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� Batu Güneysu, for confirming the grammatical correctness of my Turkish.

Thank you all!

4



This work is dedicated to my dog Biscuit

for being the purest of all homies.

5



Introduction

The Dirac operator is used by theoretical physicists to write down the equation of

motion of spin-1
2
particles (protons, electrons, ...) in the setting of relativistic quantum

mechanics. Considering the Dirac equation on curved spaces is the attempt to include

gravity, which Einstein recognised as the curvature of spacetime.

Viewed as a purely mathematical object (not caring too much about understanding

the universe), the Dirac operator is a first-order elliptic linear differential operator living

on a certain vector bundle (the spinor bundle) over an oriented Riemannian manifold

endowed with some additional structure (a spin structure). An interesting question to

investigate — at least from a mathematician’s point of view — is in which ways the

purely analytical information encoded in the Dirac operator (such as its spectral data)

is related to the geometry of the underlying space.

In this thesis, we examine the situation where the underlying space is the harm-

less manifold S3 = {x ∈ R4 : |x| = 1}, endowed with the structure of a Lie group,

which comes with a family of natural Riemannian metrics to consider — namely the

left-invariant ones. These spaces are what the title of the thesis refers to as homo-

geneous 3-spheres, and each of them admits a unique and trivial spin structure (after

an orientation has been fixed), for which the associated Dirac operator can be defined.

We are particularly interested in the question whether two non-isometric homogeneous

3-spheres can be distinguished by their Dirac spectra.

Inspiration

The topic of this thesis, as kindly suggested to the author by his supervisor, was inspired

by the following publications:

� Christian Bär’s paper “The Dirac operator on homogeneous spaces and its spectrum

on 3-dimensional lens spaces” (1992) [1], in which Bär (among other things) expli-

citly calculated the Dirac spectrum of a special subclass of homogeneous 3-spheres

(the so-called Berger spheres); and

� Emilio Lauret’s paper “The smallest Laplace eigenvalue of homogeneous 3-spheres”

(2018) [2], in which Lauret (among other things) explicitly calculated the smallest

Laplace eigenvalue of each homogeneous 3-sphere and proved that two homogen-

eous 3-spheres are Laplace isospectral if and only if they are isometric.

The main question of the thesis is whether a synthesis of these two results can be

achieved; that is, whether it is possible to generalise Bär’s calculation of the Dirac
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spectrum to arbitrary homogeneous 3-spheres and obtain a similar result as Lauret did

for the Laplace operator.

Result

Indeed, we were able to obtain such a result, under the additional assumption that the

underlying metric is of positive scalar curvature. More precisely, the goal of the thesis

is to prove the following theorem (see §1 for notation):

Main Theorem (Dirac Eigenvalues of Homogeneous 3-Spheres)

Let S3
(a,b,c) be a homogeneous 3-sphere of positive scalar curvature, endowed with

either orientation.

Then the smallest absolute value of its Dirac eigenvalues is given by

λ∗(a,b,c) = a+ b+ c− 1

2

(ab
c
+

bc

a
+

ca

b

)
> 0,

and its Dirac spectrum determines the underlying metric up to isometry (within the

class of homogeneous 3-spheres).

In order to safely guide the reader to the result stated above, the thesis follows the

structure described below.

Structure

In section I (Preliminaries), we will clarify the geometric setting of the thesis (“What is

a homogeneous 3-sphere?”) and give the necessary prerequisites so that every person

with a background in differential geometry should be able to follow the proof of the

Main Theorem.

� In §1 (The 3-Sphere as a Lie Group), we will introduce a Lie group structure on

S3 (turning it into a homogeneous space) and give a classification of the arising

left-invariant metrics up to isometry. Moreover, we will briefly discuss the repres-

entation theory of S3 ∼= SU(2), which is eventually needed to extract the spectral

data from the Dirac operator, using the Peter–Weyl Theorem.

� In §2 (Spin Geometry), we will introduce all objects and structures required to

define the Dirac operator, and we will summarise its main analytic properties.

In section II (Dirac Eigenvalues of Homogeneous 3-Spheres), we will immerse ourselves

right into the research question, with the result of the thesis shining bright at the end

of the adventure.
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� In §3 (Dirac Spectrum), we will clarify the spin geometry of S3
(a,b,c) and derive a

formula for the Dirac operator. We will then mimic Bär’s approach to obtain a

theoretical description of the Dirac spectrum via representation theory.

� In §4 (Smallest Eigenvalue and Spectral Invariance), we will discuss the (extensive

but elementary) proof of the Main Theorem, mimicking Lauret’s approach based on

the Gershgorin-Circle Theorem. The paragraph will be split into several digestible

parts, corresponding to different steps of the proof (including the heuristic).

There is nothing left to say except:

Have Fun!

The author hopes that reading this thesis is at least as joyful an experience as the

writing process. (The reader is allowed to deduce anything from this statement.)
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I Preliminaries

The purpose of this section is twofold: It serves to clarify the setting of the thesis

(that is, to describe the geometry of homogeneous 3-spheres) as well as to discuss the

necessary spin-geometric prerequisites for defining the corresponding Dirac operator

and calculating its spectrum, the latter requiring a smidgen of representation theory.

The reader is assumed to be familiar with the fundamental notions of Riemannian

geometry (such as the curvature of a Riemannian manifold), some basic theory of Lie

groups, and fibre bundles (especially principal bundles, frame bundles, and associated

vector bundles). Those topics that are unlikely to be covered in a typical three-semester

course of differential geometry will be dealt with in the thesis. Note that once an

expression for the Dirac operator is obtained and all the occuring objects are clear, the

proof of the Main Theorem boils down to elementary calculations from analysis and

linear algebra (which, however, does not imply that the result was easy to obtain).

We commence by introducing a Lie group structure on S3 (which only by itself is

not too exciting a manifold), turning it into a homogeneous space acting on itself.

§1 The 3-Sphere as a Lie Group

There are two common ways to endow the manifold S3 = {x ∈ R4 : |x| = 1} with a

group multiplication, turning it into a Lie group:

� Consider the special unitary group SU(n) consisting of all U ∈ MatC(n) such that

UU † = 1 and det(U) = 1, where U † denotes the conjugate transpose of U . It is a

standard exercise in every elementary course of differential geometry to prove that

SU(n) is an (n2 − 1)-dimensional submanifold of MatC(n) ∼= R2n2
— hence, a Lie

group — and that its Lie algebra su(n) = T1 SU(n) consists of all X ∈ MatC(n)

such that X + X† = 0 and tr(X) = 0. (This is an important application of the

Regular-Value Theorem.)

In the case n = 2, there is an evident diffeomorphism between S3 and SU(2),

sending an element (z, w) ∈ S3 ⊂ C2 ∼= R4 to ( z −w̄
w z̄ ) ∈ SU(2).

� Alternatively, we can view S3 ⊂ R4 ∼= H as the set of unit quaternions equipped

with the quaternion multiplication. This is clearly a Lie group, and its Lie algebra

is the space T1S3 = {1}⊥ = spanR{i, j, k} ⊂ H.

9
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By identifying S3 ⊂ C2 with S3 ⊂ H via (z, w) 7→ z − jw, both intepretations describe

the same Lie group structure on S3. More precisely, we then have

1
∧
=

(
1 0

0 1

)
, i

∧
=

(
i 0

0 −i

)
, j

∧
=

(
0 1

−1 0

)
, and k

∧
=

(
0 i

i 0

)
,

for which one can check i2 = j2 = k2 = ijk = −1. In either case, the Lie bracket is simply

given by [X, Y ] = XY −Y X, with the multiplication belonging to the respective algebra

(that is, MatC(2) or H). Throughout the thesis, we will use whichever identification is

more convenient for the current endeavour.

This settles the Lie group structure on the 3-sphere. The further procedure in this

paragraph is as follows:

� In the first part (Left-Invariant Metrics), we introduce the natural geometries to

consider on a general Lie group G and derive a classification (up to isometry) in

our case G = S3.

� In the second part (Representation Theory), we state the Peter–Weyl Theorem for

compact Lie groups G (which plays a key role in calculating the Dirac spectrum)

and briefly describe the representation theory of G = S3 in this context.

Left-Invariant Metrics

Notational Remarks. For a Lie groupG, we denote by 1 ∈ G its identity, by g = T1G its

Lie algebra; for every g ∈ G, we denote by ℓg : G ∋ h 7→ gh ∈ G the left multiplication

with g, and lastly, by ℓg∗ : g → TgG its differential at the identity. Given an inner

product ⟨ · , · ⟩ on g, we will also write ⟨ · , · ⟩ for the corresponding left-invariant metric

on G (see below) obtained by propagation of ⟨ · , · ⟩ around G.

Definition 1.1 (Left-Invariant Metric)

A Riemannian metric ⟨ · , · ⟩ on a Lie group G is called left-invariant if for all g ∈ G,

one has ℓg
∗⟨ · , · ⟩ = ⟨ · , · ⟩; that is, if ⟨ℓg∗X, ℓg∗Y ⟩g = ⟨X, Y ⟩1 holds for all g ∈ G

and X, Y ∈ g.

Define analogously right-invariant and bi-invariant Riemannian metrics.

In other words, the left multiplications of a Lie group G endowed with a left-invariant

metric are isometries, and G is a Riemannian homogeneous space. This implies severe

consequences concerning the geometry of G: Since the curvature tensor inherits left-

invariance from the metric, so does the scalar curvature, which is a fancy way of saying

that the latter is constant on G.
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There is a one-to-one correspondence between the left-invariant metrics on G and the

inner products on g, which are uncountably many. Fortunately, in the case G = S3,

there is an easy way to describe the left-invariant metrics up to isometry using only

three positive numbers as parameters. This will be useful later, since calculating the

Dirac spectrum then boils down to a tangible multivariable problem.

To see this, consider the Killing form B : g × g → R on g = T1S3, that is, the

Ad-invariant symmetric bilinear form defined by B(X, Y ) := tr([X, [Y, · ]]). Using the

identification of S3 with the unit quaternions, one can easily compute that the matrix

representation of B with respect to the basis {i, j, k} of T1S3 is given by −8 times the

identity. In other words, ⟨⟨ · , · ⟩⟩ := −1
8
B defines a bi-invariant inner product on T1S3

such that {i, j, k} becomes an orthonormal basis.

Definition 1.2 (Inner Products on T1S3)

1 We refer to ⟨⟨ · , · ⟩⟩ = −1
8
B as the bi-invariant standard inner product.

2 Let a, b, c > 0. Define ⟨ · , · ⟩(a,b,c) as the inner product on T1S3 that has the

matrix representation diag( 1
a2
, 1
b2
, 1
c2
) with respect to the basis {i, j, k} of T1S3,

that is, such that {ai, bj, ck} becomes a ⟨ · , · ⟩(a,b,c)-orthonormal basis.

As mentioned before, we will also write ⟨ · , · ⟩(a,b,c) for the left-invariant metric on S3

corresponding to the inner product ⟨ · , · ⟩(a,b,c) on T1S3. In addition, we will abbreviate

the Riemannian manifold (S3, ⟨ · , · ⟩(a,b,c)) to S3
(a,b,c).

It turns out that it is sufficient to consider only the metrics ⟨ · , · ⟩(a,b,c) in order to

fully describe the possible homogeneous geometries on S3. More precisely, we have the

following well-known result:

Theorem 1.3 (Classification of Left-Invariant Metrics on S3)

Let ⟨ · , · ⟩ be any left-invariant metric on G = S3. Then (S3, ⟨ · , · ⟩) is isometric to

S3
(a,b,c) = (S3, ⟨ · , · ⟩(a,b,c)) for some a ≥ b ≥ c > 0.

A proof will be given for the sake of completeness, requiring some fundamental theory

of Lie groups. For g ∈ S3 ⊂ H, denote by ϕg the conjugation by g, that is, the

inner automorphism defined by ϕg(h) := ghg−1. Consider the adjoint representation

Ad : S3 → Aut(T1S3), sending g to Adg = ϕg∗ : X 7→ gXg−1. Then we have the

following useful lemma:

11



Lemma 1.4 (Adjoint Representation of S3)

The group {Adg}g∈S3 of differentials of the inner automorphisms ϕg acts transitively

on the set of ⟨⟨ · , · ⟩⟩-orthonormal bases of T1S3 with the same orientation as {i, j, k}.

In other words, one has Ad(S3) = SO(T1S3, ⟨⟨ · , · ⟩⟩), where the latter denotes the

group of orientation-preserving isometries of T1S3 with respect to ⟨⟨ · , · ⟩⟩.

Proof. Since ⟨⟨ · , · ⟩⟩ is bi-invariant, the inner automorphisms ϕg are isometries of

T1S3, which means that Adg is an orthogonal map for each g ∈ S3. Since the

continuous map Ad sends 1 ∈ S3 to 1 ∈ SO(T1S3, ⟨⟨ · , · ⟩⟩) and S3 is connected, it

follows that Adg preserves orientation; that is, Ad(S3) ⊂ SO(T1S3, ⟨⟨ · , · ⟩⟩). To see

the other inclusion, let us recall the following fundamental result, carrying inform-

ation from Lie algebras to Lie groups:

Let f : G → H be a homomorphism of Lie groups. If H is connected and

h ⊂ f∗(g), it follows that H ⊂ f(G) (that is, f(G) = H).

We certainly know that H = SO(T1S3, ⟨⟨ · , · ⟩⟩) is connected. Now consider the

differential Ad∗ = ad : T1S3 → so(T1S3, ⟨⟨ · , · ⟩⟩) of the adjoint representation,

sending X to adX = [X, · ]. It is easy to see that Ad∗ is a vector space isomorphism:

In fact, the endomorphisms [i, · ], [j, · ], and [k, · ] are linearly independent (plug

{i, j, k} into α1[i, · ] + α2[j, · ] + α3[k, · ] = 0 to obtain α1 = α2 = α3 = 0); hence, by

comparing dimensions, they must form a basis of the 3·(3−1)
2

= 3-dimensional vector

space so(T1S3, ⟨⟨ · , · ⟩⟩).

It follows from the boxed statement that Ad(S3) = SO(T1S3, ⟨⟨ · , · ⟩⟩). ♥

This observation is already enough to prove Theorem 1.3.

...

Proof (of Theorem 1.3). Let ⟨ · , · ⟩ be an arbitrary left-invariant metric on S3. Since

⟨ · , · ⟩ defines an inner product on T1S3, we can find a ⟨⟨ · , · ⟩⟩-orthonormal basis

{u, v, w} of T1S3 in which ⟨ · , · ⟩ has the form diag( 1
a2
, 1
b2
, 1
c2
) for some a, b, c > 0.

We may assume a ≥ b ≥ c by rearranging the basis if necessary. We may further

assume that {u, v, w} has the same orientation as {i, j, k} (if not, replace u by −u).

Now, due to Lemma 1.4, there exists a Lie group automorphism ϕ of S3 such that

ϕ∗ maps {i, j, k} to {u, v, w}. Then the pulled-back metric ϕ∗⟨ · , · ⟩ is again left-

invariant, since

ℓg
∗(ϕ∗⟨ · , · ⟩) = ϕ∗(ℓϕ(g)

∗⟨ · , · ⟩) = ϕ∗⟨ · , · ⟩
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holds for all g ∈ S3 (use the chain rule and the fact that ϕ is a homomorphism; that

is, ϕ ◦ ℓg = ϕ(g · ) = ϕ(g)ϕ( · ) = ℓϕ(g) ◦ ϕ).

However, we have ϕ∗⟨ · , · ⟩ = ⟨ · , · ⟩(a,b,c) for a, b, c > 0 as above by construction,

from which the claim promptly follows. ♥

Now that we know what the left-invariant metrics on S3 look like, it makes sense to

seek expressions for the curvature in terms of the parameters a, b, and c. Specifically,

we are interested in a formula for the scalar curvature, since it will turn out later that

the calculation of the smallest Dirac eigenvalue corresponding to ⟨ · , · ⟩(a,b,c) gives rise
to the natural restriction scal S3

(a,b,c)
> 0. We will derive such an expression directly by

calculating the sectional curvatures from the Levi–Civita connection.

Proposition 1.5 (Scalar Curvature of Homogeneous 3-Spheres)

The constant scalar curvature of S3
(a,b,c) is given by

scal(a,b,c) := scal S3
(a,b,c)

≡ 4(a2 + b2 + c2)− 2
(a2b2

c2
+

b2c2

a2
+

c2a2

b2

)
.

...

Proof. Let ⟨ · , · ⟩ = ⟨ · , · ⟩(a,b,c) be a left-invariant metric on S3. Recall that the

Levi–Civita connection ∇ is uniquely determined by the Koszul formula

2⟨∇X Y, Z⟩ = X(⟨Y, Z⟩) + Y (⟨X,Z⟩)− Z(⟨X, Y ⟩)
+ ⟨[X, Y ], Z⟩+ ⟨[Z,X], Y ⟩ − ⟨[Y, Z], X⟩.

