery graph)
Define the Contact Dehn surgery graph to consist of a vertex for every closed
contact 3-manifold. There exists an oriented edge from the vertex (M, &) to the
vertex (N, &y) if there exists a contact r-surgery r € Q \ {0} along a Legendrian
knot in (M, &) yielding (N, &x). Add the corresponding sign of the contact surgery
coefficient to the edge. Finally one uses different colors for the edges depending on
whether the surgery coefficient is of the form r = +1, r = +1/n (and not of the
form +1), r € Z\ {0, £1} and general r (not of the form 1/n or integer).

Observe that by the cancellation lemma 3.2.2 contact (—1/n)-surgery can re-
versed by a contact (1/n)-surgery. For simplicity one only adds the edge consisting
of the negative contact surgery coefficient. A general contact r-surgery cannot be

reversed by a single surgery as explained in Example 5.2.3.

Remark 5.4.3 (Properties of the contact Dehn surgery graph)

Observe that several theorems obtained earlier immediately translate into properties
of the contact Dehn surgery graph. For example the theorem of Ding—Geiges 3.2.8
is equivalent to the fact that the contact Dehn surgery graph is connected (even if
one uses only edges of one special type).

To determine if a given contact manifold (M, €) is tight (or fillable) it is enough
to find a directed path to (M, &) along directed negative edges in the contact Dehn
surgery graph starting at a tight (or fillable) contact manifold.

Cosmetic contact surgeries correspond exactly to edges starting and ending at

the same contact manifold.

Here I only want to consider the subgraph of the contact Dehn surgery graph

consisting of contact 3-spheres, while it would be interesting to study the contact
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Dehn surgery graph in full generality. The goal here is to find all edges starting from
(93, &) and ending in a contact 3-sphere.

First I consider only edges corresponding to contact surgery coefficients of the
form +1. If one requires the contact surgery coefficient r = % to be of the form
+1, it follows that the only possibility is a contact (+1)-surgery along a Legendrian
unknot with tb = —2 resulting in the contact structure & by Example 4.8.4. (Ob-
serve that since I am interested only in the resulting contact structure I consider
unoriented knots. And if one considers unoriented knots there is only one Legendrian
unknot with th = —2.)

The case where one looks only at contact surgery coefficients of the form r =
+1/n (and not of the form +1) works similar. In this case there also exists only
one contact surgery, the contact (1/2)-surgery along the Legendrian unknot with
th = —1 yielding also the contact structure &;.

Therefore, the contact Dehn surgery graph consisting only of edges starting at

(93, &) and corresponding to contact surgery coefficients of the form +1 and 1/n

O\

is pictured in Figure 5.10.

Figure 5.10: A part of the contact Dehn surgery graph

Next I want to look at integer contact surgeries (not of the form +1). Given a
Legendrian knot K in (S3, &) with tb = —¢, then the only integer contact surgeries
resulting again in a contact 3-sphere are the contact (¢4 1)- and the contact (¢t —1)-
surgeries.

Consider first the case of contact (t —1)-surgery for ¢ > 3. (The case t = 1 corre-
sponds to a 0-surgery which is excluded and the case t = 2 was already considered

in the (+1)-surgeries.) The transformation lemma 3.2.4 yields

K(t—1)=K(+1) X K; (—75_12> :

Therefore, the generalized linking matrix computes for both stabilizations as

1—t —t24+2t
Q= )
—t -t 4t+1
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with determinant 1 and trace 2 — t? < 0. It follows that the signature of Q is —2.
Next, one solves the equation b = rot and plugs the solution b into the formula

for the dz-invariant, yielding

1 1
ds = Z((—t2 +t + 1) ot +(2t* — 4t) rot; roty +(—1* + 3t — 2) rot3 +t + 3) — 5

Now the possible values for rot; are roty =1 —¢t+4+ 2l for [ =0,...,t — 1 and roty is
either rot; +1 or rot; —1. Plugging this in yields for rot; = 1 — ¢ + 2[ the solution
( —(t=02+30t—-1) - 1) — 33 for roty = roty +1,

ds =
(—l2+l+1> —%; for roty = roty —1.

The case of a contact (¢ + 1)-surgery works similar. First the transformation

lemma 3.2.4 yields

K(t+1)=K(+1) X K; <—1> :

Then with similar computations as before one gets

(12 + l) — %; for roty =roty +1,

((t 02— (t— l)) —3; for roty = roty —1,

where roty =1 —t+ 2l for [ =0,...,t— 1.

In particular, there are infinitely many overtwisted contact structures on S® that
cannot be obtained by a single surgery along a Legendrian knot in (53, &) with
integer contact surgery coefficient.

Recall from Section 4.8 that there are exactly two contact structures on S with
d3 = 0 — 1/2, the tight one &; and an overtwisted one &. From the above results it
follows immediately that one cannot get these contact structures (by integer contact
surgery) along a Legendrian knot not of type U,,.

Next I want to show that every contact structure (resulting in this way) with
d3; = 0 —1/2 is in fact the tight contact structure, i.e. it is not possible to get & by

integer contact surgery along a Legendrian knot in (53, &,).

