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In the following we will outline several fundamental definitions to be used
over the course of this seminar while following along J.W. Milnor’s Topology
from the Differentiable Viewpoint. Furthermore we will regard Rn to be under
the euclidean topology throughout this chapter.

Definition. Let U ⊆ Rk and V ⊆ Rl be open subsets. A map f : U → V is
called smooth if for all natural numbers n all of the partial derivatives ∂nf

∂xi1
...∂xin

exist and are continuous.

We will now generalize this definition to apply it to functions with more
varied domains.

Definition. Let X ⊆ Rk and Y ⊆ Rl be arbitrary subsets. A map f : X → Y
is called smooth if for every x ∈ X a neighbourhood U ⊆ Rk of x and a smooth
map g : U → Rl exist such that g coincides with f throughout U ∩X.

Remark. For two smooth functions f : X → Y and g : Y → Z their composition
g ◦ f : X → Z is also smooth.

Definition. Let X ⊆ Rk and Y ⊆ Rl be arbitrary subsets. A map f : X → Y
is called a diffeomorphism if it is a homeomorphism between X and Y and if
both f and f−1 are smooth.

Definition. A set M ⊆ Rk is called a smooth manifold of dimension m if for
every x ∈M a neighbourhood W ∩M (where W ⊆ Rk is open) of x exists that
is diffeomorphic to an open subset U ⊆ Rm

Remark. • A diffeomorphism f : U →W ∩M is called a parametrization of
the region W ∩M

• A diffeomorphism f−1 : W ∩M → U is called a system of coordinates on
W ∩M

• We will occasionally need to look at smooth manifolds of dimension 0.
It is interesting to note that M being such a manifold is, per definition,
equivalent to each x ∈M having a neighbourhood W ∩M s.t. W ∩M =
{x}
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We now wish to define the notion of the derivative dfx for smooth maps
f : M → N where M and N are smooth manifolds. To do this, we’ll first have
to find a linear subspace to associate with each x ∈M ⊆ Rk - the tangent space,
TMx. Then we will be able to define dfx as a linear map from TMx to TNf(x).
Elements of the tangent space will be called tangent vectors to M at x.
The tangent space can be described a bit more intuitively by first considering
the m-dimensional hyperplane in Rk which best approximates M near x and
then considering TMx to simply be a parallel hyperplane through the origin.
An example for this can be seen in the graphic below.

Before we are able to define the tangent space and dfx in general, we will
once more have to take a closer look at the case of maps between open subsets.

Definition. Let U ⊆ Rk and V ⊆ Rl be open subsets. The tangent space for
every x ∈ U is then defined as

TUx := Rk.

Furthermore we can define the derivative for every smooth f : U → V as

dfx : Rk → Rl

h 7→ lim
t→0

f(x + th)− f(x)

t
.

Remark. Using this definition dfx is a linear map. This becomes fairly obvi-
ous once one realizes that the map is equivalent to the Jacobian Matrix of f
evaluated at x.

2



We will now note a few fairly important and fundamental properties the
derivative as defined above possesses. Let U ⊆ Rk and V ⊆ Rl be open subsets
and x ∈ U :

1. (Chain Rule) Let W ⊆ Rm be an open subset.
If f : U → V and g : V →W are smooth maps, then

d(g ◦ f)x = dgf(x) ◦ dfx.

2. If I is the identity map on U , then dIx is the identity map on Rk. More
generally, if U ′ ⊆ U is an open subset, i : U ′ → U its inclusion and x′ ∈ U ′,
then dix′ is also the identity map on Rk.

3. If L : Rk → Rl is a linear map and x ∈ Rk then dLx = L.

We can use these properties to easily prove a theorem:

Theorem. If f is a diffeomorphism between open sets U ⊆ Rk and V ⊆ Rl,
then k = l and dfx is regular for all x ∈ U .

Proof. We know f−1 ◦ f is the identity map on U . Thus (2) combined with
the chain rule implies df−1f(x) ◦ dfx is the identity map on Rk for all x ∈ U .

Analogously dfx ◦ df−1f(x) is the identity on Rl. It follows that dfx is regular and

thus a bijective linear map between Rk and Rl , so l = k.

A partial converse to this theorem also holds and is probably already known
to most.

Theorem (Inverse Function Theorem). Let U ⊆ Rk be open and f : U →
Rk be smooth. If dfx is regular for x ∈ U , then an open set U ′ ⊆ U containing
x exists such that f(U ′) is open and f : U ′ → f(U ′) is a diffeomorphism.