Denote by {i, j, k} also the left-invariant vector fields on S3 corresponding to our

standard basis of T1S3. Using that ⟨ · , · ⟩ has the form diag( 1
a2
, 1
b2
, 1
c2
) with respect

to {i, j, k} as well as [i, j] = 2k (plus cyclic permutations), it follows that

⟨∇i j, i⟩ = ⟨∇i j, j⟩ = 0 and ⟨∇i j, k⟩ =
1

c2
+

1

b2
− 1

a2
;

that is (using that ∇ is torsion-free in the second equation),

∇i j =
(
1 +

c2

b2
− c2

a2

)
k and ∇j i = ∇i j− [i, j] =

(
− 1 +

c2

b2
− c2

a2

)
k.

One also finds ∇i i = ∇j j = ∇k k = 0. We can use this (plus cyclic permutations)

to calculate the Riemannian curvature tensor
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⟨R(i, j)j, i⟩ = ⟨∇i ∇j j−∇j∇i j−∇[i,j] j, i⟩

=
〈
0−

(
1 +

c2

b2
− c2

a2

)
∇j k− 2∇k j, i

〉
= −

〈(
1 +

c2

b2
− c2

a2

)(
1 +

a2

c2
− a2

b2

)
i + 2

(
− 1 +

a2

c2
− a2

b2

)
i, i
〉

= − 1

a2

[(
1 +

c2

b2
− c2

a2

)(
1 +

a2

c2
− a2

b2

)
+ 2
(
− 1 +

a2

c2
− a2

b2

)]
.

Expand this expression to see that the sectional curvatures are given by

κ(i, j) =
⟨R(i, j)j, i⟩
⟨i, i⟩⟨j, j⟩ = a2b2⟨R(i, j)j, i⟩ = 2a2 + 2b2 − 2c2 − 3a2b2

c2
+

b2c2

a2
+

c2a2

b2

plus analogous expressions for κ(j, k) and κ(k, i) obtained by cyclically permuting

the pairs {(i, a), (j, b), (k, c)}.

The claim eventually follows from scal = 2(κ(i, j) + κ(j, k) + κ(k, i)). ♥

We will see in the first part of §3 that it is easily possible to write down a formula

in terms of a, b, and c for the Dirac operator associated with ⟨ · , · ⟩(a,b,c) and a fixed

orientation. However, that alone is not enough, and in order to retrieve its spectral data

we first have to deal with the representation theory of S3 (roughly speaking, converting

abstract objects into numbers).

Representation Theory

The actual aim of this part of the paragraph is to state the Peter–Weyl Theorem for

(arbitrary) compact Lie groups, which is a powerful tool required to obtain a description

of the Dirac spectrum later and which justifies (only in hindsight) why we are interested

in the representation theory of S3. In this sense, the reader is kindly requested to first

endure a lot of preparatory definitions (taken from [3, Chapter 2.2]). The connection

to S3 will be made at the end.

Let G be a Lie group, and let V be a real or complex (possibly infinite-dimensional)

vector space. In the infinite-dimensional case, we would like V to be a Banach space.

Denote by GL(V ) the group of (in the infinite-dimensional case, bounded) invertible

linear operators on V , equipped with the operator norm topology.
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Definition 1.6 (Representation of a Lie Group on a Vector Space)

1 A representation of G on V is a continuous1 homomorphism π : G → GL(V ),

which we will abbreviate to (G, π, V ).

2 A representation (G, π, V ) is called irreducible if it has no proper invariant

subspaces. (That is, the only subspaces W ⊂ V such that π(g)W ⊂ W holds

for all g ∈ G are V = {0} and W = V .)

3 Let (G, π, V ) and (G, π̃, Ṽ ) be two representations. A bounded linear operator

Φ : V → Ṽ is called an intertwiningmap if Φ ◦ π(g) = π̃(g) ◦ Φ holds for all

g ∈ G. We denote by HomG(V, Ṽ ) the space of maps intertwining π and π̃.

4 Two representations (G, π, V ) and (G, π̃, Ṽ ) are called equivalent if there is

an isomorphism Φ : V → Ṽ intertwining π and π̃.

5 A representation (G, π, V ) is called the direct sum of a countable collection

{(G, πn, Vn)}n∈N0 of representations if for all n ∈ N0, there is an injective

intertwining map Φn ∈ HomG(Vn, V ) such that the sum W :=
⊕

n∈N0
Φn(Vn)

is direct and W ⊂ V is a dense subspace. We will then write

V =
⊕
n∈N0

Vn.

The completely unbiased reader might ask themselves: “Why though?” — It is not

clear at all why it should be important to know how, say, G = S3 ∼= SU(2) acts on

some unspecific vector spaces, given that the elements of SU(2) are already acting on

V = C2 by default (with the choice of a basis in mind).

To give just a vague explanation, consider that the (extension of the) Dirac operator

will live on the Hilbert space of square-integrable sections of a certain associated vector

bundle, which are quite abstract objects. Luckily, in our case, this function space turns

out to be identifiable with a pretty simple space (namely the L2-functions from S3 to

some finite-dimensional complex vector space); however, it is of course still infinite-

dimensional, and the Dirac operator still involves rather complicated operations. The

punch line is that, with the means of representation theory, we can find a decomposition

of this space of L2-functions into subspaces of finite dimension on each of which the Dirac

1In the case dimK(V ) = n < ∞ (where K = R or K = C), one has GL(V ) ∼= GL(Kn) ∼= GLK(n),
which is a harmless matrix Lie group. Interestingly, continuity in this case already implies smoothness,
which is a consequence of the Closed-Subgroup Theorem.
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operator acts as a vector space endomorphism. This ultimately allows us to obtain some

information about the spectral data of the Dirac operator, using our precious knowledge

of elementary linear algebra.

Now let us focus on the case where the representation spaces (V, ⟨ · , · ⟩) are complex

inner product spaces. (As suggested above, we are interested in a functional-analytic

result, which makes the most sense if V = H is a complex Hilbert space.)

Definition 1.7 (Unitary Analogues)

1 A representation (G, π, V ) is called unitary if ⟨π(g)v, π(g)w⟩ = ⟨v, w⟩ holds

for all v, w ∈ V and g ∈ G.

2 Two representations are called unitarily equivalent if there exists a unitary

operator intertwining them.

3 A representation (G, π, V ) is called the unitary direct sum of a countable col-

lection {(G, πn, Vn)}n∈N0 of representations if V =
⊕

n∈N0
Vn and the spaces

Vn are pairwise orthogonal (after identifying each Vn with its image in V ).

Let us unpack these definitions step by step, starting with which space exactly shall

take the place of the Hilbert space V = H in the Peter–Weyl Theorem.

Recall that every compact oriented Riemannian manifold comes with a natural in-

tegral, which is particularly easy to describe if it carries the structure of a Lie group

G endowed with a left-invariant metric. Indeed, simply pick your favourite orthonor-

mal basis {X1, X2, . . . , Xn} of g, and consider the associated left-invariant vector fields

(which yield at each point g ∈ G an orthonormal basis of TgG, since the metric is left-

invariant), also denoted by X1, X2, . . . , Xn. Then the associated Riemannian volume

form ω on G is determined by ωg

(
X1(g), X2(g), . . . , Xn(g)

)
= 1. For φ ∈ C0(G,R), this

leads to the usual definition
∫
G
φ :=

∫
G
φω, where G is endowed with the orientation

provided by ω.

If φ = Re(φ) + i Im(φ) ∈ C0(G,C), we set
∫
G
φ :=

∫
G
Re(φ) + i

∫
G
Im(φ) and define

L2(G,C) as the completion of C0(G,C) with respect to the Hermitian standard inner

product ⟨φ1, φ2⟩L2 :=
∫
G
φ1φ̄2. This leads us to consider H = L2(G,C), and we will

now define an action of the group G×G on this space.

Consider the natural unitary action of G×G on C0(G,C) described by the repres-

entation ρ(g, h)φ := φ(g−1( · )h). The following result states that ρ extends to a unitary

representation of G×G on L2(G,C):
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Proposition 1.8 (Regular Representation)

For all g, h ∈ G, the linear map ρ(g, h) extends to a unitary operator on L2(G,C),
and ρ : G×G → GL(L2(G,C)) is continuous.

We refer to ρ as the regular representation of G×G on L2(G,C).

Proof. See [3, Proposition 2.6.2 (2)]. ♥

We would like to recognise the infinite-dimensional representation ρ ofG×G on L2(G,C)
as a unitary direct sum of finite-dimensional representations, on which we can perform

linear algebra. The way in which these spaces will be embedded into L2(G,C) requires
one last preparatory definition.

Definition 1.9 (New Representations from Old)

Let V and Ṽ each be a complex inner product space of finite dimension.

1 The dual of a representation (G, π, V ) is the representation (G, π∗, V ∗) defined

by π∗(g)f := f ◦ π(g−1) for all g ∈ G and f ∈ V ∗. (The inner product on V ∗

is such that the dual basis of an orthonormal basis is orthonormal.)

2 The tensor product of two representations (G, π, V ) and (G̃, π̃, Ṽ ) is the rep-

resentation (G×G̃, π⊗π̃, V ⊗Ṽ ) defined by (π⊗π̃)(g, g̃)(v⊗ṽ) := π(g)v⊗π̃(g̃)ṽ

for all g ∈ G, g̃ ∈ G̃ and v ∈ V, ṽ ∈ Ṽ . (The inner product on V ⊗ Ṽ is such

that tensor products of orthonormal bases form orthonormal bases.)

We have now gathered everything needed to state the Peter–Weyl Theorem, on which

we will rely in the second part of §3, where we describe the Dirac spectrum of S3
(a,b,c).

Theorem 1.10 (Peter–Weyl Theorem)

Let G be a compact Lie group. Denote by Ĝ the set of equivalence classes of

irreducible unitary representations of G. For each class [π]∼ ∈ Ĝ, fix a represent-

ative (G, π, Vπ), and define Φπ ∈ HomG×G(Vπ ⊗ Vπ
∗,L2(G,C)) by Φπ(v ⊗ f)(g) :=

f(π(g−1)v). Then the regular representation ρ of G × G on L2(G,C) is unitarily

equivalent to the unitary direct sum of the Vπ ⊗ Vπ
∗ embedded via Φπ, that is,

L2(G,C) ∼=
⊕

[π]∼∈Ĝ

Vπ ⊗ Vπ
∗.

Proof. See [3, Theorem 2.8.2]. ♥
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Let us now return from the general situation to our special case G = S3 ∼= SU(2). The

Peter–Weyl Theorem explains why it is so important to know the irreducible represent-

ations of S3. Luckily, the representation theory of S3 is well-known, and easy to state

without further preparation.

Definition 1.11 (Representations of S3)

1 For each n ∈ N0, denote by Vn the complex vector space of homogeneous

polynomials in two complex variables; that is, Vn = spanC{Pk : 0 ≤ k ≤ n}
with Pk(z, w) = zn−kwk. In particular, dimC(Vn) = n+ 1.

2 Let the group S3 ∼= SU(2) act on Vn via (πn(g)P )(z, w) := P ((z, w)g).

One can easily verify that (SU(2), πn, Vn) indeed defines a representation for all n ∈ N0.

Much more complicated to prove (but easy to state nonetheless) is that the collection

{πn}n∈N0 describes the irreducible representations of SU(2) up to equivalence.

Theorem 1.12 (Classification of Irreducible Representations of S3)

Every irreducible (unitary) representation of SU(2) is (unitarily) equivalent to one

of the (SU(2), πn, Vn).

Proof. See for example [4, Chapter II, Proposition 5.3]. ♥

The attentive reader will certainly have noticed that the word “unitary” in the above

statement does not make any sense, since we have never specified an inner product on Vn.

This, however, is only a technical requirement, since every representation π of a compact

group G on a finite-dimensional vector space V can be made unitary: Indeed, pick any

inner product ⟨⟨ · , · ⟩⟩ on V and a right-invariant volume form ω on G (endowed with the

corresponding orientation), and let ⟨v, w⟩ :=
∫
G
⟨⟨π( · )v, π( · )w⟩⟩ω. Then (G, π, V ) is

unitary with respect to ⟨ · , · ⟩. One can further show that two irreducible unitary finite-

dimensional representations are unitarily equivalent if and only if they are equivalent

(see [3, Corollary 2.3.9]), so we need not worry about that.

This is everything we want to know about homogeneous 3-spheres — for now, not

including their spin geometry, the general concepts of which first have to be introduced

in the next paragraph.
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§2 Spin Geometry

The aim of this subsection is to give the reader a very condensed overview of the notions

required to define the Dirac operator and of its most important analytic properties. We

closely follow Habermann’s lecture notes [5] for reference, with some minimal struc-

tural tweaks and enrichments inspired by the lecture on spin geometry that the author

attended as a student.

The Dirac operator is a linear differential operator that lives on the sections of a

certain vector bundle (the spinor bundle) equipped with a notion of taking covariant

derivatives (the spin connection), the former of which is associated with a certain

principal bundle (a spin structure) over suitable oriented Riemannian manifolds, whose

structure group is the spin group, which in turn requires constructing the Clifford

algebra. We will need to deal with all these notions recursively, focusing only on the

most important definitions and statements.

The Clifford Algebra

In the more general setting, let V be a real finite-dimensional vector space equipped

with a quadratic form Q : V → R.

Definition 2.1 (Clifford Algebra)

1 The Clifford algebra C(V,Q) is the real associative algebra with multiplicative

identity obtained by modding out from the tensor algebra
⊕∞

k=0 V
⊗k the two-

sided ideal generated by {v ⊗ v +Q(v)}v∈V .

2 We write Cn := C(Rn, ⟨ · , · ⟩) in the Euclidean case.

The latter is the main definition that we will use. Simply put, one can think of an

element of Cn as a finite linear combination of products of elements of Rn satisfying the

identity x2 = −|x|2 (or, equivalently, xy + yx = −2⟨x, y⟩). Rephrasing this in terms of

the standard basis {e1, e2, . . . , en} of Rn, one obtains

ek
2 = −1 and ekeℓ = −eℓek whenever k ̸= ℓ. (∗)

We will only use this interpretation of elements of Cn because of its simplicity (rather

than equivalence classes of formal linear combinations of tensor products), but one

should of course keep the rigorous definition in mind when dealing with these objects.
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Proposition 2.2 (Dimension of the Clifford Algebra)

There exists a vector space isomorphism between the Clifford algebra Cn and the

exterior algebra
∧
Rn. In particular, dim(Cn) = 2n.

Proof. See [6, Chapter I, Proposition 1.3]. ♥

Although the rigorous proof based on the algebraic Definition 2.1 is somewhat technical,

the statement is intuitively clear, since we can rearrange every product of canonical basis

vectors such that they are in increasing order (up to a sign) by repeatedly applying (∗).
More precisely, the increasing products ek1ek2 . . . ekm (where m ∈ N0 and 1 ≤ k1 < k2 <

. . . < km ≤ n) form a basis of Cn, and the map ek1ek2 . . . ekm 7→ ek1 ∧ ek2 ∧ . . . ∧ ekm
plus linear extension defines a natural vector space isomorphism Cn ∼=

∧
Rn (which,

however, is of course not an isomorphism of algebras).

It is desirable to have identifications with already familiar algebras in order to better

understand Cn. For small n, one quickly recognises C1 ∼= C (via e1 7→ i) and C2 ∼= H (via

e1 7→ i and e2 7→ j). One proceeds by defining C ′
n := C(Rn,−⟨ · , · ⟩) and establishing

the isomorphisms Cn+2
∼= C ′

n ⊗ C2 and C ′
n+2

∼= Cn ⊗ C ′
2. Then, starting from C ′

1
∼= R⊕R

and C ′
2
∼= MatR(2), one can advance inductively to obtain C3 ∼= C ′

1 ⊗ C2 ∼= H ⊕ H,

C4 ∼= C ′
2 ⊗ C2 ∼= MatH(2), and so forth (see for example [6, Chapter I, Theorem 4.1]).

A less practical but nonetheless crucial statement (for our purposes) is the following

classification of the complexified Clifford algebras CC
n = Cn ⊗R C:

Theorem 2.3 (Classification of the Complexified Clifford Algebras)

1 If n = 2m is even, then one has CC
n
∼= MatC(2

m).

2 If n = 2m+ 1 is odd, then one has CC
n
∼= MatC(2

m)⊕MatC(2
m).

Proof. See [5, Satz 1.1.6]. ♥

We briefly discuss the idea of the proof because we will need the objects that appear

in it for later reference. In order to define isomorphisms ϕn from Cn to the respective

right-hand side, consider the complex basis {E,U, V, T} of MatC(2) given by

E :=

(
1 0

0 1

)
, U :=

(
i 0

0 −i

)
, V :=

(
0 1

−1 0

)
, and T :=

(
0 1

1 0

)
.
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Note E
∧
=1, U

∧
=i, V

∧
=j, and iT

∧
=k, following the identification MatC(2) ∼= H described

at the beginning of §1.

Now define ϕn(ek) for all k ∈ {1, 2, . . . , n}:
� If n = 2m is even, set ϕn(e2j−1) := T⊗j−1 ⊗ U ⊗ E⊗m−j and ϕn(e2j) := T⊗j−1 ⊗
V ⊗ E⊗m−j for all j ∈ {1, 2, . . . ,m}.

� If n = 2m + 1 is odd, set ϕn(ek) :=
(
ϕ2m(ek), ϕ2m(ek)

)
for all k ∈ {1, 2, . . . , 2m},

and set ϕn(en) := (iT⊗m,−iT⊗m).