Lemma 5.4.4 (Classification of integer cosmetic contact surgeries)

Let K be a Legendrian unknot in (S3, ) with tb = —t and mazimal rotation number

|rot | =t — 1. Then the surgery diagram from Figure 5.11 represents again (S3, &y).
Moreover, all surgery diagrams of contact structures on S with dz = 0 — 1/2

coming from a single integer contact surgery along a Legendrian knot in (S3,£y) are

of this form.
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Figure 5.11: Integer cosmetic contact Dehn surgeries

Proof.
The idea of the proof is due to Lisca and Stipsicz (see proof of Proposition 2.4 in
[56] where they obtain a more general statement about integer surgeries). The idea
is to translate the surgery diagram from Figure 5.11 into an open book (see [66] for
more information) and then show that this open book represents (S3,&,).
Therefore, first recall the lantern relation for open books (see for example [67,
Lemma 15.1.9]). Consider the open book with page an annulus with two holes with
monodromy given by Dehn twists along the curves as in Figure 5.12 on the left.
The lantern relation states that this is the same as the open book in the middle of
Figure 5.12 and by destabilizing this open book along the green curve one gets the
open book on the right.

Figure 5.12: The lantern relation followed by a destabilization

The open book corresponding to the integer contact surgeries from Figure 5.11
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is depicted in the upper line of Figure 5.13. The lighter shaded region is a two-
holed annulus with monodromy as in Figure 5.12. By using the lantern relation
several times one ends up with the open book in the lower row of Figure 5.13. This
represents the surgery link from Example 3.2.7(6) representing (S?, ;). One could
also conclude that this open book represents (S3, &) by observing that the resulting
open book only consists of positive Dehn twists and therefore represents a fillable
contact structure on S3.

Figure 5.13: Contact surgeries with the same open books

That all surgery diagrams yielding a contact structure on S? with ds = 0 — 1/2
are of this form follows from the computations above. n

For general surgery coefficients this works very similar. It makes sense to distin-
guish the following two cases.
If ¢ > 2 it follows that

1+ gt 1
K <qq> = K(+1) X K, (—H> X K g (—1),

and one computes similarly as before

1
ds = (l(l—t+2l)+l2q—lr0t3> -5
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for roty = rot; +1 and
1
dy = (—(t—l—1)(1—t+21)+(t—l—1)2q+(t—l—1)rot3))—5,

for roty = rot; —1, where in both cases rot; = 1 —¢t+ 2l for l = 0,...,t — 1 and
rotgs=1—t—qg+2fori=0,...,t+q—1.
If ¢ < 2 it follows that

1 4 gt 1 1
K :K(+1)XK1<—> X Kiq (- ,
q t—2 ’ —q—1

and one computes similar as before

(t—1l-1)(t—-Dg+20t—1-1)+1—3; for o=r1+1 and r5 =7y +1,
q t—1-1)(t—-1-2)g+1—3; for ro=r;+1 and 73 =19 — 1,
3:

l(l—l)q—{—l—%; for ro=r1 —1 and r3 =1y + 1,

(I-1)(1-2)g+2(1-2)+1—3; for ro =71 —1 and r3 =7ry — 1,

where 7; is the short notation for rot; and rot; =1 —t+4+ 2l for [ =0,...,t — 1.
Observe that these formulas for the ds-invariants are also correct for the degen-
erated cases t = 1 and t = 2.
The next lemma can be proven very similarly to Lemma 5.4.4. This lemma
together with the computations of the ds-invariants give the complete information

about contact surgeries along single Legendrian knots yielding contact 3-spheres.

Lemma 5.4.5 (Classification of rationally cosmetic contact surgeries)
Let K be a Legendrian unknot in (S3, &) with tb = —t and mazimal rotation number
|rot | = t—1. Then the rational contact surgery diagram from Figure 5.11 represents
again (S3,&4).

Moreover, all surgery diagrams of contact structures on S® with d3 = 0 — 1/2
coming from a single rational contact surgery along a Legendrian knot in (S3,&y)

are of this form.

In particular, £ cannot be obtained by a single contact Dehn surgery from
(53, &). Note also that this gives another proof of the contact Dehn surgery theo-
rem 5.1.1.

Remark 5.4.6 (Distance of contact 3-spheres in the contact Dehn surgery graph)
Observe also that from these results it follows that the subgraph consisting only of
contact 3-spheres is also connected. Since there are rational contact surgeries result-
ing in & and £_4, this follows again by taking connected sums. But it is not directly

clear what the minimal distance between two contact 3-spheres in this subgraph is.



5.4. Cosmetic contact surgeries 91

Figure 5.14: Rationally cosmetic contact Dehn surgeries

However, if one considers the whole contact Dehn surgery graph, then in [17,
Section 4] it is shown that the distance between (S3, &) and an arbitrary contact

3-sphere is bounded by 3 (even if one only allows contact (£1)-surgeries).

It would be nice to study the contact Dehn surgery graph in a more systematic

way and in particular to look at cosmetic contact surgeries.

Problem 5.4.7 (Cosmetic contact surgeries)
Is it possible to classify cosmetic contact surgeries in other contact manifolds? Can

one find examples of exotic cosmetic contact surgeries not resulting in lens spaces?
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The transverse knot complement problem

In this chapter the transverse knot complement problem is discussed. In Section 6.1
I will prove the transverse knot exterior theorem in (S®,&,;). The methods in the
proof are the same as those in the Legendrian case. In this section I will also explain
where I use that the neighborhoods of the transverse knots are sufficiently small.

Examples of transverse links in (S?, &) and transverse knots in general contact
manifolds, that are not determined by the contactomorphism types of their exteriors,
are discussed in Sections 6.2 and 6.3. But in both cases it remains unclear how these
examples depend on the chosen exteriors.