An elegant proof of this can be found in Michael Spivak’s Calculus on Man-
ifolds.
We’ve now reached the point at which we’re able to generalize the definition of
the tangent space to arbitrary smooth manifolds.

Definition. Let M ⊆ Rk be a smooth manifold of dimension m and x ∈ M .
Now let

g : U →M

be a choice of diffeomorphism (parametrization), such that U ⊆ Rm is open
and g(U) ⊆ M is a neighbourhood of x. Now let dgg−1(x) be the derivative as
defined above. Then the tangent space TMx is defined:

TMx := dgg−1(x)(Rm)

This definition does not depend on the choice of parametrization, but since
this is not immediately obvious, we will have to prove it.
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Proof. Let h : V → M be another choice of parametrization, s.t. V ⊆ Rm is
open and h(V ) ⊆M is a neighbourhood of x.
Then h−1 ◦ g : Rm → Rm maps some neighbourhood U1 of g−(x) diffeomorphi-
cally onto a neighbourhood V1 of h−1(x). (See sketch on the next page)
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So now the commutative diagram

Rk

U1 V1

g

h−1◦g

h

gives rise to the commutative diagram

Rk

Rm Rm

dgg−1(x)

d(h−1◦g)g−1(x)

dhh−1(x)

It thus follows that dgg−1(x)(Rm) = dhh−1(x)(Rm) and therefore TMx is well-
defined.

We now have a working definition of a tangent space, but we still have to
show it is actually of the correct dimension.

Theorem. For M and x as before, TMx is an m-dimensional vector space.

Proof. Let M,x, g and U be defined as above. Since g−1 : g(U)→ U is smooth,
per definition there is an open set W ⊆ Rk and a smooth map F : W → Rm

such that x ∈ W and F coincides with g−1 on W ∩ g(U). If we now define
U0 := g−1(W ∩ g(U)) the following diagram commutes:

W

U0 Rm

Fg

inclusion

It follows that

Rk

Rm Rm

dFx
dgg−1(x)

identity

also commutes. It is now obvious that dgg−1(x) has rank m and therefore TMx

is of dimension m.

We have now reached the point at which we are able to achieve our original
goal of defining dfx for functions between smooth manifolds.
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Definition. Let M ⊆ Rk be an m-dimensional smooth manifold, N ⊆ Rl an
n-dimensional smooth manifold, f : M → N a smooth map and x ∈M .
Since f is smooth an open set W ⊆ Rk containing x and a smooth map

F : W → Rl

exist such that F coincides with f on W ∩M . The derivative

dfx : TMx → TNf(x)

is then defined as

dfx := dFx

∣∣
TMx .

We now need to prove two things to show the validity of this definition:
First, that dFx(TMx) ⊆ TNf(x) and second that it is well-defined.

Proof. Let h : V → N be a parametrization such that V ⊆ Rk is open and h(V )
is a neighbourhood of f(x). Now choose a parametrization g : U → M such
that U ⊆ Rm is open, x ∈ g(U), g(U) ⊆W and f(g(U)) ⊆ h(V ).
Then h−1 ◦ f ◦ g : U → V defines a smooth map and the following diagram
commutes:

W Rl

U V

F

g

h−1◦f◦g

h

This implies that the following diagram of the derivatives commutes as well:

Rk Rl

Rm Rn

dFx

dgg−1(x)

d(h−1◦f◦g)g−1(x)

dhh−1(f(x))

It follows that

dFx(TMx) = dFx(dgg−1(x)(Rm)) ⊆ dhh−1(f(x))(Rn) = TNf(x)

Furthermore, since

dFx ◦ dgg−1(x) = dhh−1(f(x)) ◦ d(h−1 ◦ f ◦ g)g−1(x)

dfx is independent from the choice of F and thus well defined.
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Remark. Once again the derivative has two fundamental properties worth not-
ing. Let M,N be smooth manifolds and x ∈M .

1. (Chain Rule) Let P be a smooth manifold and f : M → N and g : N →
P be smooth maps. Then the following holds:

d(g ◦ f)x = dgf(x) ◦ dfx

2. If I is the identity map on M , then dIx is the identity on TMx.
If M ⊆ N and i is the inclusion map, then TMx ⊆ TNx with inclusion
dix.

These properties lead to an analogous theorem to the one their previous
counterparts lead to with the same proof behind it.

Theorem. If M,N are smooth manifolds and f : M → N is a diffeomorphism,
then the derivative dfx : TMx → TNf(x) is regular and dim(M) = dim(N).
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