One then has to verify that, in both cases, the canonical extension of ϕn to the increasing

products of the ek plus linear extension yields a well-defined algebra homomorphism ϕn

that is surjective (and, hence, bijective by comparing dimensions).

This leads us to the following definitions that we will need later:

Definition 2.4 (Spinors, Spin Representation, and Clifford Multiplication)

Let m := ⌊n
2
⌋.

1 We write Σn := C2 ⊗ . . .⊗ C2 (m times) and refer to its elements w ∈ Σn as

complex n-spinors. Furthermore, we define a complex inner product on Σn by

⟨w, w̃⟩ = ⟨w1⊗ . . .⊗wm, w̃1⊗ . . .⊗ w̃m⟩ := ⟨w1, w̃1⟩ . . . ⟨wm, w̃m⟩, where ⟨ · , · ⟩
on the right-hand side denotes the standard Hermitian inner product on C2.

2 Let σn := ϕn for even n and σn := pr1 ◦ ϕn for odd n. The resulting algebra

homomorphism σn : CC
n → End(Σn) is called the spin representation of CC

n .

3 The Cliffordmultiplication assigns to each vector x ∈ Rn ⊂ Cn ⊂ CC
n and each

spinor w ∈ Σn the spinor x ·w := σn(x)w.

Lastly, we discuss another property of Cn required to define the spin group: Z2-grading.

Denote by α : Cn → Cn the automorphism induced by the linear map x 7→ −x on Rn,

and denote by β : Cn → Cn the antiautomorphism that reverses the multiplication (that

is, β : ek1ek2 . . . ekm 7→ ekm . . . ek2ek1 plus linear extension).

Proposition 2.5 (Z2-Grading of the Clifford Algebra)

The Clifford algebra Cn can be decomposed into an even and an odd part

C0
n := {u ∈ Cn : α(u) = u} and C1

n := {u ∈ Cn : α(u) = −u}, respectively.

More precisely, one has Cn = C0
n ⊕ C1

n and Ci
nCj

n ⊂ Ci+j
n (mod 2).
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Proof. See [5, Lemma 1.1.9]. ♥

We will now move forward a little from the purely algebraic basics towards differential

geometry (the keyword being Lie groups).

The Spin Group

Observe that every x ∈ Sn−1 ⊂ Rn ⊂ Cn admits the multiplicative inverse x−1 = −x.

It follows that u := x1x2 . . . xm ∈ Cn (where x1, x2, . . . , xm ∈ Sn−1 for some m ∈ N0) is

invertible with u−1 = (−1)mxm . . . x2x1 = α(β(u)).

Definition 2.6 (Pin and Spin Group)

1 The pin group Pin(n) ⊂ Cn consists of all elements of the form x1x2 . . . xm,

where m ∈ N0 and x1, x2, . . . , xm ∈ Sn−1.

2 The spin group is the even part of the Pin group, Spin(n) := Pin(n) ∩ C0
n.

We would like to define a homomorphism θ : Pin(n) → O(n). One can easily check

uyβ(u) = ±uyu−1 ∈ Rn for all y ∈ Rn and u ∈ Pin(n) (see [5, Lemma 1.2.1]); that is,

for each u ∈ Pin(n), one has an endomorphism θ(u) : y 7→ uyβ(u) of Rn, which one can

further prove to be orthogonal (see [5, Satz 1.2.2 (i)]).

We canonically identify O(Rn) with O(n) via the standard basis of Rn. One then

has the desired map θ : Pin(n) → O(n), which has the following propetries:

Proposition 2.7 (Spin Cover)

The map θ : Pin(n) → O(n) is a continuous and surjective group homomorphism

with ker θ = {±1} and θ−1(SO(n)) = Spin(n).

One can conclude that Spin(n) is a double cover of SO(n) for all n ≥ 2.

Proof. See [5, Satz 1.2.2], [5, Satz 1.2.3], and [5, Bemerkung 1.2.4].

Continuity is meant with respect to the natural topology on Cn ∼= R2n . ♥

Since we have not talked too much about differential geometry yet, let us have a look

at the topological properties of Pin(n) and Spin(n) that one can conclude with the aid

of θ. What is particularly interesting for us is that these groups are Lie groups.
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Proposition 2.8 (Topology of the Pin and Spin Group)

1 For all n ≥ 2, Spin(n) is path-connected.

2 Both Pin(n) and Spin(n) are compact. In particular, they are closed subgroups

(within the open group of invertible elements of Cn), which implies that they

are Lie groups by the Closed-Subgroup Theorem.

Proof.

1 See [5, Satz 1.2.3 (ii)].

2 For each u ∈ Pin(n), the map θ(u) ∈ O(Rn) is the composition of at most n

reflections. It follows that u = x1x2 . . . xm for certain x1, x2, . . . , xm ∈ Sn−1

with m ≤ n. Then Pin(n) = M1 ∪ M2 ∪ . . . ∪ Mn is the finite union of

the compact sets Mm = {x1x2 . . . xm : x1, x2, . . . , xm ∈ Sn−1}; hence, it is

compact. The spin group is then compact as a closed subset of a compact set

(since it is the intersection of a closed set and a closed subspace).

♥

Now knowing that Spin(n) ⊂ Cn ⊂ CC
n is a Lie group, the following definition is more

reasonable than before:

Definition 2.9 (Spin Representation)

The spin representation is the restriction σ := σn|Spin(n) : Spin(n) → GL(Σn), where

σn is the spin representation of CC
n from Definition 2.4 2 .

Note that σ is now a representation in the sense of Definition 1.6 1 with some inter-

esting properties (some of which are needed at a later moment to justify that certain

things are well-defined).
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Proposition 2.10 (Properties of the Spin Representation)

1 If n is odd, then σ is irreducible. If, on the other hand, n is even, then σ can

be decomposed into two irreducible representations.

2 One has σ(u)(x ·w) = θ(u)x · σ(u)w for all u ∈ Spin(n), x ∈ Rn, w ∈ Σn.

3 The spin representation is unitary with respect to the inner product on Σn

defined in Definition 2.4 1 .

Proof. See [5, Abschnitt 1.4], [5, Satz 1.5.4], and [5, Satz 1.5.7]. ♥

Now we can devote ourselves entirely to differential geometry. We will commence by

introducing some additional structure on certain oriented Riemannian manifolds.

Spin Structures on Oriented Riemannian Manifolds

Let Mn = (Mn, ⟨ · , · ⟩) be an oriented Riemannian manifold. Then it makes sense to

consider the principal SO(n)-bundle of positively oriented orthonormal frames of M,

denoted by SO(M) = SO(M, ⟨ · , · ⟩).

We would like to define an object that (in some sense) relates to SO(M) as Spin(n)

relates to SO(n). This leads to the following quite plausible definition:

Definition 2.11 (Spin Structure)

A spin structure on M consists of a principal Spin(n)-bundle S over M and a

bundle map Θ : S → SO(M) such that the following diagram commutes:

S × Spin(n) S

M
SO(M)× SO(n) SO(M)

Θ×θ

πS

Θ

πSO(M)

The horizontal arrows depict the right actions of SO(n) and Spin(n) on the principal

bundles SO(M) and S, respectively.

A manifold endowed with a spin structure is called a spinmanifold.

A natural question to ask is whether spin structures of M always exist; and if they

do, then how to distinguish between them? Let us first agree that two spin structures
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should be declared equivalent if their respective principal bundles are isomorphic, and

if the corresponding covering maps are compatible with each other.

Definition 2.12 (Isomorphic Spin Structures)

Two spin structures (S,Θ) and (S̃, Θ̃) on M are said to be isomorphic if there

exists a principal bundle isomorphism Φ : S → S̃ such that Θ = Θ̃ ◦ Φ.

Regarding the answer to the above question, there is the following topological result:

Theorem 2.13 (Classification of Spin Structures)

1 A spin structure on M exists if and only if the second Stiefel–Whitney class

w2(M) ∈ H2(M;Z2) vanishes.

2 If this is the case, then there is a one-to-one correspondence between the spin

structures of M up to isomorphism and the cohomology group H1(M;Z2).

Proof. See [6, Chapter II, Theorem 1.7]. ♥

To each spin manifold, we can associate the corresponding spinor bundle; and to each

spinor bundle, we can associate the spin connection as a notion of taking derivatives.

This is the last piece of the puzzle needed to define the Dirac operator.

The Associated Spinor Bundle and the Spin Connection

Let Mn be a spin manifold endowed with the spin structure (S,Θ). Then we would

like to associate to M a vector bundle on which the Dirac operator will live later.

Definition 2.14 (Spinor Bundle Associated with a Spin Manifold)

The spinor bundle associated with M with respect to (S,Θ) is the associated com-

plex vector bundle ΣM := S ×σ Σn.

Local sections φ : U → ΣM of ΣM on open neighbourhoods U ⊂ M are called

spinor fields and denoted by φ ∈ ΓU(ΣM). We also write Γ(ΣM) := ΓM(ΣM).

The elements of ΣM are equivalence classes of the form [p,w]∼ (where p ∈ S and

w ∈ Σn) with respect to the equivalence relation

(p,w) ∼ (p̃, w̃) ⇐⇒ (p̃, w̃) = (p,w)u := (pu, σ(u−1)w) for some u ∈ Spin(n),
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endowed with the vector space structure [p,w]∼ + α[p, w̃]∼ := [p,w + αw̃]∼ for α ∈ C.
We further equip ΣM with a complex bundle metric {⟨ · , · ⟩x}x∈M as follows:

Definition 2.15 (Bundle Metric on the Spinor Bundle)

Let x ∈ M, p ∈ Sx, and [p,w]∼, [p, w̃]∼ ∈ ΣM. Then we define

⟨[p,w]∼, [p, w̃]∼⟩x := ⟨w, w̃⟩ ∈ C,

where ⟨ · , · ⟩ is the inner product on Σn from Definition 2.4 1 .

This is well-defined because σ is unitary (see Proposition 2.10 3 ).

In order to define the Dirac operator, we need to extend the Clifford multiplication

to bundles. This is done by identifying the tangent bundle TM with a vector bundle

associated with S of the fibre type Rn.

Lemma 2.16 (Identification of the Tangent Bundle)

Denote by ι : SO(n) ↪→ GL(Rn) the inclusion. Then we have the following canonical

isomorphims of vector bundles:

S ×ι◦θ Rn → SO(M)×ι Rn → TM

∈ ∈ ∈

[p, y]∼ 7→ [Θ(p), y]∼
[{e1, e2, . . . , en}, y]∼ 7→ ∑n

k=1 ykek

Proof. See [5, Lemma 2.2.7] and [5, Lemma 2.2.8]. ♥

This allows the following definition, which is correct due to Proposition 2.10 2 :

Definition 2.17 (Clifford Multiplication on Bundles)

Let X ∈ ΓU(TM) be a vector field, and let φ ∈ ΓU(ΣM) be a spinor field. Then

the Clifford product of X and φ is the spinor field X · φ ∈ ΓU(ΣM) defined by

(X · φ)(x) := µx

(
X(x)⊗ φ(x)

)
:= [p, y ·w]∼ for all x ∈ U,

where p ∈ Sx, φ(x) = [p,w]∼ for some w ∈ Σn, and X(x) ∈ TxM is identified with

[p, y]∼ for some y ∈ Rn in the sense of Lemma 2.16.

The map µ : Γ(TM⊗ ΣM) → Γ(ΣM) is called the Cliffordmultiplication.
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With the Clifford multiplication on bundles, we can talk about taking the derivative

of a spinor field along a vector field. More precisely, the Levi–Civita connection ∇ on

TM induces a connection ∇Σ on ΣM.

Theorem 2.18 (Spin Connection)

Let X ∈ Γ(TM) and φ ∈ Γ(ΣM). Define the spinor derivative ∇Σ
Xφ ∈ Γ(ΣM) of

φ along X as follows: For each point x ∈ M, pick a local section s ∈ ΓU(S) on a

neighbourhood U ⊂ M of x such that φ|U = [s, φs]∼ for some φs ∈ C∞(U,Σn), and

let {e1, e2, . . . , en} := Θ ◦ s.

Then the expression

∇Σ
Xφ := [s,X(φs)]∼ +

1

4

n∑
j=1

ej ·∇Xej · φ

evaluated at x ∈ U does not depend on the particular choice of s. Furthermore, it

defines a covariant derivative on the spinor bundle.

The map ∇Σ : Γ(ΣM) → Γ(TM∗ ⊗ ΣM) is called the spin connection.

Proof. See [5, Satz 2.3.6]. ♥

With all these objects, we can finally define the very thing that we will be talking about

in the rest of this thesis.

The Dirac Operator

Let Mn be a spin manifold, and let ΣM be the associated spinor bundle.

Definition 2.19 (Dirac Operator)

The Dirac operator D : Γ(ΣM) → Γ(ΣM) is the map

D : Γ(ΣM)
∇Σ

−→ Γ(TM∗ ⊗ ΣM)
♯−→ Γ(TM⊗ ΣM)

µ−→ Γ(ΣM),

where ∇Σ is the spin connection, ♯ : TM∗ → TM is the musical isomorphism given

by the Riemannian metric, and µ is the Clifford multiplication on bundles.

The following local description of D is immediate from the definition:
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Proposition 2.20 (Local Description of the Dirac Operator)

Let {e1, e2, . . . , en} be a local orthonormal frame of M, and let φ ∈ Γ(ΣM). Then

D φ =
n∑

i=1

ei ·∇Σ
ei
φ.

Proof. See [5, Satz 2.4.2]. ♥

This also implies that the Dirac operator is a first-order linear differential operator.

From now on, let M be closed (compact and without boundary). We would like to

summarise the most important analytic properties of the Dirac operator together with

their consequences for the Dirac spectrum.

For φ, φ̃ ∈ Γ(ΣM), consider the complex inner product ⟨φ, φ̃⟩L2 :=
∫
M⟨φ, φ̃⟩, where

⟨φ, φ̃⟩ : M → C is defined by ⟨φ, φ̃⟩(x) := ⟨φ(x), φ̃(x)⟩x (see Definition 2.15), and

denote by L2(ΣM) the completion of Γ(ΣM) with respect to∥ · ∥L2 :=
√

⟨ · , · ⟩L2 . Then

the Dirac operator extends to an unbounded operator with dense domain in L2(ΣM)

with the following properties:

Proposition 2.21 (Properties of the Dirac Operator)

The Dirac operator is

1 elliptic (its principal symbol σξ(D) is an isomorphism for all ξ ∈ TM∗, ξ ̸= 0),

2 formally self-adjoint (⟨D φ, φ̃⟩L2 = ⟨φ,D φ̃⟩L2 holds for all φ, φ̃ ∈ Γ(ΣM)).

Proof. See [6, Chapter II, Lemma 5.1] and [6, Chapter II, Proposition 5.3]. ♥

Since D is an elliptic and formally self-adjoint linear differential operator, it follows

from the general theory of these operators on vector bundles over closed manifolds:

...

Theorem 2.22 (Properties of the Dirac Spectrum)

1 The eigenvalues of D form a discrete set spec(D) = {λk}k∈N ⊂ R such that

0 ≤ |λ1| ≤ |λ2| ≤ . . . → ∞.

2 The corresponding eigenspaces Eλ(D) := {φ ∈ L2(ΣM) : D φ = λφ} (whose

non-zero elements we refer to as eigenspinors of D) are of finite dimension,

and Eλ(D) ⊥ Eµ(D) whenever λ ̸= µ.
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3 The set
⊕

λ∈spec(D) Eλ(D) is dense in the Hilbert space L2(ΣM).

4 In particular (combining 2 and 3 ), there exists an orthonormal basis of

L2(ΣM) consisting of smooth eigenspinors of D .

Proof. See [6, Chapter III, Theorem 5.8]. ♥

Unlike the Laplace spectrum, the Dirac spectrum generally consists of both positive and

negative eigenvalues, which makes estimating eigenvalues a bit more difficult. However,

one has spec(D) = − spec(D) unless n = 3 (mod 4).

Proposition 2.23 (Symmetry of the Dirac Spectrum)

If n is even or n = 1 (mod 4), then spec(D) is symmetric about zero, and the

eigenspaces corresponding to the eigenvalues ±λ are of the same dimension.

Proof. See [7, Chapter 4, Exercise 5]. ♥

In the case n = 3 (mod 4) though, anything can happen, and it is just our luck that

dim(S3) = 3 will not provide us with some nice extra symmetry. Bummer.

On the plus side, the Main Theorem holds for either choice of an orientation, since

the Dirac spectrum of S3 only changes signs if we reverse the orientation.

Lemma 2.24 (Dirac Spectrum under Change of Orientation)

Let Mn (n odd) be endowed with the spin structure (S,Θ) and the Dirac operator

D . Reverse the orientation ofM. Let Θ̃ := −Θ, and denote by D̃ the Dirac operator

associated with the new spin structure (S, Θ̃). Then spec(D̃) = − spec(D).

Proof. Conclude in this order: µ̃ = −µ, ∇̃Σ = ∇Σ, and D̃ = −D . ♥

Lastly, one also has a lower bound on spec(D2) in terms of the scalar curvature of M.

Theorem 2.25 (Lichnerowicz–Friedrich)

Let λ be an eigenvalue of D , and let scal∗ := min{scalM(x)}x∈M. Then we have the

sharp lower bound

λ2 ≥ n

n− 1

scal∗
4

.