Finally, in Section 6.4 I will discuss in more detail the relationship between
equivalence of topological links as well as Legendrian and transverse links to their

complements, their open exteriors and their closed exteriors.

6.1 The transverse knot exterior theorem

In this section I want to give a proof of the transverse knot exterior theorem 2.2.11,
namely that two transverse knots in (S2,&,;) are equivalent if and only if their
sufficiently large exteriors are contactomorphic. The strategy of the proof is exactly
the same as for the Legendrian case (compare Section 5.1). So first I generalize again

the surgery theorem by Gordon—Luecke 1.2.4 to transverse knots.

Theorem 6.1.1 (Transverse contact surgery theorem)
Let T be a transverse knot in (53 Eq). If (S3(r),&ér(r)), constructed using a suf-
ficiently small tubular neighborhood vT, is contactomorphic to (S3, &) for some

r # 0o, then T is equivalent to the transverse unknot with self-linking number —1.

Proof.
From the topologically surgery theorem 1.2.4 by Gordon—Luecke and Remark 1.2.3
it follows that T is topological equivalent to the unknot and the topological surgery
coefficient has to be of the form r = 1/n. Therefore by the classification of transverse
unknots 2.3.11, 7" is equivalent to the unique transverse unknot Uy with self-linking
number sl.

The idea of the proof is now to consider, for every transverse unknot Uy (other
than U_;) and every surgery coefficient of the form r = 1/n, a Legendrian knot

L in the exterior (S?\ Vlojsl,fst) of Ug. This Legendrian knot can also be seen as
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a Legendrian knot in the new surgered contact manifold (S, (r),&y, (r)). In this
situation the formula for computing the new Thurston—Bennequin invariant tb,,e,,

from Lemma 4.2.1 simplifies by Example 4.3.4 to
tbpew = thoa —n 1k*(L, T).

Consider now the front projection in Figure 6.1 of a transverse unknot 7" of type

Uy and a Legendrian unknot L in the exterior of T

Figure 6.1: For n < 0 this contact surgery diagram yields an overtwisted 3-sphere.

If one does a (1/n)-surgery along Uy then the knot L is (topologically) again an
unknot in some new contact S® (this can be seen by doing a Rolfsen twist along
Ug). If the resulting manifold is again (S, ;) then the Bennequin inequality holds,
i.e. thpew < —1. On the other hand one can compute tb,., = —1 — n with the
above formula. So it follows that for n < 0 the resulting contact 3-sphere has to be

overtwisted.

Figure 6.2: For n > 0 this contact surgery diagram yields an overtwisted 3-sphere.

For n > 0 one considers the diagram from Figure 6.2. Observe that this does
not work for the transverse unknot with self-linking number —1, but for all other
transverse unknots. The linking number is 1k(7, L) = 0 and therefore the Thurston—

Bennequin number of L stays the same, i.e. tb,e,, = thyg = —1.
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To show that the resulting contact 3-sphere is always overtwisted one determines
the new knot type L, of L in the new S3. Therefore, observe that topologically the
link 7"U L is the Whitehead link, which can also be pictured like in Figure 6.3(i).
By doing a Rolfsen twist along T' one gets the new knot L, in the new S pictured
in Figure 6.3(ii).

5

(4) (i7)
Figure 6.3: A Rolfsen twist along T yields L,.

Of course here the Bennequin inequality cannot help because the minimal bound
in the Bennequin inequality is —1. Therefore, one has to use a finer bound for the
Thurston-Bennequin number. One such bound is the so-called Kauffman bound [73]
(see also [31]), which says that for a Legendrian knot L in (S®, &) the following
inequality holds

tb(L) < min { deg, (FL(x,y))} -1,

where Fp(x,y) is the Kauffman polynomial of L. From the work of Tanaka and
Yokota (see [77] and [87]) it follows that in the case of a reduced alternating knot

diagram D,, of L, (as is the case here) this inequality transforms to
tb(L,) <sl(D,) —r(D,)

where sl(D,,) is the self-linking number of the knot diagram D,, and r(D,,) is the
number of regions in the knot diagram D,,. By coloring the complement of an alter-
nating knot diagram according to the rule in Figure 6.4(i) one gets the regions as
the colored areas. (Moreover, in [77] and [87] it is shown that this bound is sharp,
but this is not important for the argument here.)

In Figure 6.4(ii) one can count sl(D,) = 2n — 2 and r(D,,) = 2n + 1. Therefore,
every Legendrian realization of L, in (5%, &) has tb(L,) < —3. But earlier I com-
puted tb,e, = tboig = —1 in the new surgered contact 3-sphere. Therefore this new

contact 3-sphere has to be overtwisted. O
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(2) (i)
Figure 6.4: Computing the Kauffman bound for L,

The proof of the transverse knot exterior theorem 2.2.11 works now as in the

Legendrian case.

Proof of the transverse knot exterior theorem 2.2.11.

Pick a contactomorphism between the exteriors
he (S*\ V11, &) — (S%\ v, Ea),

and then consider the following commutative diagram:

(5%.€4) = (S3(m) r(m)) == (S" x D%¢)  + (s*\vTi,6u) /

\ Mot = H1

\

\

\

vl Id O h

|

\

! ho

y Moi—w>r2 = h(u)

(S:% (ﬁ)afﬂ(@)) = (Sl x DQ,f/) + (53 \ ’/Tz,ﬁst> /N

Here the contact solid torus (S! x D?, ¢) is chosen to be equal to (vT1,&). Be-
cause Id and h on the two factors are contactomorphisms and because they both
send the characteristic foliations of the boundaries to each other, these two maps
glue together to a contactomorphism f of the whole contact manifolds (see [38, Sec-
tion 2.5.4]). From the transverse contact Dehn surgery theorem 6.1.1 it follows that
ro is equal to g, or T; is equivalent to the transverse unknot U_; with self-linking
number —1.

If ro = ps then this is a trivial contact Dehn surgery, and so the contactomor-

phism f maps T} to Ts.
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In the other case the same argument with 7} and T, reversed shows that T; is

also equivalent to the transverse unknot U_; with self-linking number —1. O

Remark 6.1.2 (Size of the exteriors)

Maybe it is not clear where in the proofs of the theorems it is important that the
neighborhoods of the transverse knots are sufficiently small. To see why it is, observe
that the proof of the transverse Dehn surgery theorem shows a bit more. It is not
only shown that if there exists a cosmetic contact Dehn surgery along a transverse
knot in (5%, &), then this knot has to be the transverse unknot U_;, but also the
surgery coefficient has to be of the form r = 1/n for n > 0 (so negative integers
are excluded). At a first glance it looks as if this is a contradiction to the result of
Etnyre-Ghrist (Theorem 3.1.3) about the existence of tight transverse knots.

But the surgeries in this theorem are done with respect to a sufficiently big
tubular neighborhood of the transverse knot 7' to ensure tightness of the resulting
manifold as explained in [28, Remark 2.1]. By contrast, in the proof of the transverse
Dehn surgery theorem one has to choose sufficiently small neighborhoods of the
transverse knot, in fact so small that one has enough space in the exterior for the
Legendrian knot L. Both results together show that the Legendrian knot L from
Figure 6.1 cannot realized in a sufficiently small exterior of 7'

It would be interesting to compare this with the notion of fat and skinny framed
transverse knots from [36] and [37] and how big the neighborhoods of the transverse

knots can be chosen.
The following also remains open.

Problem 6.1.3 (Transverse cosmetic contact surgeries from (5%, &) to itself.)
Does Theorem 2.2.11 also holds for arbitrary neighborhoods? Are there cosmetic

contact surgeries along U_y with small neighborhoods?

6.2 The transverse link complement problem

In this Section the transverse link complement problem is discussed. First a trans-
verse link in (53, &,;) is presented which is not determined by the contactomorphism

type of one of its exteriors.

Example 6.2.1 (Counterexample to the transverse link complement problem)
Consider the transverse unknot 7" and the Legendrian unknot K in its complement
in Figure 6.5.

Denote the transverse link given by 7" and the transverse push-off of K by T7.
Choose the transverse push-off of K so close to K that the standard tubular neigh-
borhood vK of K is also a (possible non-standard) tubular neighborhood of its
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e

e
/

K

Figure 6.5: Construction of different transverse links with contactomorphic exteriors

push-off. Then the result of a contact (+2)-surgery along K can also be obtained
by a transverse surgery along the push-off of K.

Next, approximate the spine of the new glued-in solid torus by a transverse knot
such that the new glued-in solid torus is a (possible non-standard) tubular neigh-
borhood of its transverse spine. Denote the transverse link given by this transverse
spine and the transverse knot 7" in the surgered manifold by 75. Then the exteriors
of T} and T, are contactomorphic (if one chooses a tubular neighborhood of T so
small that it does not intersect the other neighborhoods).

Since a contact (+2)-surgery along a Legendrian unknot yields again (S®, &),
both links 7 and 7T, represent transverse knots in (Sg,ﬁst). It remains to show
that they are not equivalent. But this follows immediately, since by Example 1.1.4
they are not even topologically equivalent. This construction will be used again in
Section 7.3.

But note that it is not clear if the neighborhoods of the transverse push-off of
L and of the transverse approximation of the spine are standard neighborhoods in
the sense of Theorem 2.2.5(2). It remains open if the same works also for standard

neighborhoods of transverse links.

6.3 The transverse knot complement problem in general

manifolds

With a similar construction one can construct different transverse knots in lens

spaces with the same exteriors. One takes an exotic cosmetic contact surgery and
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approximates the spines of the newly glued-in solid tori by transverse knots such
that these solid tori are tubular neighborhoods of the transverse knots, but again it

is not clear if the neighborhoods are standard ones.

Example 6.3.1 (Counterexamples for transverse knots in general manifolds)

(1) Consider the exotic cosmetic contact surgery along Legendrian unknots from
Example 5.4.1 yielding a tight lens space. In both surgeries one approximates the
spines of the new glued-in solid tori by transverse knots such that these solid tori
are neighborhoods of the transverse approximations. Denote these transverse knots
in the same tight lens space by 77 and and 7.

By construction they have the same exteriors, but they are not equivalent since
the underlying topological knots are not equivalent by Example 1.3.2.

The same works for every other exotic cosmetic contact surgery along Legen-
drian knots. In this examples it remains open if the same works also for standard
neighborhoods of transverse knots.

For standard neighborhoods of transverse knots one can make a similar construc-
tion as in Section 5.3.

(2) To that end, look at a standard neighborhood of T of a transverse knot T" with
size ¢ = 1/3. The characteristic foliation on the boundary 0(vT) is given by the
vector field .

X =0,— 589.