In particular, scalM > 0 implies 0 ̸∈ spec(D).
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Proof. The slightly weaker (non-optimal) result without the factor n
n−1

is due to

Lichnerowicz, which was later improved by Friedrich to the above (sharp) estimate.

For reference, see [5, Satz 3.2.7] and [5, Satz 3.2.8], respectively. ♥

There are of course many more things to say (about the relation of the Dirac operator

to the geometry of M), but they reach far beyond the topic of this thesis.

This concludes the preliminaries. The reader is advised to fasten their seat belt,

since we will now apply the theory developed up to this point.
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II Dirac Eigenvalues of Homogeneous

3-Spheres

Now that all prerequisites have been clarified and the ambitious reader is equipped with

knowledge about all the scary objects that might appear in the tall grass, it is time

to explore the spin geometry of homogeneous 3-spheres, unveil the associated Dirac

operator, and extract its spectral data.

§3 Dirac Spectrum

The goal of this paragraph is to obtain a theoretical description of the Dirac spectrum of

S3
(a,b,c) as an infinite set whose element of the smallest absolute value is to be determined

in order to prove the Main Theorem.

� In the first part (Deriving the Dirac Formula), we will describe the spin geometry

of S3
(a,b,c) by inspecting all the occurring fibre bundles and derive only from that

(by elementary means) a formula for the associated Dirac operator.

� In the second part (Dirac Eigenvalues via Representation Theory), we will use the

Peter–Weyl Theorem (Theorem 1.10) to obtain a decomposition of the space of

L2-spinor fields into finite-dimensional subspaces. We will then mimic the approach

given by Bär in [1, Section 5] in order to recover the Dirac spectrum of S3
(a,b,c) as

the eigenvalues of an infinite collection of linear maps living on these subspaces.

Deriving the Dirac Formula

A general description of the spin structures of an arbitrary oriented Riemannian homo-

geneous space with a simply-connected structure group was given by Bär in [1]. Bär

also calculated a formula for the Dirac operator in this much more complicated setting.

Instead of applying Bär’s general formula to our special setting, we choose the

didactically more valuable approach and derive an expression for the Dirac operator

directly from its local description stated in Proposition 2.20. This turns out to be a

quite effortless calculation due to the distinct symmetry of our setting. In order to use

this formula, we first have to understand what the relevant bundles look like. Luckily,

all of them are so kind to be trivial.

Let S3 be endowed with a left-invariant metric ⟨ · , · ⟩ = ⟨ · , · ⟩(a,b,c) (recall the nota-
tion from Definition 1.2). View a, b, and c as fixed parameters, and further abbreviate

S3
(a,b,c) to S3 for the sake of readability.
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Unless stated otherwise, we will from now on always consider the “standard” orientation

of S3, with respect to which {i, j, k} (in this order) is a positively oriented basis of T1S3.

In particular, {ai, bj, ck} ∈ SO(S3). Recall that reversing the orientation of S3 leads to

the Dirac operator changing its sign (see Lemma 2.24).

Proposition 3.1 (Trivial Bundles over S3)

We have the following isomorphisms of bundles over S3 = S3
(a,b,c):

1 TS3 ∼= S3 × R3 (The metric is not required here.)

In particular, Γ(TS3) ∼= C∞(S3,R3).

2 SO(S3) ∼= S3 × SO(3)

3 There exists exactly one spin structure on S3 (up to isomorphism), namely

Spin(S3) := S3 × Spin(3), together with the obvious covering map Θ defined

by Θ(g, u) := (g, θ(u)).

4 ΣS3 ∼= S3 × Σ3 = S3 × C2 via Φ : [(g, u),w]∼ 7→ (g, σ(u)w)

In particular, Γ(ΣS3) ∼= C∞(S3,Σ3) and L2(ΣS3) ∼= L2(S3,Σ3).

Note that the identifications stated in 1 and 2 require the choice of a (in the latter

case, positive orthonormal) basis of T1S3 — see the proof below. Of course, we pick

the obvious candidate {ai, bj, ck}.

Proof.

1 This is because S3 is a Lie group. Indeed, one generally has TG ∼= G × g,

since for any basis {X1, X2, . . . , Xn} of g, the corresponding left-invariant

vector fields define a global frame g 7→ {X1(g), X2(g), . . . , Xn(g)} of TG.

2 If G is an oriented Lie group endowed with a left-invariant metric ⟨ · , · ⟩, one
has SO(G, ⟨ · , · ⟩) ∼= G × SO(n) for the same reason: If {X1, X2, . . . , Xn} is

a positive orthonormal basis of g, the global frame defined in 1 is a global

section of SO(G, ⟨ · , · ⟩), since ⟨ · , · ⟩ is left-invariant.
3 Obviously, (Spin(S3),Θ) defines a spin structure on S3. Uniqueness follows

from the fact that H1(S3;Z2) is the trivial group (see Theorem 2.13).

4 The map Φ is indeed an isomorphism of vector bundles:

It is well-defined, since Φ([(g, uũ), σ(ũ−1)w]∼) would have been defined as

(g, σ(uũ)σ(ũ−1)w) = (g, σ(u)w). It is certainly smooth and maps fibres to

fibres over the same base point. Also, its restrictions to the fibres are vector

space isomorphisms (since σ(u) is one), from which the claim follows.

♥
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Given that all occurring bundles are trivial and the unique spin structure is somewhat

canonical, it is actually very easy (compared to Bär’s general calculation) to obtain an

explicit formula for the Dirac operator.

Notation 3.2 (Left-Invariant Vector Fields)

Denote by X1, X2, X3 ∈ Γ(TS3) also the left-invariant vector fields corresponding

to the positive orthonormal basis {X1, X2, X3} := {ai, bj, ck} of T1S3.

The Dirac formula then looks as follows:

Theorem 3.3 (Dirac Formula)

The associated Dirac operator D : Γ(ΣS3) → Γ(ΣS3) is given by the formula

D φ =
3∑

i=1

Xi ·Xi(φ) +
1

2

(ab
c
+

bc

a
+

ca

b

)
X1 ·X2 ·X3 · φ.

However, before we prove the Dirac formula, the following lemma shall grant some

insight on how the Clifford multiplication has to be understood if we want to view

φ ∈ Γ(ΣS3) as an element of C∞(S3,Σ3), according to Proposition 3.1 4 :

Lemma 3.4 (Clifford Multiplication)

Let φ ∈ C∞(S3,Σ3). Then the Clifford product Xi · φ ∈ C∞(S3,Σ3) is given by

(Xi · φ)(g) = ei · φ(g),

where {e1, e2, e3} denotes the standard basis of R3.

In other words, the left-invariant vector field Xi ∈ Γ(TS3) has to be identified with

the constant map ei ∈ C∞(S3,R3) in order for the Clifford multiplication to yield

the correct result.

...

Proof. Recall the Clifford multiplication µ : TM⊗ΣM → ΣM from Definition 2.17,

sending [p, y]∼ ⊗ [p,w]∼ to [p, y ·w]∼.

On the one hand, Lemma 2.16 and Proposition 3.1 3 yield the identifications

TS3 ∼= SO(S3)×ι R3 ∼= Spin(S3)×ι◦θ R3

∈ ∈ ∈

Xi(g)
∧
= [{X1(g), X2(g), X3(g)}, ei]∼ ∧

= [(g, 1), ei]∼.
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On the other hand, Proposition 3.1 4 gives us (g, φ(g))
∧
= [(g, 1), φ(g)]∼.

Hence, Xi(g) · (g, φ(g)) = (g, ei · φ(g)). ♥

Now we can safely view D as an operator living on C∞(S3,Σ3). In particular, we have

Xi · Xj · φ = −Xj · Xi · φ for i ̸= j, which we will need in the proof of Theorem 3.3

below. Recall also ∇Xi
Xi = 0 from the proof of Proposition 1.5.

...

Proof (of Theorem 3.3). We use the local description of D from Proposition 2.20.

Consider the trivial global section s : g 7→ (g, 1) of Spin(S3) = S3 × Spin(3). Then

Θ ◦ s is the global frame {X1, X2, X3}.

The spinor derivative ∇Σ
Xφ ∈ C∞(S3,Σ3) of φ ∈ C∞(S3,Σ3) along X ∈ C∞(S3,R3)

(recall Theorem 2.18) is then given by

∇Σ
Xφ = X(φ) +

1

4

3∑
j=1

Xj ·∇XXj · φ,

from which we conclude (using ∇Xi
Xi = 0 to kill the diagonal of the double sum

below; and using that ∇ is torsion-free together with Xj ·Xi · φ = −Xi ·Xj · φ for

i ̸= j as well as [Xi, Xj] = −[Xj, Xi] in order to reduce the summation over i ̸= j

to the cases where i < j via elementary index manipulations)

D φ =
3∑

i=1

Xi ·∇Σ
Xi
φ

=
3∑

i=1

Xi ·
(
Xi(φ) +

1

4

3∑
j=1

Xj ·∇Xi
Xj · φ

)
=

3∑
i=1

Xi ·Xi(φ) +
1

4

3∑
i,j=1

Xi ·Xj ·∇Xi
Xj · φ

=
3∑

i=1

Xi ·Xi(φ) +
1

4

( 3∑
i=1

Xi ·Xi ·∇Xi
Xi︸ ︷︷ ︸

=0

· φ+
∑
i ̸=j

Xi ·Xj ·∇Xi
Xj · φ

)

=
3∑

i=1

Xi ·Xi(φ) +
1

8

(∑
i ̸=j

Xi ·Xj ·∇Xi
Xj · φ+

∑
i ̸=j

Xi ·Xj ·∇Xi
Xj · φ

)
=

3∑
i=1

Xi ·Xi(φ) +
1

8

(∑
i ̸=j

Xi ·Xj ·∇Xi
Xj · φ+

∑
j ̸=i

Xj ·Xi ·∇Xj
Xi · φ

)
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=
3∑

i=1

Xi ·Xi(φ) +
1

8

∑
i ̸=j

Xi ·Xj · (∇Xi
Xj −∇Xj

Xi) · φ

=
3∑

i=1

Xi ·Xi(φ) +
1

8

∑
i ̸=j

Xi ·Xj · [Xi, Xj] · φ

=
3∑

i=1

Xi ·Xi(φ) +
1

8

(∑
i<j

Xi ·Xj · [Xi, Xj] · φ+
∑
i>j

Xi ·Xj · [Xi, Xj] · φ
)

=
3∑

i=1

Xi ·Xi(φ) +
1

8

(∑
i<j

Xi ·Xj · [Xi, Xj] · φ+
∑
i<j

Xj ·Xi · [Xj, Xi] · φ
)

=
3∑

i=1

Xi ·Xi(φ) +
1

4

∑
i<j

Xi ·Xj · [Xi, Xj] · φ.

The claimed formula eventually follows from

X1 ·X2 · [X1, X2] · φ =
2ab

c
X1 ·X2 ·X3 · φ,

X2 ·X3 · [X2, X3] · φ =
2bc

a
X2 ·X3 ·X1 · φ, and

X1 ·X3 · [X1, X3] · φ = −2ca

b
X1 ·X3 ·X2 · φ.

♥

This was surprisingly easy, thanks to the identifications all being canonical in some

sense. Note how left-invariance has played a key role in every calculation so far, allowing

such straightforward results. However, the Dirac formula by itself is not of much use

to us, since it tells nothing about the spectrum. This is where representation theory

finally comes into play:

Recall from Theorem 1.12 the well-known fact that every irreducible representation

of S3 ∼= SU(2) is equivalent to πn : S3 → GL(Vn) for some n ∈ N0, where πn acts on

Vn = spanC{Pk : 0 ≤ k ≤ n}, Pk(z, w) = zn−kwk via (πn(g)P )(z, w) = P ((z, w)g).

Applying the Peter–Weyl Theorem (Theorem 1.10) to L2(S3,Σ3) = L2(S3,C)⊗Σ3 (and

using the canonical identification V ∗ ⊗W ∼= Hom(V,W )) leads to the decomposition

L2(S3,Σ3) ∼=
⊕
n∈N0

Vn ⊗ Hom(Vn,Σ3),
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where the embedding Vn ⊗ Hom(Vn,Σ3) ↪→ L2(S3,Σ3) is achieved by identifying

v ⊗ f
∧
= Φn(v ⊗ f) : g 7→ f(πn(g

−1)v).

This enables us to explicitly calculate some Dirac eigenvalues in the next step (in fact,

we will get a theoretical description of all eigenvalues; but as usual, things tend to get

complicated very quickly).

However, before we move forward to the Dirac spectrum, let us just squeeze in a brief

definition for the mere sake of readability.

Notation 3.5 (An Important Constant)

In the Dirac formula, we abbreviate C :=
1

2

(ab
c
+

bc

a
+

ca

b

)
.

The constant C will play an important role later on (too important to be defined only

in passing, which is why it gets its own fancy box).

Dirac Eigenvalues via Representation Theory

The following procedure is the same as in [1, Sections 3–5]. The goal is to find out how

D : L2(S3,Σ3) → L2(S3,Σ3) acts on each finite-dimensional subspace Vn⊗Hom(Vn,Σ3)

as an endomorphism Dn ∈ End(Hom(Vn,Σ3)) in the second factor of the tensor product,

whose matrix representation should be as nice as possible with respect to a suitably

chosen basis, so that we can have the easiest possible access to its eigenvalues. Luckily,

Bär already did the math, which we can use virtually unchanged in our setting. The

downside, however, is that we will not be able to get an explicit expression for the entire

spectrum (unlike Bär did in the special case b = c), but instead have to face a whole

§4 of computations.

Let us commence by finding out what Dn looks like (see [1, Proposition 1]).

Proposition 3.6 (Dirac Restriction to Embedded Subspaces)

The Dirac operator acts on each Vn ⊗ Hom(Vn,Σ3) via D(v ⊗ f) = v ⊗ Dn(f)

(abbreviating Φn(v ⊗ f)
∧
= v ⊗ f), where Dn(f) ∈ Hom(Vn,Σ3) is the map given by

Dn(f)P = −
3∑

i=1

ei · f(πn∗(Xi)P ) + Ce1 · e2 · e3 · f(P ). (for each P ∈ Vn)

In particular, D leaves each subspace Vn ⊗ Hom(Vn,Σ3) invariant.
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Note that for this formula to make sense, each element of {X1, X2, X3} ⊂ T1S3 ⊂ H
(see Notation 3.2) has to be identified with the corresponding matrix in su(2), that is,

X1
∧
= a

(
i 0

0 −i

)
, X2

∧
= b

(
0 1

−1 0

)
, and X3

∧
= c

(
0 i

i 0

)
,

as described at the beginning of §1 (now with coefficients a, b, and c).

Proof. Plug Φn(v ⊗ f) into the Dirac formula (Theorem 3.3). A quick calculation

reveals that the derivative in the formula is given by

Xi(Φn(v ⊗ f))(g) = d
dt

∣∣
t=0

Φn(v ⊗ f)(getXi) (calculate the derivative)

= d
dt

∣∣
t=0

f(πn(e
−tXig−1)v) (definition of Φn)

= f( d
dt

∣∣
t=0

(πn(e
−tXi) ◦ πn(g

−1))v) (f is linear)

= f( d
dt

∣∣
t=0

(e−tπn∗(Xi) ◦ πn(g
−1))v) (e · commutes with πn)

= −(f ◦ πn∗(Xi) ◦ πn(g
−1))v ( d

dt

∣∣
t=0

etX = X)

= Φn(v ⊗−f ◦ πn∗(Xi))(g). (definition of Φn)

The claim follows because everything else appearing in the formula is linear and

due to Lemma 3.4. ♥

The fact that the Dirac operator leaves each subspace Vn⊗Hom(Vn,Σ3) invariant allows

us to describe the Dirac spectrum considering only the linear maps Dn for each n ∈ N0,

using the Peter–Weyl Theorem.

Corollary 3.7 (Theoretical Description of the Dirac Spectrum)

The Dirac spectrum can be expressed as

spec(D) = {λ ∈ R : λ is an eigenvalue of Dn for some n ∈ N0},

and each Dn with eigenvalue λ of multiplicity m contributes m dimC(Vn) = m(n+1)

to the total multiplicity of λ as an eigenvalue of D .

It follows, by the way, that each eigenvalue λ of D can appear as an eigenvalue of Dn for

only finitely many n ∈ N0, since the eigenspace of D corresponding to the eigenvalue λ

is always finite-dimensional (see Theorem 2.22 2 ).
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Proof.

⊃ Let f ∈ Hom(Vn,Σ3) be an eigenfunction of Dn corresponding to an eigenvalue

λ of multiplicity m. Then, by Proposition 3.6, we have D(v⊗f) = v⊗Dn(f) =

v ⊗ λf = λ(v ⊗ f) for all v ∈ Vn; that is, v ⊗ f is an eigenspinor of D with

eigenvalue λ for all v ∈ Vn. In particular, the multiplicity of λ contributed by

Dn is m dimC(Vn) = m(n+ 1).