If one denotes the longitude S* x {p} of d(vT) by A, then the characteristic foliation
of d(vT) is given by the linear curves —u + 3.
Now take two copies V; and V5 of this standard tubular neighborhood and glue

them together along their boundaries as follows

L(977) = L(97_2) = ‘/l + ‘/2 /N
1 =205 + 9\,
)\1} —/L2—|—4)\2

The characteristic foliation given by —u; + 3\, of dV; is mapped to the charac-
teristic foliation given by —pus + 3Ag of OV5. Therefore, the contact structures on
the two solid tori glue together to a global contact structure on the lens space
L(9,—2) = L(9,7). If one chooses the tubular neighborhoods of T; as V;, then by
construction the corresponding exteriors are the same.

But the knots T7 and T, are not even topologically equivalent by the discussion
in Example 1.3.2.

It remains open how such examples depend on the chosen size of the tubular
neighborhoods of the knots.
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6.4 Complements and Exteriors

In this section I want to explain more on the difference between complements and
exteriors in the topological case, as well as in the Legendrian and the transverse
case.

Let K be a link with tubular neighborhood v K in some 3-manifold M. Then one
can study the relation of the equivalence class of this link to the homeomorphism
type of its complement, its open exterior and its closed exterior. These relations are

shown in Figure 6.6.

Restriction
K ~ K =
1 2 | M\ Ky =M\ K,
oo Knot Restriction Homeomorphism
Restriction .
exterior M\K; = M\vK;
theorem
Restriction
M\Vkle\Vfo{g : M\VKle\l/KQ
closed with 0 I open without 0
Edwards

Figure 6.6: Relation between different types of classifications

If two links K7 and K5 are equivalent then one can restrict the homeomorphism
of M mapping one link to the other to subsets of M. Since such a homeomorphism
has to map a tubular neighborhood of one link to a tubular neighborhood of the
other link one gets the red implications in Figure 6.6 by restriction.

Moreover, it is easy to construct a homeomorphism of the complement of a link
to the open exterior of the same link. (Take a homeomorphism of a punctured disk
to a half open annulus in every D?-slice of the tubular neighborhood.)

A non-trivial theorem of Edwards [22] states that two 3-manifolds with boundary
are homeomorphic if and only if their interiors are homeomorphic. Therefore, it is
also equivalent to consider closed or open link exteriors.

And finally the blue implication is exactly the statement of the link exterior
problem, which is in general not true, but holds for knots in S3.

Now let K7 and K5 be Legendrian or transverse links in some contact 3-manifold
(M, ). First recall from Remark 2.2.6 that all standard neighborhoods of Legendrian

links are contactomorphic, but for transverse links this is not true. Therefore, for
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Legendrian links the exteriors are independent of the tubular neighborhoods as in
the topological case, but for a transverse link there exist in general more than one
exterior.

If two Legendrian or transverse links are equivalent then one can again restrict the
contactomorphism to subsets and gets as in the topological case the red implications
in Figure 6.6 by restriction.

But whether the black implications from Figure 6.6 also hold in contact geom-
etry is not clear. Contact structures on manifolds which are interiors of compact
3-manifolds with boundary are studied by Eliashberg [23], Makar-Limanov [57] and
Tripp [82]. With the methods developed there it should be possible to study if the
theorem of Edwards also holds for Legendrian and transverse links.

But the relation between the complements of Legendrian or transverse links and
their open exteriors remains mysterious. The topological diffeomorphism between
these sets does not preserve the contact structures, it remains open if such a con-
tactomorphism exists or not.

Finally, the blue implication is the Legendrian or transverse link exterior prob-
lem, which is again in general not true, but holds for Legendrian and transverse
knots in (53, &y ).
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Surgery description of Legendrian and transverse

knots

A classical result in knot theory states that every knot admits a surgery description
to the unknot. That means there exists a link in the complement of the knot such
that a Dehn surgery along this link yields the 3-sphere but changes the knot to the
unknot. The key observation is that one can change a crossing in a knot diagram by
a topological (+1)-Dehn surgery along an unknot in the complement of the crossing.
I will recall the details of this construction in Section 7.1.

The main result of this chapter is that this is also possible for Legendrian and
transverse knots. By doing this crossing change for a Legendrian knot via the contact
Rolfsen twist from Lemma 5.2.1 one gets a similar result for Legendrian knots in
Section 7.2. By approximating these Legendrian knots via transverse push-offs one
also obtains similar result for transverse knots (see Section 7.3).

The main difference is that there are infinitely many different Legendrian and
transverse unknots and it is not clear which of these unknots one gets with the
surgery description. However, by computing the classical invariants of the resulting
unknots one gets connections between the classical invariants of Legendrian and
transverse knots in (5%, &) and the unknotting information of the underlying topo-

logical knot type. This is discussed in Section 7.4.

7.1 Surgery description of knots

In this Section I will recall the topological surgery description of (smooth) knots
following [73, Sections 6.C and 6.D]. The idea behind this is best explained in an

example.

Example 7.1.1 (Surgery description of the trefoil)
Consider the right-handed trefoil knot K in S3. Observe that changing the type of
the marked crossing in Figure 7.1 changes the trefoil knot to the unknot.

Next consider the surgery diagram in Figure 7.2. Depicted is again the right-
handed trefoil knot K and in the exterior around the marked crossing of K an
unknot L with 41 surgery coefficient. (Here the surgery coefficient is measured with
respect to the Seifert longitude of L.) By doing a Rolfsen twist along L (or in this case

equivalently a blow-down, see [41, Page 151]) one sees that the resulting manifold is
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.
b

Figure 7.1: Transforming the trefoil knot to the unknot by changing a crossing

again S®, but the type of the marked crossing changes. So this surgery changes the
knot type of K to the unknot in S3.

Such a diagram like in Figure 7.2 is called surgery description of K to the
unknot.

I

i
i

Figure 7.2: Transforming the trefoil knot to the unknot by a cosmetic surgery

On the other hand one can start with a diagram of the unknot U in S® and a link
L in the exterior of U such that surgery along L does not change the manifold, but
changes the unknot U to a given knot type K. This is called surgery description
of K from the unknot.

By reversing the surgeries one can transform one description easily into the other,
see for example Figure 7.3 for the surgery description of the right-handed trefoil from
the unknot corresponding to the foregoing example. In fact, the methods from this

example also work in general situations.

Theorem 7.1.2 (Surgery description of knots)

Any knot K in a 3-manifold M admits a surgery description from and to the unknot
in S3.
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Figure 7.3: A surgery description of the trefoil K from the unknot U

Proof. Let L be a link in S? such that a Dehn surgery along L yields M. As explained
in Section 4.7 one can assume that K lies completely in the exterior of L in S2.
Therefore, it is enough to consider the case of a knot K in S3.

It is a standard fact that every knot in S® can be unknotted by finitely many
crossing changes (see [70, Theorem 3.8]). Exactly like in the example above this can
be achieved by doing a Dehn surgery along an unknot surrounding the crossing.
This leads to a surgery description of K to the unknot. By reversing the surgeries

one also gets a surgery description of K from the unknot. O

Remark 7.1.3 (The linking number of K and L)
By looking at Figure 7.4 one sees that one can choose the link L such that all
components of L have vanishing linking number with K (in both surgery descriptions

from and to the unknot).

lk=0 Ik =42 Ik =42 lk=0

Figure 7.4: The linking numbers with the surgery knots

The main application of surgery descriptions is an easy and effective construction

method for covering spaces of knot exteriors (see [73, Section 6.C and 7.C]) or more
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general branched coverings (see [70, Section 22] and [41, Section 6.3]). Because one
can choose the linking numbers of K with all components of L to be zero, one can use
the surgery description also to construct coverings of the corresponding 4-manifolds
(see [41, Section 6.3]).

7.2 Surgery description of Legendrian knots

With the contact Rolfsen twist (Lemma 5.2.1) one can generalize the proof of The-

orem 7.2.1 to Legendrian knots.

Theorem 7.2.1 (Surgery description of Legendrian knots)
Any Legendrian knot K in a contact 3-manifold (M,§) admits a contact surgery

description along a Legendrian link L to and from a Legendrian unknot U in (S3,&y).

Proof.

First consider the case of a Legendrian knot K in (S &,). In a front projection
of K every crossing is of the type in Figure 7.5(i). By a Legendrian isotopy one
can change the local picture to look like in Figure 7.5(ii). Now one can insert a
cosmetic contact surgery (see Figure 7.5(iii)) and using the contact Rolfsen twist
one can change the type of the crossing. Observe that there are two different choices
how to change the crossing, corresponding to the two different tight choices of the
new contact structure on the new glued-in solid torus. By applying this to chosen

crossings of the knot K one can unknot K to a Legendrian unknot.

| T
S N

odl,
k
/

/>
SN\
(2) (i) (iid) (iv)

\

)\

Figure 7.5: A Legendrian crossing change by a cosmetic contact surgery

The general case follows (like in the topological case) from the fact that for every
knot K in a general contact manifold (M, &), there exists a surgery diagram L in
(93, &) such that K can be presented in (S3\ vL, &), see Lemma 4.7.1.

It remains to show that there also exists a surgery description from a Legendrian

unknot. In general it is not possible to reverse a contact r-surgery by a contact
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surgery along a single Legendrian knot (see Example 5.2.3), but by the cancellation
lemma 3.2.2 it is possible to reverse a contact (+1/n)-surgery. So by the transfor-
mation lemma 3.2.4 one can reverse a general contact r-surgery by a (£1)-surgery
along a Legendrian link in the new glued-in solid torus. So it is also possible to
reverse the cosmetic contact (42)-surgeries as shown in Figure 5.6. And therefore

one also gets a surgery description from a Legendrian unknot. O

Example 7.2.2 (Surgery description of a Legendrian trefoil)

Consider the front projection of a right-handed Legendrian trefoil in Figure 7.6. By
inserting a cosmetic contact (42)-surgery one can change a crossing such that this
Legendrian trefoil transforms to a Legendrian unknot. There are two possibilities
for doing it, corresponding to the two possibilities of doing the contact (+2)-surgery
(compare Figure 5.3).

ol =

o4

Figure 7.6: A surgery description of a Legendrian trefoil

In this example one sees that the resulting Legendrian unknot depends on the
starting Legendrian knot and also on the chosen contact surgeries. Therefore, one
can get information about Legendrian knots from the resulting Legendrian unknots.
One aspect of this is discussed in Section 7.4.

In principle, one can now construct contact surgery diagrams of coverings of the
exteriors of Legendrian knots with the surgery description of Legendrian knots, but
in examples it turned out to be difficult. It would be interesting to see in examples
how to do this explicitly.