⊂ Since
⊕

n∈N0
Vn ⊗Hom(Vn,Σ3) is a dense subspace of L2(S3,Σ3), we can write

each φ ∈ L2(S3,Σ3) as φ =
∑∞

n=0 φn, where φn is a linear combination of some

vn,i ⊗ fn,i ∈ Vn ⊗ Hom(Vn,Σ3), n ∈ N0. If φ ̸= 0 is an eigenspinor of D with

eigenvalue λ, it follows from the direct and orthogonal decomposition (using

again Proposition 3.6)

D φ =
∞∑
n=0

D φn =
∞∑
n=0

some linear combination of vn,i ⊗Dn(fn,i)

=

λφ =
∞∑
n=0

λφn =
∞∑
n=0

some linear combination of vn,i ⊗ λfn,i

that λ is an eigenvalue of Dn for all n ∈ N0 with φn ̸= 0. Since there has to

be at least one n ∈ N0 with φn ̸= 0, it follows that at least one Dn has the

eigenvalue λ.

♥

The further strategy boils down to elementary linear algebra: Pick a basis B of Vn and

a basis B̃ of Σ3. Then each linear map f ∈ Hom(Vn,Σ3) can be identified with its

matrix representation A ∈ MatC(2, n+1) with respect to B and B̃. By again choosing

a convenient basis of MatC(2, n+1), we obtain an identification of MatC(2, n+1) with

C2n+2, and the endomorphism Dn : Hom(Vn,Σ3) → Hom(Vn,Σ3) can be viewed as an

element of MatC(2n+ 2).

We commence by expressing πn∗(Xi) in coordinates (see Proposition 3.6). Note that

Bär’s default basis of su(2) corresponds to {k,−j, i} rather than our {i, j, k} due to the

particular identification of S3 ⊂ H with S3 ∼= SU(2) that we use, so the computations

differ slightly. In the end, of course, this does not matter.
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Lemma 3.8 (Differentials of πn in Coordinates)

With respect to the complex basis B = {Pk : 0 ≤ k ≤ n} of Vn, the endomorphism

πn∗(Xi) ∈ End(Vn) has the matrix representation Πi
n ∈ MatC(n+ 1), where

Π1
n = ai diag(n, n− 2, . . . ,−n),

Π2
n = b


0 1

−n 0 2

−n+ 1 0
. . .

. . . . . . n

−1 0

 , and Π3
n = ci


0 1

n 0 2

n− 1 0
. . .

. . . . . . n

1 0

 .

...

Proof. Recall Pk(z, w) = zn−kwk and (πn(g)P )(z, w) = P ((z, w)g).

We compute the entries of the matrices Πi
n by observing how πn∗(Xi) acts on the

basis elements Pk ∈ Vn.

� If i = 1, we have etX1 =
( exp(ait) 0

0 exp(−ait)

)
; that is,

(πn∗(X1)Pk)(z, w) =
d
dt

∣∣
t=0

(πn(e
tX1)Pk)(z, w)

= d
dt

∣∣
t=0

Pk

(
(z, w)

( exp(ait) 0
0 exp(−ait)

))
= d

dt

∣∣
t=0

Pk

(
z exp(ait), w exp(−ait)

)
= d

dt

∣∣
t=0

zn−kwk exp(ai(n− 2k)t)

= ai(n− 2k)Pk(z, w).

� If i = 2, we have etX2 =
( cos(bt) sin(bt)
− sin(bt) cos(bt)

)
; that is,

(πn∗(X2)Pk)(z, w) =
d
dt

∣∣
t=0

(πn(e
tX2)Pk)(z, w)

= d
dt

∣∣
t=0

Pk

(
(z, w)

( cos(bt) sin(bt)
− sin(bt) cos(bt)

))
= d

dt

∣∣
t=0

Pk

(
z cos(bt)− w sin(bt), z sin(bt) + w cos(bt)

)
= d

dt

∣∣
t=0

(
z cos(bt)− w sin(bt)

)n−k(
z sin(bt) + w cos(bt)

)k
= (n− k)zn−k−1(−bw)wk + zn−kkwk−1bz

= −b(n− k)Pk+1(z, w) + bkPk−1(z, w).
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Note that this also holds if k ∈ {0, n}, since the hypothetical terms P−1 and

Pn+1 are then multiplied with zero.

� If i = 3, we have etX3 =
( cos(ct) i sin(ct)
i sin(ct) cos(ct)

)
, and the calculation is almost the same

as in the case i = 2.

This proves the claim. ♥

The next thing to deal with in the formula from Proposition 3.6 is the Clifford

multiplication with ei ∈ R3. However, given our notion of the Clifford multiplication

and our choice of {X1, X2, X3}, we need not choose a particularly fancy basis of Σ3. In

fact, the standard basis will do just fine.

Lemma 3.9 (Clifford Multiplication in Coordinates)

With respect to the complex standard basis B̃ = {
(
1
0

)
,
(
0
1

)
} of Σ3 = C2, the Clifford

multiplication with ek ∈ R3 (which is an endomorphism of Σ3) has the matrix

representation Ek, where

E1 =

(
i 0

0 −i

)
, E2 =

(
0 1

−1 0

)
, and E3 =

(
0 i

i 0

)
.

Proof. With σn as in Definition 2.4 2 and U, V, T ∈ MatC(2) as in the sketch of

the proof of Theorem 2.3, we have

σ3(e1) = ϕ2(e2·1−1) = U = E1,

σ3(e2) = ϕ2(e2·1) = V = E2, and

σ3(e3) = ϕ3(e3) = iT = E3,

which already proves the claim. ♥

Note that {E1, E2, Ek} ∧= {i, j, k} according to our identification of Mat2(C) with H; in

particular, E1E2E3
∧
= ijk = −1. Hence, e1 · e2 · e3 ·w = −w for all w ∈ Σ3.

Putting everything together, we obtain a matrix representation of Dn(f) if f is

expressed in coordinates with respect to the bases B and B̃.
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Corollary 3.10 (Dirac Restriction in Coordinates)

Let f ∈ Hom(Vn,Σ3), and let A ∈ MatC(2, n+ 1) be the matrix representation of f

with respect to the bases B and B̃. Then the matrix representation of Dn(f) with

respect to the same bases is given by

Dn(A) = −
3∑

i=1

Ei · A · Πi
n − CA,

where the dot of course means the matrix multiplication.

Proof. This follows from Proposition 3.6, Lemma 3.8, and Lemma 3.9. ♥

The second summand of Dn only shifts the spectrum by −C, so we will drop it in later

calculations and adopt the following notation from Bär:

Notation 3.11 (Shifting the Spectrum)

We write D′
n(A) := −

3∑
i=1

Ei · A · Πi
n; that is, Dn = D′

n − C.

It remains to choose a basis of MatC(2, n+ 1) such that the map D′
n : A 7→ D′

n(A) has

a nice matrix representation, which we will also denote by D′
n ∈ MatC(2n+ 2) (forgive

the abuse of notation). Consider Bär’s choice {A0, A1, . . . , An, B0, B1, . . . , Bn}, where

A0 =

(
1 0 . . .

0 0 . . .

)
, A1 =

(
0 0 0 . . .

0 1 0 . . .

)
, A2 =

(
0 0 1 0 . . .

0 0 0 0 . . .

)
, . . . ;

B0 =

(
0 0 . . .

1 0 . . .

)
, B1 =

(
0 1 0 . . .

0 0 0 . . .

)
, B2 =

(
0 0 0 0 . . .

0 0 1 0 . . .

)
, . . .

Then D′
n is a tridiagonal matrix consisting of an upper left and a lower right block A′

n

and B′
n, respectively. More precisely, the matrices are of the following form:

...

Theorem 3.12 (Primed Dirac Matrices)

With respect to the basis {A0, A1, . . . , An, B0, B1, . . . , Bn} of MatC(2, n + 1), the

primed restricted Dirac operator D′
n ∈ End(MatC(2, n + 1)) has the matrix repres-

entation D′
n = diag(A′

n,B′
n) ∈ MatC(2n+ 2), where A′

n,B′
n ∈ MatC(n+ 1) have the

following entries M [k, ℓ] := Mk+1,ℓ+1 (defined whenever k, ℓ ∈ {0, 1, . . . , n}; entries
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at illegal indices should of course be ignored):

If k ∈ {0, 1, . . . , n} is even:

A′
n[k − 1, k] = (c− b)(n− k + 1)

A′
n[k, k] = a(n− 2k)

A′
n[k + 1, k] = (c+ b)(k + 1)

If k ∈ {0, 1, . . . , n} is odd:

A′
n[k − 1, k] = (c+ b)(n− k + 1)

A′
n[k, k] = −a(n− 2k)

A′
n[k + 1, k] = (c− b)(k + 1)

All other entries are zero. The expressions for the entries of B′
n are identical, one

only has to swap “k even” and “k odd”.

...

Proof. If k ∈ {0, 1, . . . , n} is even, we have (for example)

E1 · Ak · Π1
n =

(
i 0

0 −i

)
·
(
. . . 0 1 0 . . .

. . . 0 0 0 . . .

)
· ai


. . .

n− 2k
. . .


= ai

(
i 0

0 −i

)
·
(
. . . 0 n− 2k 0 . . .

. . . 0 0 0 . . .

)
= −a(n− 2k)Ak

and, in a similar fashion,

E2 · Ak · Π2
n = b(n− k + 1)Ak−1 − b(k + 1)Ak+1,

E3 · Ak · Π3
n = −c(n− k + 1)Ak−1 − c(k + 1)Ak+1

(of course, we have to set A−1 := An+1 := 0 for this to hold).

If, on the other hand, k is odd, we have

E1 · Ak · Π1
n = a(n− 2k)Ak,

E2 · Ak · Π2
n = −b(n− k + 1)Ak−1 + b(k + 1)Ak+1, and

E3 · Ak · Π3
n = −c(n− k + 1)Ak−1 − c(k + 1)Ak+1.

Plugging these into D′
n(Ak) = −∑3

i=1 Ei · Ak · Πi
n yields

D′
n(Ak) = (c− b)(n− k + 1)Ak−1 + (c+ b)(k + 1)Ak+1 + a(n− 2k)Ak, (k even)

D′
n(Ak) = (c+ b)(n− k + 1)Ak−1 + (c− b)(k + 1)Ak+1 − a(n− 2k)Ak. (k odd)
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The expressions with “Bk” instead of “Ak” are the same, one only has to swap the

cases where k is even or odd. This proves the claim. ♥

Under the assumption b = c (Bär’s setting), the blocks A′
n and B′

n can be further

decomposed into 2 × 2- and 1 × 1-blocks, with the concrete shape depending on the

parity of n as illustrated below.

A′
n (n even) B′

n (n even) A′
n (n odd) B′

n (n odd) ■ ■
■ ■ . . .

■ ■
■ ■

■

  ■
■ ■
■ ■ . . .

■ ■
■ ■



■ ■
■ ■ . . .

■ ■
■ ■

■ ■
■ ■



■
■ ■
■ ■ . . .

■ ■
■ ■

■


In this special case, it is possible to directly calculate the eigenvalues of each D′

n as

the collection of eigenvalues of the small blocks, obtaining an explicit description of the

entire Dirac spectrum (after shifting everything by −C). For the parameters a = 1
T

and b = c = 1, Bär obtained

spec(D) =
{
− m

T
− T

2

}
m≥1

∪
{
− T

2
±
√( 1

T 2
− 1
)
(m− 2k)2 +m2

}
m≥2,

1≤k≤m−1

, (1)

where m = n+ 1 = dimC(Vn) (see [1, Theorem 3]).

Unfortunately, in the general setting (where a, b, c > 0 are arbitrary), it is not

feasible to have such an explicit result, since D′
n assumes its general tridiagonal form

and does not break down into smaller blocks. In fact, we only have easy-to-calculate

eigenvalues of D′
n for n ∈ {0, 1} (see §4, Low-Dimensional Subspaces). Bummer.

If we cannot have the whole spectrum, it would be nice to know an expression for the

smallest absolute non-zero eigenvalue λ∗ depending on a, b, and c instead (in analogy

to what Lauret did in his paper [2]). This, however, will not work without the a priori

restriction scal(a,b,c) > 0:

Note that Bär’s spectrum contains eigenvalues of the form −T
2
+m (the case m = 2k

in the second set). Start at T = 1, and observe the behaviour of each eigenvalue

−T
2
+m as T tends to infinity: At the moment T = 2m, the expression passes through

zero, and then its magnitude increases again. This way, subspaces of arbitrarily high

dimension contribute the smallest eigenvalue for a short period of time. The restriction

scal(a,b,c) > 0 prevents this from happening, since T is then bounded from above, and the
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Lichnerowicz–Friedrich estimate (Theorem 2.25) also guarantees that the eigenvalues

cannot continuously pass through zero like that.

This leads us to the final paragraph of this thesis, which solely deals with hunting

down a symbolic expression for the smallest Dirac eigenvalue λ∗(S3
(a,b,c)) under the

additional assumption scal(a,b,c) > 0.
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§4 Smallest Eigenvalue and Spectral Invariance

This final paragraph is devoted to the proof of the Main Theorem:

Main Theorem (Dirac Eigenvalues of Homogeneous 3-Spheres)

Let S3
(a,b,c) be a homogeneous 3-sphere of positive scalar curvature, endowed with

either orientation.

Then the smallest absolute value of its Dirac eigenvalues is given by

λ∗(a,b,c) = a+ b+ c− 1

2

(ab
c
+

bc

a
+

ca

b

)
> 0,

and its Dirac spectrum determines the underlying metric up to isometry (within the

class of homogeneous 3-spheres).

Recall that we only consider the “standard” orientation of S3 (with respect to which

{i, j, k} is positively oriented). In this case, λ∗(a,b,c) will be an eigenvalue of D . In the

other case, D just changes its sign (see Lemma 2.24), and λ∗(a,b,c) stays the same. (!)

Let us briefly summarise the situation we find ourselves in: Given a left-invariant

metric ⟨ · , · ⟩(a,b,c) on the 3-sphere, we know from the last paragraph that the spectrum of

the associated Dirac operator D consists exactly of the eigenvalues of an infinite family

of tridiagonal matrices Dn = D′
n − C = diag(A′

n,B′
n) − C of the size 2n + 2 (where

n ∈ N0), whose entries depend on the parameters a, b, c > 0. It is not possible to

explicitly calculate the entire spectrum in this slightly more general setting (compared

to Bär’s case, where b = c), since certain off-diagonal entries do not vanish anymore.

However, under the additional assumption scal(a,b,c) > 0, it makes sense to search for a

closed expression for the smallest eigenvalue λ∗(a,b,c) of D , of which we hope that it will

also determine ⟨ · , · ⟩(a,b,c) up to isometry, together with the aid of the known spectral

invariants vol(a,b,c) and scal(a,b,c).

Since the proof of the Main Theorem is spun from many threads, it will be split into

several digestible steps that arose quite naturally during the puzzle phase. Remember

that we will always assume scal(a,b,c) > 0.

� In the first part (Heuristic), we will briefly discuss the overall idea of the proof and

present the approach used to find a candidate for λ∗ in the first place, together

with the problems that arose immediately.

� In the second part (Low-Dimensional Subspaces), we will prove that our candidate

λ∗ has the smallest absolute value among all eigenvalues of Dn with n ≤ 4. This
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will be done by going through the individual cases, either directly comparing the

eigenvalues or arguing analytically with the characteristic polynomial.

� In the third part (Dirac Squares and Centrosymmetry), we will derive explicit

expressions for the entries of the squares D 2
n = (D′

n−C)2 (as a preparation for the

next step) and inspect certain symmetries exhibited by the matrices Dn and D 2
n

depending on the parity of n.

� In the fourth part (Triangle Induction), we will prove that λ∗ has the smallest

absolute value among all eigenvalues of Dn with n ≥ 5 (and thus proving the first

statement of the Main Theorem) by showing that λ 2
∗ is the smallest eigenvalue of

D 2
n , using an inductive argument based on the Gershgorin-Circle Theorem.

� In the fifth and last part (Spectral Invariance), we will conclude the proof of the

Main Theorem by showing that the triple {vol(a,b,c), scal(a,b,c), λ∗(a,b,c)} determines

the underlying metric ⟨ · , · ⟩(a,b,c) up to isometry.

As threatened, we commence by discussing some initial ideas that lead to the general

proof strategy, as well as a few preparations.

Heuristic

It is understandable to be overwhelmed by the problem at the first moment, since there

is an infinite family of matrices over a three-dimensional parameter space, increasing

in size, and staring menacingly at us. That’s a lot of data for sure.

Luckily, we can simplify things a bit by taking advantage of the behaviour of the

problem under rescaling: If D is the Dirac operator associated with ⟨ · , · ⟩(a,b,c) and D̃

is the Dirac operator associated with ⟨ · , · ⟩(αa,αb,αc) for a scaling factor α > 0, then we

see from the Dirac formula (Theorem 3.3) together with Lemma 3.4 that D̃ = αD ;

that is, if φ is an eigenspinor of D with eigenvalue λ, then φ is also an eigenspinor

of D̃ with eigenvalue αλ. This allows us to assume a = 1 without loss of generality

by considering (a, b, c) = a (1, b
a
, c
a
). Another simplification comes directly from the

classification theorem of left-invariant metrics (Theorem 1.3), whose exact wording

stated that we may further assume a ≥ b ≥ c without loss of generality. Putting these

together, we may reduce the three-dimensional parameter space {(a, b, c) : a, b, c > 0}
to the two-dimensional space {(b, c) : 1 ≥ b ≥ c > 0}. This is a useful simplification,

since it allows plotting real-valued functions on the now two-dimensional parameter

space, which is nice for building hypotheses.

Note that if ⟨ · , · ⟩ = ⟨ · , · ⟩(1,1,1) is the standard metric on S3, we obtain

spec(D) =
{
− 3

2
− n

}
n≥0

∪
{1
2
+ n
}

n≥1
=
{
±
(3
2
+ ℓ
)}

ℓ≥0
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by plugging T = 1 into Bär’s formula (1); that is, we have the smallest eigenvalue ∓3
2

contributed by the subspaces V0 (to the first set) and V1 (to the second set), respectively.

By viewing the general case ⟨ · , · ⟩ = ⟨ · , · ⟩(a,b,c) as a “perturbation” of the special case

⟨ · , · ⟩ = ⟨ · , · ⟩(1,1,1), we hope that the inspection of V0 and V1 also yields a promising

candidate λ∗ for the smallest eigenvalue λ∗(a,b,c) in general.

Now, suppose we have found such a candidate λ∗ by inspecting the eigenvalues of

D0 and D1 (namely λ∗ = a+ b+ c− 1
2
(ab

c
+ bc

a
+ ca

b
), as it soon turns out). Then the real

work is to prove that λ∗ has in fact the smallest absolute value among all eigenvalues

of all Dn (where n ∈ N0). Since there are no explicit formulas, we have to resort to

estimates. The idea is the same as in the paper of Lauret [2], who made use of the

Gershgorin-Circle Theorem.

Theorem 4.1 (Gershgorin-Circle Theorem)

Each eigenvalue of a square matrix M = (Mk,ℓ) ∈ MatC(n) lies in at least one of the

discs centered at Mk,k with radius
∑

ℓ̸=k |Mk,ℓ| (defined for each k ∈ {1, 2, . . . , n}),
which we will refer to as the k-th Gershgorin disc of M .

Proof. This is a classical result, and the proof is elementary. ♥

Unfortunately, in contrast to the Laplace spectrum, the Dirac spectrum consists of both

positive and negative eigenvalues; and on top of that, we need not have symmetry about

zero, since the dimension of our manifold is of the class 3 (mod 4) (see Proposition 2.23).

As a consequence, it does not look hopeful (and, in fact, turns out to be useless) to

apply the theorem to Dn. Instead, we will be looking at the squared matrices D 2
n , whose

eigenvalues are guaranteed to be non-negative (and non-zero under the assumption

scal(a,b,c) > 0, see Theorem 2.25), at the cost of more complicated expressions.

Notation 4.2 (Gershgorin Expressions)

Fix a = 1 and (b, c) with 1 = a ≥ b ≥ c > 0 and scal(1,b,c) > 0. Let n ∈ N0 and

k ∈ {0, 1, . . . , n}. Then we write

∆A(n, k) := (left boundary point of k-th Gershgorin disc of A 2
n) −λ 2

∗ and

∆B(n, k) := (left boundary point of k-th Gershgorin disc of B 2
n ) −λ 2

∗ ,

where D 2
n = diag(A 2

n ,B 2
n ) and λ∗ is our promising candidate. Again, the indices of

A 2
n ,B 2

n ∈ MatC(n+ 1) are counted from zero.
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In order to prove that λ 2
∗ is the smallest of all eigenvalues of all D 2

n (where n ∈ N0),

we would have to show for all fixed (b, c) in the parameter space that ∆A(n, k) ≥ 0

and ∆B(n, k) ≥ 0 hold for all pairs (n, k) with n ∈ N0 and k ∈ {0, 1, . . . , n}. The only

problem is that this claim is not true, as a numerical experiment quickly reveals:

0 1
b

0

1

c

maximum n ≤ N = 20 for which

∆A(n, k) < 0 or ∆B(n, k) < 0 for some k

none

2

3

4

Figure 1: For each point (b, c) in the parameter

space {(b, c) : 1 ≥ b ≥ c > 0, scal(1,b,c) > 0}
(after discretisation), it was checked numerically

for which values of n ≤ N = 20 there exists some

k ∈ {0, 1, . . . , n} such that one of the estimates

∆A(n, k) ≥ 0 or ∆B(n, k) ≥ 0 fails to hold.

The plot shows for each (b, c) the maximum

value of all n that failed the test. “None” means

that the estimates held for all n ≤ N .

We see that as (b, c) approaches the point (1, 1
2 ),

the maximum value rises from n = 2 up to n = 4.

We will have to come up with something other

than Gershgorin for these small values of n.

The plot in Figure 1 also suggests that our parameter space lies above the line b 7→ 1
2
b.

In fact, the set of points of zero scalar curvature (in the region 1 ≥ b ≥ c > 0) turns

out to be the graph of a quite harmless function, as stated in the lemma below.

Lemma 4.3 (Parameter Space Contained in Triangle)

The set {(b, c) : 1 ≥ b ≥ c > 0, scal(1,b,c) = 0} is the graph of the function

c : (0, 1] ∋ b 7→ b

1 + b
∈ (0, 1

2
],

and the parameter space {(b, c) : 1 ≥ b ≥ c > 0, scal(1,b,c) > 0} is contained in the

triangle {(b, c) : 1 ≥ b ≥ c > 1
2
b > 0}. In particular, we have c > 1

2
b.

...

Proof. If a = 1, we have

scal(1,b,c) = 4(1 + b2 + c2)− 2
(b2
c2

+ b2c2 +
c2

b2

)
from Proposition 1.5. We factorise the expression

−1
2
b2c2 scal(1,b,c) = −2b2c2 − 2b4c2 − 2b2c4 + b4 + b4c4 + c4
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= b4(1− 2c2 + c4)− 2b2c2(1 + c2) + c4

= b4(1− c)2(1 + c)2 − b2c2
(
(1− c)2 + (1 + c)2

)
+ c4

= (b2(1− c)2 − c2) (b2(1 + c)2 − c2).

The second factor is positive, since b2(1 + c)2 − c2 > b2 − c2 ≥ 0 holds for all (b, c)

with b ≥ c > 0. It follows that

scal(1,b,c) ≥ 0 ⇐⇒ b2(1− c)2 − c2 ≤ 0

⇐⇒ b2(1− c)2 ≤ c2

⇐⇒ b− bc = b(1− c) ≤ c

⇐⇒ b ≤ (1 + b)c

holds for all (b, c) with 1 ≥ b ≥ c > 0. The equality scal(1,b,c) = 0 is true if and only

if b = (1 + b)c; that is, the set {(b, c) : 1 ≥ b ≥ c > 0, scal(1,b,c) = 0} is the graph of

the function

c : (0, 1] ∋ b 7→ b

1 + b
∈ (0, 1

2
].

On the other hand, scal(1,b,c) > 0 implies c >
b

1 + b
≥ b

1 + 1
=

b

2
. ♥

Having secured the useful estimate c > 1
2
b in our loot bag, let us return to the numerical

experiment (see again Figure 1). We conclude that we should adapt our proof strategy

as follows:

� For all n ≤ 4, we should try to prove by case distinction that our candidate λ∗

satisfies |λ∗| ≤ |λ| for all eigenvalues λ of Dn.

� For all n ≥ 5, we should try to prove that ∆A(n, k) ≥ 0 and ∆B(n, k) ≥ 0 hold for

all k ∈ {0, 1, . . . , n}. For this, we will have to calculate D 2
n = diag(A 2

n ,B 2
n ).

This justifies the structure given at the beginning of this paragraph. However, before we

embark on this adventure, it would be nice to gather a few bounds on C = 1
2
(ab

c
+ bc

a
+ ca

b
),

since both subproofs involve a lot of estimates, and it would be more than impractical

to write out the definition of C every time.

Recall once again from Proposition 1.5 the formula for the scalar curvature of S3
(a,b,c),

which we can rewrite in terms of a, b, c, and C as

scal(a,b,c) = 4(a2 + b2 + c2)− 2
(a2b2

c2
+

b2c2

a2
+

c2a2

b2

)
= 8(a2 + b2 + c2 − C2). (2)
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Then we have the following useful estimates:

Lemma 4.4 (Lower and Upper Bounds on C)

We have the following lower bounds on C in terms of a, b, and c:

1 C > max{a, b, c} (there is a stronger estimate that we will not use) 2

2 2C ≥ a+ b+ c, “=” if and only if a = b = c

Under the additional assumption scal(a,b,c) > 0, we also have an upper bound:

3 C2 < a2 + b2 + c2 (in particular, C < a+ b+ c)

Proof.

1 Since x+ 1
x
≥ 2 holds for all x > 0, we have

C =
1

2

((b
c
+

c

b

)
a+

bc

a

)
>

1

2
(2a+ 0) = a. (The same holds for b and c.)

2 Apply the AM–GM inequality to

(ab)2 + (bc)2 + (ca)2 =
(ab)2 + (bc)2

2
+

(bc)2 + (ca)2

2
+

(ca)2 + (ab)2

2

≥ ab · bc+ bc · ca+ ca · ab
= abc(a+ b+ c).

Divide by abc to obtain 2C ≥ a + b + c. Equality occurs if and only if

ab = bc = ca, that is, if a = b = c.

3 This follows immediately from a2 + b2 + c2 − C2 = 1
8
scal(a,b,c) > 0, see (2).

♥

With this, we are well-equipped for the proof of the Main Theorem. Recall that for the

rest of this thesis, we will always assume

scal(a,b,c) > 0, (!)

2We even have the stronger estimate C2 ≥ max{a2 + b2, b2 + c2, c2 + a2}. This can be seen by
comparing C2 with C̃2, where C̃ := 1

2 (−ab
c + bc

a + ca
b ). Then C2 − (a2 + b2) = C̃2 ≥ 0 (plus the

analogous statements). We will not use this estimate, but it might still be worth mentioning.
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as stated in the Main Theorem.

Low-Dimensional Subspaces

As promised, let us first have a look at the eigenvalues of Dn for n ≤ 4. Recall that it

is our aim to obtain a candidate λ∗ by inspecting D0 and D1 and to prove that λ∗ has

the smallest absolute value among all eigenvalues contributed up to D4.

For purely aesthetic reasons, we will not use the assumption 1 = a ≥ b ≥ c in this

subproof, but only assume a, b, c > 0 instead (and of course scal(a,b,c) > 0).

� Case n = 0: We have the 1 × 1-blocks A′
0 = B′

0 = (0); that is, D0 = D′
0 − C

contributes two times the eigenvalue −C.

� Case n = 1: The 2× 2-blocks are given by

A′
1 =

(
a c+ b

c+ b a

)
and B′

1 =

(
−a c− b

c− b −a

)
;

that is, D1 = D′
1 − C contributes the four eigenvalues

a+ b+ c− C, a− b− c− C and − a+ b− c− C, − a− b+ c− C.

Note that we have the distinguished element a+ b+ c−C due to its symmetry in

a, b, and c (in contrast to the other values). (How suspicious...)

� Case n = 2: Sadly, the joy of having easy-to-calculate eigenvalues ends here, since

the characteristic polynomials of the 3× 3-blocks

A′
2 =

 2a 2(c+ b) 0

c+ b 0 c− b

0 2(c− b) −2a

 and B′
2 =

−2a 2(c− b) 0

c− b 0 c+ b

0 2(c+ b) 2a


are cubic and their roots look suitably awful. (Indeed, by feeding the matrices to

a computer algebra system, one does obtain symbolic expressions for their eigen-

values, but these are anything but human-readable.)

� Case n = 3: Interestingly, in contrast to the case n = 2, the 4× 4-blocks

A′
3 =


3a 3(c+ b) 0 0

c+ b −a 2(c− b) 0

0 2(c− b) −a c+ b

0 0 3(c+ b) 3a

 and B′
3 =


−3a 3(c− b) 0 0

c− b a 2(c+ b) 0

0 2(c+ b) a c− b

0 0 3(c− b) −3a
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do yield human-readable eigenvalues, which will be listed as soon as they are needed

(see the proof of Lemma 4.7).

� Case n = 4: It does not seem to be possible at all to have explicit expressions

for the eigenvalues of the 5× 5-blocks

A′
4 =


4a 4(c+ b) 0 0 0

c+ b −2a 3(c− b) 0 0

0 2(c− b) 0 2(c+ b) 0

0 0 3(c+ b) 2a c− b

0 0 0 4(c− b) −4a

 and B′
4 =


−4a 4(c− b) 0 0 0

c− b 2a 3(c+ b) 0 0

0 2(c+ b) 0 2(c− b) 0

0 0 3(c− b) −2a c+ b

0 0 0 4(c+ b) 4a

.

This is because the characteristic polynomials are of degree five, and quintic equa-

tions need not be solvable.

Now let us start with the inspection of D0 and D1.

Lemma 4.5 (Dirac Eigenvalues — Cases n = 0 and n = 1)

Out of the easy-to-calculate eigenvalues of D contributed by D0 and D1, the number

λ∗ := a+ b+ c− C > 0

has the smallest absolute value. This is strict (that is, there is no other eigenvalue

λ with |λ| = |λ∗|) whenever a ̸= b or b ̸= c or c ̸= a.

In the case a = b = c (and only in this case), we have −C = −λ∗, which then of

course has the same absolute value as λ∗.

Proof. The assertion λ∗ > 0 follows from Lemma 4.4 3 and scal(a,b,c) > 0.

� λ∗ ≤ |−C|: This simplifies to a+b+c−C ≤ C, which holds by Lemma 4.4 2 .

Equality occurs if and only if a = b = c.

� λ∗ < |a− b− c−C|: It suffices to show that a− b− c−C < −λ∗ < 0. However,

this is equivalent to 2a < 2C, which holds by Lemma 4.4 1 .

� The claims λ∗ < | − a− b+ c−C| and λ∗ < | − a+ b− c−C| of course follow

the same reasoning.

♥

We now have a promising candidate λ∗ for the Dirac eigenvalue of the smallest absolute

value under the assumption scal(a,b,c) > 0. Let us see whether λ∗ also prevails in the

cases n ∈ {2, 3, 4}.
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Lemma 4.6 (Dirac Eigenvalues — Case n = 2)

For all eigenvalues λ of D2 = D′
2 − C, we have λ∗ < |λ|.

Since we do not have human-readable expressions for the eigenvalues of D2, we have to

resort to an argument based on the characteristic polynomial.

Proof. We want to show that no eigenvalue of D2 lies in the interval [−λ∗, λ∗]; or,

equivalently, that D′
2 = D2+C has no eigenvalues in [2C− a− b− c, a+ b+ c]. The

latter interval is contained in [0, a+ b+ c] due to Lemma 4.4 2 .

The characteristic polynomials of A′
2 and B′

2 are both given by

χ2(x) := χA′
2
(x) = χB′

2
(x) = x3 − 4(a2 + b2 + c2)x− 16abc.

Since its second derivative χ′′
2(x) = 6x is non-negative for all x ≥ 0, it follows

that χ2 is convex on [0, a + b + c]. Furthermore, at the boundary points, we have

χ2(0) = −16abc < 0 and that χ2(a+ b+ c) expands to some non-trivial polynomial

in a, b, and c with coefficients in −N0 (hence, χ2(a+ b+ c) < 0).

Convexity implies χ2(x) < 0 for all x ∈ [0, a+ b+ c]; in particular, χ2 has no roots

in this interval, from which the claim follows. ♥

Lemma 4.7 (Dirac Eigenvalues — Case n = 3)

For all eigenvalues λ of D3 = D′
3 − C, we have λ∗ < |λ|.

Since we do have rather simple eigenvalues in the case n = 3 (see below), we can argue

directly by comparison.

Eigenvalues of A3 = A′
3 − C:

1 a+b−c−2
√
a2 + b2 + c2 − ab+ bc+ ca−C

2 a+b−c+2
√
a2 + b2 + c2 − ab+ bc+ ca−C

3 a−b+c−2
√
a2 + b2 + c2 + ab+ bc− ca−C

4 a−b+c+2
√
a2 + b2 + c2 + ab+ bc− ca−C

Eigenvalues of B3 = B′
3 − C:

5 −a−b−c−2
√
a2 + b2 + c2 − ab− bc− ca−C

6 −a−b−c+2
√
a2 + b2 + c2 − ab− bc− ca−C

7 −a+b+c−2
√
a2 + b2 + c2 + ab− bc+ ca−C

8 −a+b+c+2
√
a2 + b2 + c2 + ab− bc+ ca−C

The proof only makes use of Lemma 4.4 1 .

...

Proof. Again, we want to show that these eigenvalues do not lie in [−λ∗, λ∗].

1 Let us prove that this expression is less than −λ∗ = C − a − b − c. This is
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equivalent to C − a− b+
√
a2 + b2 + c2 − ab+ bc+ ca > 0. Rewrite the term

under the square root as

T :=
1

2

(
(a− b)2 + (b+ c)2 + (c+ a)2

)
>

1

2
(0 + b2 + a2) ≥ min{a2, b2}.

It follows that C−a−b+
√
T > C−a−b+(a or b) > 0 (due to Lemma 4.4 1 ).

2 We prove in a similar fashion that this is greater than λ∗ = a + b + c − C.

This is equivalent to
√
T − c > 0, which is true, since T > 1

2
(0+ c2 + c2) = c2.