Another main difference to the topological case is that in general one cannot
choose the Legendrian link L to have vanishing linking number with K and therefore

one cannot construct coverings of the corresponding 4-manifolds.
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7.3 Surgery description of transverse knots

By writing a given transverse knot 7' as the transverse push-off of a Legendrian

knot, one also gets a surgery description of the transverse knot 7.

Theorem 7.3.1 (Surgery description of transverse knots)
Any transverse knot T in a contact 3-manifold (M,§) admits a contact surgery

description along a Legendrian link L to and from a transverse unknot U in (S3,&y).

Proof.
Again by the same argument from Section 4.7 it is enough to consider transverse
knots in (53, &y ).

First one approximates both sides of the Legendrian knot K in Figure 5.3 by a
transverse-push off and obtains Figure 7.8. (And the same picture with all orienta-
tions reversed.)

And since every transverse knot is obtained as the push-off of a Legendrian knot
one can change arbitrary crossings of this transverse knots similar to Figure 7.5. By

changing the correct crossings this yields a transverse unknot. O]

{FXGF
&F 48
0500

Figure 7.7: A surgery description of a transverse trefoil
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Example 7.3.2 (Surgery description of a transverse trefoil)

Consider the front projection of a left-handed transverse trefoil in Figure 7.7. By
inserting a cosmetic contact (42)-surgery one can change a crossing such that this
transverse trefoil transforms to a transverse unknot. There are again two possibilities
for doing it, corresponding to the two possibilities of doing the contact (+2)-surgery.
But the self-linking number in both cases is equal to —5. So by Theorem 2.3.11 both

knots represent the same transverse unknot.

Slpew = slog —2

T

I

+2

12

Slnew = Slold —6

i/j

Slnew - Slold

e

Slnew - Slold

T

I

Figure 7.8: The effect of a contact Rolfsen twist on a transverse knot

With this theorem it should again be possible to explicitly construct contact
surgery diagrams of coverings of the knot exteriors of transverse knots. And since

there exist contact branched covers along transverse knots, it should also be possi-
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ble to construct contact surgery diagrams of these (similar to the topological case,
see [70, Section 22]).

7.4 Connection to the unknotting information

By taking a closer look at how the classical invariants sl of a transverse knot and tb
and rot of a Legendrian knot in (53, &) change under a cosmetic contact surgery
one can get restrictions on these contact invariants from the topological unknotting
information of the knot.

The result depends on the sign of the crossing. In Figure 7.8 one can compute
how the self-linking number of the transverse knot changes under a cosmetic con-
tact (+2)-surgery that changes a crossing. The self-linking number does not change
if one changes a positive to a negative crossing. If one changes a negative to a pos-
itive crossing the self-linking numbers reduces by 2 or 6 (depending on the chosen
extension of the contact structure over the new glued-in solid tori).

In particular it is always possible to change crossings such that the following

inequality is true
Slnew Z Slold _27

and after several crossing changes one gets a transverse unknot in (52, £,;) satisfying
the Bennequin inequality
Slnew S -1

So one can hope to get new bounds for the classical invariants of a transverse knot
in (53, &) in terms of the unknotting information of the topological knot type. But
simply taking the unknotting number u, i.e. the minimal number of self-crossings
required to transform a given knot to the unknot, does not lead to something new
by the slice Bennequin inequality sl < 2g, — 1 (see [76]) and by g. < u where
g« denotes the slice 4-ball genus. (The inequality g. < u follows since the trace of
a movie of finitely many crossing changes of a knot yields an immersed annulus in
S3 x I. By resolving the self-intersections and by capping of the unknot component
with a disc one gets a surface with genus u embedded in the 4-ball.)

Therefore, consider the so-called signed unknotting numbers defined as follows
(see also [10] and [81]). First one defines the set U(p,n) to consist of equivalence
classes of (topological) knots in S? that can be unknotted by p € NgU{oo} crossing
changes from a + crossing to a — crossing, and by n € Ny U {oo} crossing changes
from a — crossing to a + crossing. Then one can define the positive unknotting

number u (K) of a (topological) knot K in S? as
uy (K) = min {p‘K € U(p,n)}.
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It follows immediately that u, < wu, but in general both u, and u are hard to
compute (see for example [10] and [81]).

In [8] Bohr shows that sl < k., where k. is the so-called positive kinkiness of a
knot K in S®, which is smaller than the positive unknotting number u, of K. In
particular, the positive unknotting Bennequin inequality sl < wu, is true. Here we

get a weaker result.

Corollary 7.4.1 (Positive unknotting Bennequin inequality)

(1) Let K be a topological knot type in S* that admits a transverse realization in
(53, &) such that in its front projection the mazimal self-linking number SL and
the minimal positive unknotting number u, are realized. Then for all transverse
realizations Ty and all Legendrian realizations L of K in (S3, &) the following

Bennequin-type inequalities hold:

sl(Tk) < 2uy(K) —1,
tb(Lg) + |rot(Lk)| < 2uy(K) — 1.

(2) Let K be a topological knot type in S* that admits a Legendrian realization in
(53, &) such that in its front projection the mazimal Thurston—Bennequin invari-
ant TB and the minimal positive unknotting number u, are realized. Then for all
Legendrian realizations L of K in (S3, &) the following Bennequin-type inequality
holds:

tb(Lg) < 4duy(K) —1.

Proof.