3 This is of the same type as 1 .

4 This is of the same type as 2 .

5 This is less than 6 , which we will prove to be less than −λ∗.

6 This is less than −λ∗ if and only if
√
a2 + b2 + c2 − ab− bc− ca < C, which

is equivalent to a2 + b2 + c2 − ab− bc− ca < C2. Assume for a moment that

a ≥ b ≥ c. Then the left-hand side is less than or equal to a2 + b2 + c2 − b2 −
c2 − c2 = a2 − c2 < a2 < C2 (due to Lemma 4.4 1 ). The same holds for the

other permutations due to the symmetry in a, b, and c.

7 This is of the same type as 1 .

8 This is of the same type as 2 .

♥

Lemma 4.8 (Dirac Eigenvalues — Case n = 4)

For all eigenvalues λ of D4 = D′
4 − C, we have λ∗ < |λ|.

The proof is very similar to the case n = 2 (the argument is applied twice).

...

Proof. Just like in the case n = 2, we will even show that no eigenvalue of D′
4 lies

in the interval [0, a+ b+ c]. The characteristic polynomials of A′
4 and B′

4 are again

identical and given by χ4 := χA′
4
= χB′

4
, where

χ4(x) = x5 − 20(a2 + b2 + c2)x3 − 80abc x2

+ 64(a4 + b4 + c4 + 4a2b2 + 4b2c2 + 4c2a2)x+ 768(a3bc+ ab3c+ abc3).
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We compute its second derivative

χ′′
4(x) = 20x3 − 120(a2 + b2 + c2)x− 160abc.

Then we have χ′′
4(x) < 0 for all x ∈ [0, a + b + c] with the same reasoning as for

n = 2. (Let f := χ′′
4. Then f(0) = −160abc < 0, f(a + b + c) expands to a bunch

of negative terms, and f ′′(x) = 120x implies convexity on [0, a + b + c].) It follows

that χ4 is concave on [0, a+ b+ c].

Since χ4(0) > 0, and χ4(a+ b+ c) expands to a non-trivial polynomial in a, b, and c

with coefficients in N0, concavity implies that χ4(x) > 0 holds for all x ∈ [0, a+b+c].

In particular, D′
4 has no eigenvalues in this interval. ♥

By combining these results, we eventually obtain the first piece of our Main Theorem.

Fragment 1 / 3 of Main Theorem (Completion of Subproof for n ≤ 4)

The positive number λ∗ = a + b+ c− C has the smallest absolute value among all

eigenvalues of D0, D1, D2, D3, and D4.

Proof. This is a summary of the previous lemmas. ♥

This concludes the subproof dealing with the cases n ≤ 4, leaving us with the more

complicated part n ≥ 5.

By the way: The fortunate coincidence that χn(a+ b+ c) expands to a polynomial

in a, b, and c with coefficients of uniform signs for n ∈ {2, 4} does not remain true for

greater values of n. (And even if it did, one still would have to come up with something

else for the odd values of n.)

Dirac Squares and Centrosymmetry

This part of the paragraph is meant as a brief preparation for the continuation of the

proof (cases n ≥ 5), in which we will apply the Gershgorin-Circle Theorem to D 2
n . In

order to do this, we first have to know what the rows of D 2
n look like.

As Dn consists of two tridiagonal blocks, D 2
n will consist of two pentadiagonal blocks.

While this might sound a little unpleasant, we must engage in this effort, since otherwise

there would be nothing to be gained from the Gershgorin-Circle Theorem. (Consider

it a little blood sacrifice to Gershgorin.)
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Theorem 4.9 (Squared Dirac Matrices)

The blocks A 2
n = (A′

n − C)2 and B 2
n = (B′

n − C)2 of the squared Dirac matrix

D 2
n = diag(A 2

n ,B 2
n ) consist of the following rows:

If k ∈ {0, 1, . . . , n} is even:

A 2
n [k, k − 2] = (c− b)(c+ b)k(k − 1)

A 2
n [k, k − 1] = −2(c− b)(C + a)k

A 2
n [k, k] = (c− b)2k(n− k + 1) + (a(n− 2k)− C)2 + (c+ b)2(n− k)(k + 1)

A 2
n [k, k + 1] = −2(c+ b)(C − a)(n− k)

A 2
n [k, k + 2] = (c+ b)(c− b)(n− k)(n− k − 1)

If k ∈ {0, 1, . . . , n} is odd:

A 2
n [k, k − 2] = (c+ b)(c− b)k(k − 1)

A 2
n [k, k − 1] = −2(c+ b)(C − a)k

A 2
n [k, k] = (c+ b)2k(n− k + 1) + (a(n− 2k) + C)2 + (c− b)2(n− k)(k + 1)

A 2
n [k, k + 1] = −2(c− b)(C + a)(n− k)

A 2
n [k, k + 2] = (c− b)(c+ b)(n− k)(n− k − 1)

The entries of B 2
n are obtained by swapping “k even” and “k odd”.

...

Proof. This is an elementary computation involving the entries of A′
n and B′

n from

Theorem 3.12. We know from linear algebra that the entry of M2 at the position

(k, ℓ) is the product of the k-th row and the ℓ-th column of M .

Let k ∈ {0, 1, . . . , n} be even. Then k± 1 is odd, and the k-th row of An = A′
n −C

(with all its leading and trailing zeros removed) is(
(c− b)k a(n− 2k)− C (c+ b)(n− k)

)
.

The relevant parts of the (k− 2)-th, . . ., (k+2)-th column of An (which have to be

multiplied with the k-th row of An) are

(c+ b)(k − 1) −a(n− 2(k − 1))− C (c− b)(n− k + 1) 0 0

0 (c− b)k a(n− 2k)− C (c+ b)(n− k) 0

0 0 (c+ b)(k + 1) −a(n− 2(k + 1))− C (c− b)(n− k − 1)

.
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Similarly, if k is odd, then k ± 1 is even, and the k-th row of Dn is(
(c+ b)k −a(n− 2k)− C (c− b)(n− k)

)
.

Analogously, we have the columns

(c− b)(k − 1) a(n− 2(k − 1))− C (c+ b)(n− k + 1) 0 0

0 (c+ b)k −a(n− 2k)− C (c− b)(n− k) 0

0 0 (c− b)(k + 1) a(n− 2(k + 1))− C (c+ b)(n− k − 1)

.

The claimed formulas follow immediately. The expressions for B 2
n are of course the

same, since B′
n was obtained from A′

n this way.

The formulas also hold at the “borders” of A 2
n and B 2

n (that is, for columns at the

index k ∈ {0, 1, n − 1, n}), since the terms in the calculation that correspond to

non-existing entries all vanish. ♥

With this, we can now write down explicit expressions for ∆A(n, k) and ∆B(n, k) (recall

Notation 4.2), for which we would like to show that they are non-negative for all n ≥ 5

and k ∈ {0, 1, . . . , n}. However, before doing so, we should discuss the symmetry of the

matrices, which will make our work a little easier.

Definition 4.10 (Centrosymmetric Matrix)

An n × n-matrix M is called centrosymmetric if it is symmetric about its centre;

that is, if Mk,ℓ = Mn−k+1,n−ℓ+1 holds for all k, ℓ ∈ {1, 2, . . . , n}.

Equivalently, M is centrosymmetric if it satisfies the condition MJ = JM , where J

denotes the exchange matrix (with entries 1 on the antidiagonal and 0 everywhere else).

It follows that the square of a centrosymmetric matrix is again centrosymmetric, since

one has M2J = MJM = JM2.

Usually, this kind of symmetry is not too interesting a property that a matrix can

have, but it would be helpful for our purposes. Indeed, if one applies the Gershgorin-

Circle Theorem to a centrosymmetric matrix, then one only has to look at half of the

rows (rounded up), since the rows at the positions k and n−k+1 have the same entries

in reverse order.

It is a truly pleasant coincidence that our Dirac matrices exhibit exactly this kind

of symmetry (as a whole and block-wise, respectively), depending on the parity of n.
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Proposition 4.11 (Centrosymmetry of Dirac Matrices)

If n is even, then D′
n is centrosymmetric; that is, A′

n[ · , · ] = B′
n[n− · , n− · ].

If, on the other hand, n is odd, then both A′
n and B′

n are centrosymmetric instead;

that is, A′
n[ · , · ] = A′

n[n − · , n − · ] and B′
n[ · , · ] = B′

n[n − · , n − · ]. (Recall once

more that the indices of A′
n and B′

n are counted from zero.)

Proof. This also follows immediately from Theorem 3.12, using basic arithmetic.

Let k ∈ {0, 1, . . . , n} be even. Then we have

A′
n[ · , k] =



...

0

(c− b)(n− k + 1)

a(n− 2k)

(c+ b)(k + 1)

0
...


and B′

n[ · , k] =



...

0

(c+ b)(n− k + 1)

−a(n− 2k)

(c− b)(k + 1)

0
...


.

for the k-th column of A′
n and B′

n, respectively. If k is odd instead, the right-hand

sides have to be swapped.

Now one easily checks that the following statements hold:

� If n is even and k is even (or odd), then n − k is even (or odd, respectively),

and the column A′
n[ · , k] is the column B′

n[ · , n− k] in reverse order.

� If n is odd and k is even (or odd), then n − k is odd (or even, respectively),

and the columns A′
n[ · , k] /B′

n[ · , k] are the columns A′
n[ · , n− k] /B′

n[ · , n− k]

in reverse order.

♥

As mentioned before, D 2
n = (D′

n −C)2 inherits the symmetry (depending on the parity

of n) from D′
n. Therefore, if we apply the Gershgorin-Circle Theorem to D 2

n , it suffices

to consider A 2
n (if n is even) and “half” of each A 2

n and B 2
n (if n is odd).

We will now advance to the adventurous, exciting, and mind-blowing proof dealing

with the cases n ≥ 5. Together with the already proven cases n ≤ 4, this will show that

λ∗ has indeed the smallest absolute value among all eigenvalues of Dn for all n ∈ N0.
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Triangle Induction

From now on, assume 1 = a ≥ b ≥ c > 0 (recall from page 46 why this is possible) and

of course scal(1,b,c) > 0. Taking into account the centrosymmetry of D 2
n (if n is even) or

A 2
n and B 2

n (if n is odd), respectively, we would like to prove the statements

A0 ∆A(n, k) ≥ 0 for all even n ≥ 6 and k ∈ {0, 1, . . . , n},
A1 ∆A(n, k) ≥ 0 for all odd n ≥ 5 and k ∈ {0, 1, . . . , 1

2
(n− 1)}, and

B1 ∆B(n, k) ≥ 0 for all odd n ≥ 5 and k ∈ {0, 1, . . . , 1
2
(n− 1)}

(recall once again the definition of ∆A and ∆B from Notation 4.2).

Since this is an infinite collection of rather complicated algebraic statements (depending

on the four variables n, k, b, and c), we hope to find an inductive argument in (n, k)

that holds for all (b, c) in the parameter space. It is almost miraculous that this hope

will indeed prevail and that the assumption scal(1,b,c) > 0 will turn out to be necessary

for our proof to work.

First of all, we have to calculate the expressions ∆A(n, k) and ∆B(n, k), using the

result of the last part of this paragraph, in which we calculated A 2
n and B 2

n .

Corollary 4.12 (Gershgorin Expressions, from Theorem 4.9)

For all n ∈ N0 and k ∈ {0, 1, . . . , n}, we have

∆A(n, k) =

∆0(n, k) (k even)

∆1(n, k) (k odd)
and ∆B(n, k) =

∆1(n, k) (k even)

∆0(n, k) (k odd)
,

where

∆0(n, k) = ((n− 2k)− C)2 + (b− c)2k(n− k + 1) + (b+ c)2(n− k)(k + 1)

− 2(b− c)(C + 1)k − 2(b+ c)(C − 1)(n− k)

− (b− c)(b+ c)k(k − 1)− (b+ c)(b− c)(n− k)(n− k − 1)

− (1 + b+ c− C)2, and

∆1(n, k) = ((n− 2k) + C)2 + (b+ c)2k(n− k + 1) + (b− c)2(n− k)(k + 1)

− 2(b+ c)(C − 1)k − 2(b− c)(C + 1)(n− k)

− (b+ c)(b− c)k(k − 1)− (b− c)(b+ c)(n− k)(n− k − 1)

− (1 + b+ c− C)2.

Furthermore, these satisfy ∆0(n, k) = ∆1(n, n− k) for all (n, k).
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Note that in the cases k ∈ {0, n} (where we do not have the columns k±1 and k±2) and

k ∈ {1, n− 1} (where we do not have the columns k ± 2), the formulas still hold, since

the corresponding terms vanish (namely the left/right term in the second and third line

of ∆0 and ∆1 if k ∈ {0, n} or just in the third line if k ∈ {1, n − 1}). Otherwise, we

would be subtracting too much in these cases; but, luckily, this is not happening.

Proof. This follows from Theorem 4.9 by plugging a = 1 into

∆A(n, k) = A 2
n [k, k]−

∑
i∈{±1,±2}

∣∣A 2
n [k, k + i]

∣∣− λ 2
∗ .

Under the assumption b ≥ c, we have the signs (−,+, ∗,−,−) in the k-th row of A 2
n

if k is even, and (−,−, ∗,+,−) if k is odd (recall C > a = 1 from Lemma 4.4 1 ).

Again, ∆B is obtained from ∆A by swapping “k even” and “k odd”.

The identity ∆0(n, k) = ∆1(n, n− k) is immediate. ♥

The main idea of the proof (which, by the way, was found by accident) will be to

write down the statements “∆i(n, k) ≥ 0” as two triangle formations (depending on

the parity of n) for each i ∈ {0, 1} and to derive the following inductive step, which

explains the title “Triangle Induction”:

If n is even:

∆i(0, 0) ≥ 0

∆i(2, 0) ≥ 0 ∆i(2, 1) ≥ 0 ∆i(2, 2) ≥ 0

∆i(4, 0) ≥ 0 ∆i(4, 1) ≥ 0 ∆i(4, 2) ≥ 0 ∆i(4, 3) ≥ 0 ∆i(4, 4) ≥ 0

∆i(6, 0) ≥ 0 ∆i(6, 1) ≥ 0 ∆i(6, 2) ≥ 0 ∆i(6, 3) ≥ 0 ∆i(6, 4) ≥ 0 ∆i(6, 5) ≥ 0 ∆i(6, 6) ≥ 0

...
...

...
...

...
...

...

If n is odd:

∆i(1, 0) ≥ 0 ∆i(1, 1) ≥ 0

∆i(3, 0) ≥ 0 ∆i(3, 1) ≥ 0 ∆i(3, 2) ≥ 0 ∆i(3, 3) ≥ 0

∆i(5, 0) ≥ 0 ∆i(5, 1) ≥ 0 ∆i(5, 2) ≥ 0 ∆i(5, 3) ≥ 0 ∆i(5, 4) ≥ 0 ∆i(5, 5) ≥ 0

∆i(7, 0) ≥ 0 ∆i(7, 1) ≥ 0 ∆i(7, 2) ≥ 0 ∆i(7, 3) ≥ 0 ∆i(7, 4) ≥ 0 ∆i(7, 5) ≥ 0 ∆i(7, 6) ≥ 0 ∆i(7, 7) ≥ 0

...
...

...
...

...
...

...
...
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Algebraically, this just means ∆i(n + 2, k + 1) ≥ ∆i(n, k) for all (n, k) and i ∈ {0, 1}.
Now let us assume for a moment that we have already proven this estimate, and recall

the “symmetry” ∆0(n, k) = ∆1(n, n−k) from Corollary 4.12. Then we are still in need

of base cases for our proof by induction to be complete.

In order to know which base cases to prove, we need to know who exactly the culprits

are, that is, the pairs (n, k) for which ∆A(n, k) ≥ 0 or ∆B(n, k) ≥ 0 fails to hold (recall

from Figure 1 that for n ∈ {2, 3, 4}, there do exist such k). This shall be revealed by

another numerical experiment, in which ∆A(n, k) and ∆B(n, k) are plotted as functions

of (b, c) for a few (n, k) modulo centrosymmetry (see Figure 2).

We see that only the pairs (2, 0), (3, 0), and (4, 0) contributed by ∆A (= ∆0, since

k = 0 is even) do not show the desired behaviour, while Gershgorin seems to work for

all other pairs (modulo centrosymmetry). We will prove ∆A(n, k) ≥ 0 and ∆B(n, k) ≥ 0

for all pairs except those three (modulo centrosymmetry), which then of course implies

the weaker statement that this is the case for all n ≥ 5 and k ∈ {0, 1, . . . , n}.

This eventually leads to the following induction strategy:

Lemma 4.13 (Triangle Induction)

Assume the inductive steps

1 ∆0(n+ 2, k + 1) ≥ ∆0(n, k) for all (n, k) (yet to be proven), and

2 ∆0(n, k) = ∆1(n, n− k) for all (n, k) from Corollary 4.12.

Then it suffices to prove the base cases

� ∆0(n, 0) ≥ 0 for all n ∈ N0 \ {2, 3, 4},
� ∆0(n, n) ≥ 0 for all n ∈ N0, and

� ∆0(n, 1) ≥ 0 for each n ∈ {4, 5, 6}
in order to show ∆A(n, k) ≥ 0 and ∆B(n, k) ≥ 0 for all (n, k) except (2, 0), (3, 0),

and (4, 0) (modulo centrosymmetry).