Take a front projection Tk (as in part (1)) with maximal self-linking number under
all transverse realizations of K and change this knot by inserting cosmetic contact
(42)-surgeries to a transverse unknot U. By choosing the crossing changes optimal

one obtains for the self-linking number the following inequality
sl(Tx) — 2uy (Tk) =sl(U) < —1.

Because sl(Tk) is maximal and wuy (Tk) is minimal the result follows.

The second inequality in (1) follows again because every transverse knot 7" is the
push-off of a Legendrian knot L (see Remark 2.2.16) and by Lemma 2.3.8.

Part (2) follows by analyzing directly the classical invariants of a Legendrian

knot (see Figure 7.9) and by using Theorem 7.2.1. O

Before saying something about the hypothesis of this corollary I want to present
some examples and compare these inequalities with other known inequalities (see

the introduction of [63] for a discussion of known bounds).
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Figure 7.9: Behavior of the classical invariants under cosmetic contact surgeries

Example 7.4.2 (The right-handed trefoil )

Consider the front projection of a Legendrian right-handed trefoil R in Figure 7.5
on the left. By using the standard formulas one gets tb(R) = 1 and rot(R) = 0, and
the Seifert algorithm leads to g(R) = 1. So the Bennequin bound is sharp in this
case and TB(R) = 1. From the slice Bennequin inequality it follows that the slice
genus ¢, is also 1. From Figure 7.5 one sees that changing one crossing of R yields
an unknot. The crossings are all positive, so uy(R) < 1. In fact one can show that
uy(R) =1 (see [81, Section 5]). Then it follows that this front projection is of the
form as required in the corollary and the positive unknotting bound 2u, (R)—1 = —1

is also sharp.

Example 7.4.3 (The left-handed trefoil)

In Figure 7.10 one sees a front projection of a Legendrian left-handed trefoil L with
tb(L) = —6 and |rot(L)| = 1. Because the genus and the slice genus do not change
under mirroring a knot they are both 1 again and the Bennequin and slice Bennequin
bound are both given by 1.

In this example the Kauffman bound tb(L) + |rot(L)| < dkauffman — 1 = —5H
(see [75]) and the HOMFLY bound tb(L) < dgomrLy — 1 = —6 (see [32] and [60])
are both sharp. In Figure 7.10 one can change some negative crossing to unknot
L, so uy (L) = 0. So the front projection in Figure 7.10 is of the form as in the
corollary and the positive unknotting bound 2u, (L) — 1 = —1 is stronger than the
slice Bennequin bound, but not sharp. Observe that the positive unknotting bound
is (like the slice Bennequin and the Bennequin bound) at least —1, so for a general

knot far away from being sharp.
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Figure 7.10: A Legendrian left-handed trefoil L and a Legendrian figure eight K

Example 7.4.4 (The figure eight)

A front projection of a Legendrian figure eight knot K with classical invariants
tb(K) = 3 and rot(K) = 0 is shown in Figure 7.10. Both the Kauffman- and the
HOMFLY bound are —3. So the other bounds are not sharp. Again it follows that
g(K) = ¢g.(K) = 1, but uy(K) = 0, so the positive unknotting bound is again
better, but not sharp.

Observe, that by taking the transverse push-offs of these Legendrian knots, this
also gives examples for transverse knots (with the self-linking number bounded in-
stead of the sum tb + rot).

Some natural questions arise.

Question 7.4.5
For every (topological) knot, does there exist a front projection of the form as in the
corollary? Does this hold if one replaces uy by the unknotting number u, the minimal

crossing number c,...?

For many examples of knots with small crossing numbers this question admits
an affirmative answer. Another indication that Question 7.4.5 admits an affirmative
answer is the fact that if the so-called arc index of a front projection is minimal
then the Thurston-Bennequin invariant in the same diagram is maximal (see [20,
Corollary 3]). So it seems that a front projection that is in some way as simple as
possible (here arc index minimal) also realizes the maximal Thurston-Bennequin
invariant of that knot.

Also there is the well known example of the alternating knot 10.8 with ¢ = 10
and u = 2. In [6] it is shown that in every knot diagram of 10.8 with ¢ = 10 one
needs more than 2 crossing changes to unknot this knot. In Figure 7.11(i) one sees
a projection of the knot with 10 crossings and in (ii) a projection with 14 crossings.

Changing the marked crossings yields the unknot, and one can show that this is not
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possible with fewer crossings changes. One can also look at the signed unknotting
number and conclude then that u, (10.8) = 0.

However, there exist corresponding front projections depicted in Figure 7.11 both
with tb = —11. But the diagrams represent different Legendrian knots as one can
see by computing the rotation numbers. (The rotation number in (i) is 4 and in
(7) it is 0.) Both the Kauffman and the HOMFLY bound lead to a sharp result.
So the maximal Thurston-Bennequin invariant is —11 and the maximum value of
tb +| rot | is —7. So for this special knot there exists a front projection with maximal
Thurston—Bennequin invariant and minimal positive unknotting number, but it is

unclear if the same exists for the maximal value of tb +|rot |.

/\//\ /

(4) )

Figure 7.11: Projections of the knot 10.8 with extremal invariants

If the above question admits an affirmative answer, then this would yield another
proof of the positive unknotting Bennequin inequality independent of the proof given

in [8]. I expect the following two questions to have a negative answer.

Question 7.4.6

Are there examples where the inequalities from the corollary are sharp?

Question 7.4.7
Are there examples where the positive unknotting bound is smaller than the Kauffman
or HOMFLY bound?
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