Proof. This is obvious from the two triangle diagrams above.

Note that for all (n, k), the two statements “∆0(n + 2, k + 1) ≥ ∆0(n, k)” and

“∆i(n+ 2, k + 1) ≥ ∆i(n, k) for each i ∈ {0, 1}” are obviously equivalent, since

∆1(n+ 2, k + 1) = ∆0(n+ 2, n− k + 1) ≥ ∆0(n, n− k) = ∆1(n, k)

follows from ∆0(n+ 2, k + 1) ≥ ∆0(n, k) by applying 2 twice. ♥
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Plot Collection of ∆A(n, k) and ∆B(n, k)

∆0(0, 0)

∆0(2, 0) ∆1(2, 1) ∆0(2, 2)

∆0(4, 0) ∆1(4, 1) ∆0(4, 2) ∆1(4, 3) ∆0(4, 4)

∆0(6, 0) ∆1(6, 1) ∆0(6, 2) ∆1(6, 3) ∆0(6, 4) ∆1(6, 5) ∆0(6, 6)

barely visible red spot

red spot,

A0 (b, c) 7→ ∆A(n, k) for
n even, k ∈ {0, 1, . . . , n}

∆0(1, 0)

∆0(3, 0) ∆1(3, 1)

∆0(5, 0) ∆1(5, 1) ∆0(5, 2)

∆0(7, 0) ∆1(7, 1) ∆0(7, 2) ∆1(7, 3)

yet another red spot

A1 (b, c) 7→ ∆A(n, k) for
n odd, k ∈ {0, 1, . . . , 1

2 (n− 1)}
∆1(1, 0)

∆1(3, 0) ∆0(3, 1)

∆1(5, 0) ∆0(5, 1) ∆1(5, 2)

∆1(7, 0) ∆0(7, 1) ∆1(7, 2) ∆0(7, 3)

B1 (b, c) 7→ ∆B(n, k) for
n odd, k ∈ {0, 1, . . . , 1

2 (n− 1)}

Figure 2: For each n ∈ {0, 1, . . . , 7} and each k ∈ {0, 1, . . . , n} (if n is even) or k ∈ {0, 1, . . . , 1
2 (n−1)}

(if n is odd), the expression ∆A(n, k) or ∆A(n, k)/∆B(n, k), respectively, is plotted as a function of

(b, c) over the parameter space {(b, c) : 1 ≥ b ≥ c > 0, scal(1,b,c) > 0}.

The colour map is chosen such that the positive/negative/zero values of ∆A and ∆B are shown in

green/red/yellow (normalised at the maximum and minimum value over all (n, k, b, c)).

Note that for n ∈ {2, 3, 4}, we have ∆0(n, 0) < 0 in a neighbourhood of (b, c) = (1, 1
2 ) (which one of

course also could check by hand at the boundary point (b, c) = (1, 1
2 )). For all other relevant pairs of

(n, k), the Gershgorin estimate seems to work.
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Additionally, it might be illuminating to consider the picture below, in which the base

cases are shown coloured, together with each implied statement “∆i(n, k) ≥ 0” (using

both 1 and 2 ) in the same colour, but grouped according to our goals A0 , A1 ,

and B1 from page 59.

∆0(0, 0)

∆0(2, 0) ∆1(2, 1) ∆0(2, 2)

∆0(4, 0) ∆1(4, 1) ∆0(4, 2) ∆1(4, 3) ∆0(4, 4)

∆0(6, 0) ∆1(6, 1) ∆0(6, 2) ∆1(6, 3) ∆0(6, 4) ∆1(6, 5) ∆0(6, 6)

∆0(8, 0) ∆1(8, 1) ∆0(8, 2) ∆1(8, 3) ∆0(8, 4) ∆1(8, 5) ∆0(8, 6) ∆1(8, 7) ∆0(8, 8)

∆0(10, 0) ∆1(10, 1) ∆0(10, 2) ∆1(10, 3) ∆0(10, 4) ∆1(10, 5) ∆0(10, 6) ∆1(10, 7) ∆0(10, 8) ∆1(10, 9) ∆0(10, 10)

A0 ∆A, n even

∆0(1, 0)

∆0(3, 0) ∆1(3, 1)

∆0(5, 0) ∆1(5, 1) ∆0(5, 2)

∆0(7, 0) ∆1(7, 1) ∆0(7, 2) ∆1(7, 3)

∆0(9, 0) ∆1(9, 1) ∆0(9, 2) ∆1(9, 3) ∆0(9, 4)

∆0(11, 0) ∆1(11, 1) ∆0(11, 2) ∆1(11, 3) ∆0(11, 4) ∆1(11, 5)

A1 ∆A, n odd ∆1(1, 0)

∆1(3, 0) ∆0(3, 1)

∆1(5, 0) ∆0(5, 1) ∆1(5, 2)

∆1(7, 0) ∆0(7, 1) ∆1(7, 2) ∆0(7, 3)

∆1(9, 0) ∆0(9, 1) ∆1(9, 2) ∆0(9, 3) ∆1(9, 4)

∆1(11, 0) ∆0(11, 1) ∆1(11, 2) ∆0(11, 3) ∆1(11, 4) ∆0(11, 5)

B1 ∆B, n odd

Figure 3: Each “∆i(n, k)” is coloured according to the base case from which ∆i(n, k) ≥ 0 can be

concluded (�, �, �) using 1 ∆i(n, k) ⇝ ∆i(n + 2, k + 1) and 2 ∆0(n, k) ⇝ ∆1(n, n − k) (with

the colour coding from Lemma 4.13). If the colour is purple (�), then ∆i(n, k) ≥ 0 follows both

from � and from �. If the colour is gray (�), then ∆i(n, k) ≥ 0 does not hold.

With this being settled, it still remains to prove the base cases (�, �, �) and the inductive

step ∆0(n+ 2, k + 1) ≥ ∆0(n, k) as stated in Lemma 4.13.

However, before we immerse ourselves into further calculations, let us gather one

more estimate, which required a bit more creativity to be revealed. It will play a key

role in proving the induction step ∆0(n, k) ⇝ ∆0(n + 2, k + 1), and it is absolutely

reliant on the assumption scal(1,b,c) > 0.

Lemma 4.14 (Schüth’s Lemma)

For all (b, c) with 1 ≥ b ≥ c > 0 and scal(1,b,c) > 0, we have bC − b2 − c < 0, and the

assumption scal(1,b,c) > 0 is necessary for this to hold.

It also follows that C < b+ 1, which is an even better upper bound on C than the

one from Lemma 4.4 3 .
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Proof. Recall from the proof of Lemma 4.3 the factorised expression

−1
2
b2c2 scal(1,b,c) = (b2(1− c)2 − c2) (b2(1 + c)2 − c2),

and that scal(1,b,c) > 0 is equivalent to b2(1− c)2 − c2 < 0. Since

2c(bC − b2 − c) = bc
(b
c
+ bc+

c

b

)
− 2b2c− 2c2

= b2 + b2c2 + c2 − 2b2c− 2c2

= b2(1− c)2 − c2

has the same sign as bC − b2 − c, we conclude that scal(1,b,c) > 0 is also equivalent

to bC − b2 − c < 0, just as desired.

The second estimate is then obtained from bC < b2 + c ≤ b2 + b (divide by b). ♥

We can now start proving the base cases.

Lemma 4.15 (Triangle Induction — Base Cases)

The base cases from Lemma 4.13 are in fact true; that is, we have

1 � ∆0(n, 0) ≥ 0 for all n ∈ N0 \ {2, 3, 4},

2 � ∆0(n, n) ≥ 0 for all n ∈ N0, and

3 � ∆0(n, 1) ≥ 0 for each n ∈ {4, 5, 6}

on the set {(b, c) : 1 ≥ b ≥ c > 0, scal(1,b,c) > 0}.

...

Proof. The proof is quite lengthy due to its algebraic nature. Beware!

1 The expression

∆0(n, 0) = (n− C)2 + (b+ c)2n− 2(b+ c)(C − 1)n

− (b+ c)(b− c)n(n− 1)− λ 2
∗

= (1− b2 + c2)n2 + 2
(
(b+ c)(1 + b− C)− C

)
n+ C2 − λ 2

∗

is quadratic in n with leading coefficient 1 − b2 + c2 > 1 − 3
4
b2 > 0 (due to

c > 1
2
b from Lemma 4.3).
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...

We will prove ∆0(n, 0) ≥ 0 for n ∈ {0, 1} and ∆0(n, 0) ≥ 0 for all n ≥ 5. The

first two cases can be calculated explicitly. Indeed, one easily computes

� ∆0(0, 0) = C2 − λ 2
∗ ≥ 0 (the equality being true if and only if 1 = b = c,

see Lemma 4.4 2 ) and

� ∆0(1, 0) ≡ 0 (the constant zero map).

The latter is quite interesting and on top of that also very useful: We know

that the quadratic function n 7→ ∆0(n, 0) has a root at n = 1 independent (!)

of b and c. By Vieta’s Theorem, the roots x1 and x2 of the quadratic function

x 7→ x2 + px+ q satisfy x1x2 = q, from which we conclude that the other root

of n 7→ ∆0(n, 0) lies at

q(b, c) =
C2 − (1 + b+ c− C)2

1− b2 + c2
≥ 0.

In particular, ∆0(n, 0) ≥ 0 for all n ≥ max{1, q}. We would like to show q ≤ 5,

which is equivalent to f(b, c) := 5(1− b2 + c2)− C2 + (1 + b+ c− C)2 ≥ 0.

We will prove f(b, c) > 0 even on the triangle {(b, c) : 1 ≥ b ≥ c > 1
2
b > 0}

(which is a larger set by Lemma 4.3), using the following trick: Consider the

triangle as the union of all segments b 7→ c = ξb, where 1
2
< ξ ≤ 1. We may

reparametrise this by setting ξ :=1
2
(η+1), so that (b, η) ∈ (0, 1]× (0, 1]. Then

one can check that f̃(b, η) := f(b, c) is a rational function of the form

f̃(b, η) =
β3η

3 + β2η
2 + β1η + β0

4(η + 1)
,

whose coefficients β3, β2, β1, β0 (which in turn are polynomials in b) can be

estimated from below (quite barbarically, using only 0 < b ≤ 1) by

β3 = −b3 + 6b2 − b ≥ −2,

β2 = −5b3 + 20b2 − b− 2 ≥ −8,

β1 = −7b3 + 6b2 + 5b+ 20 ≥ 13, and

β0 = −3b3 − 8b2 − 3b+ 14 ≥ 0.

Since we have η3 ≤ η2 ≤ η on the interval (0, 1], it follows that

β3η
3 + β2η

2 + β1η + β0 ≥ (−2− 8 + 13)η = 3η > 0.

This implies f̃(b, η) = f(b, c) > 0, from which we conclude q < 5.
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...

It turns out, by the way, that this estimate is sharp. Indeed, one can check

∆0(5, 0) = 0 at the boundary point (b, c) = (1, 1
2
) (satisfying scal(1,b,c) = 0),

which corresponds to (b, η) = (1, 0). That is, the condition n ≥ 5 is necessary

for Gershgorin to work (while one could have expected an arbitrary number

somewhere between 4 and 5 as the purely analytic result).

2 Again, the function n 7→ ∆0(n, n) is quadratic and has the same leading

coefficient 1− b2 + c2 > 0 (see below).

Therefore, in order to prove ∆0(n, n) ≥ 0 for all n ∈ N0, it suffices to prove
d
dn

∣∣
n=0

∆0(n, n) ≥ 0, since we already know ∆0(0, 0) ≥ 0 from 1 .

This, however, is easy to see. Indeed,

∆0(n, n) = (n+ C)2 + (b− c)2n− 2(b− c)(C + 1)n

− (b− c)(b+ c)n(n− 1)− λ 2
∗

= (1− b2 + c2)n2 + 2
(
C − (b− c)(1− b+ C)

)
n+ C2 − λ 2

∗

implies that (rewriting the middle coefficient)

d

dn

∣∣∣
n=0

∆0(n, n) = 2
(
C(1− b+ c)− (b− c)(1− b)

)
.

Since 1− b+ c > 1− b
2
> 0, we may use the lower bound from Lemma 4.4 2

to obtain

C(1− b+ c)− (b− c)(1− b) = C(1− b+ c) + b2 − bc− b+ c

≥ 1
2
(1 + b+ c)(1− b+ c) + b2 − bc− b+ c

= 1
2
b2 − bc+ 1

2
c2 − b+ 2c+ 1

2

= 1
2
(b− c)2 + (−b+ 2c) + 1

2

> 0 + 0 + 1
2
= 1

2
> 0,

which proves the claim.

3 We will prove ∆0(n, 1) ≥ 0 separately for each n ∈ {4, 5, 6}.
Case n = 4: Recall the upper bounds bC < b2 + c and C < b + 1 from

Lemma 4.14. Then we have

∆0(4, 1) = −6bC − 2(c+ 1)C + 3b2 + 2bc+ 2b+ 15c2 + 6c+ 3

> −6(b2 + c)− 2(c+ 1)(b+ 1) + 3b2 + 2bc+ 2b+ 15c2 + 6c+ 3
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...

= −3b2 + 15c2 − 2c+ 1

> −12c2 + 15c2 − 2c+ 1

= 3c2 − 2c+ 1.

Note that we used c > 1
2
b in the last estimate (see Lemma 4.3).

One can easily verify that this quadratic function attains its minimum 2
3
> 0

at the point c = 1
3
. Thus, ∆0(4, 1) >

2
3
> 0.

For the cases n ∈ {5, 6}, this kind of estimate will not work. But, luckily, the

trick from 1 succeeds (while it does not for n = 4, by the way): Substitute

c = 1
2
(η + 1)b to obtain rational functions in (b, η) ∈ (0, 1]× (0, 1].

Case n = 5: One can check that ∆0(5, 1) =
β3η

3 + β2η
2 + β1η + β0

2(η + 1)
, where

β3 = −b3 + 12b2 − b ≥ −b ≥ −1,

β2 = −7b3 + 38b2 + b− 2 ≥ b− 2 ≥ −2,

β1 = −11b3 + 40b2 + 9b+ 12 ≥ 9b+ 12 ≥ 12, and

β0 = −5b3 + 14b2 − 9b+ 6.

The estimates for β3, β2, and β1 follow from b2 ≥ b3 for 0 < b ≤ 1; that is, the

second term always kills the first one. This is too rough for β0, but one can

check min{β0(b)}0<b≤1 > 4 manually (using elementary analysis). Together,

this yields

β3η
3 + β2η

2 + β1η + β0 ≥ (−1− 2 + 12)η + 4 = 9η + 4 > 0

for all (b, η) ∈ (0, 1] × (0, 1], which implies ∆0(5, 1) > 0 even on the triangle

{(b, c) : 1 ≥ b ≥ c > 1
2
b > 0}.

(Just by the way: In the case n = 4, we would have β0 < 0 for some b, which

destroys the argument. In fact, one can check numerically that ∆0(4, 1) ≥ 0

does not hold on the larger triangular set {(b, c) : 1 ≥ b ≥ c > 1
2
b > 0}.)

Case n = 6: Similarly, one has ∆0(6, 1) =
β3η

3 + β2η
2 + β1η + β0

4(η + 1)
, where

β3 = −3b3 + 35b2 − 3b ≥ −3b ≥ −3,

β2 = −19b3 + 111b2 + b− 6 ≥ b− 6 ≥ −6,

β1 = −29b3 + 97b2 + 23b+ 48 ≥ 23b+ 48 ≥ 48, and

β0 = −13b3 + 21b2 − 21b+ 30.
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Again, one can check by using elementary analysis that min{β0(b)}0<b≤1 = 17.

It follows that

β3η
3 + β2η

2 + β1η + β0 ≥ (−3− 6 + 48)η + 17 = 39η + 17 > 0

holds for all (b, η) ∈ (0, 1]×(0, 1], from which we conclude (just as above) that

∆0(6, 1) > 0 holds even on the triangle {(b, c) : 1 ≥ b ≥ c > 1
2
b > 0}.

This concludes the proof dealing with the base cases. ♥

The good news is that we are almost done now. The even better news is that the key

argument, which will prove the induction step, is truly magical (and not as boring as

the cases 2 and 3 in the previous proof).

Lemma 4.16 (Magical Lemma)

For each δ ∈ R, the sequence

n 7→ ∆0

(
n,

n

2
+ δ
)

is increasing in each point of {(b, c) : 1 ≥ b ≥ c > 0, scal(1,b,c) > 0}.

Proof. One easily calculates

∆0

(
n,

n

2
+ δ
)
= c2 n2 + 2(−bC + b2 + c)n+ constant terms in n.

Note that the coefficients at n2 and, more surprisingly, at n do not depend on δ.

The statement now follows from c2 > 0 and −bC + b2 + c > 0, see Lemma 4.14. ♥

Just in case that the reader is not yet aware of the impact of this statement: This is

indeed HUGE, and discovering this step of the proof only by random intuition felt

deeply rewarding (from a mathematician’s point of view).

The claimed induction step now follows immediately.

Corollary 4.17 (Triangle Induction — Induction Step)

For all n ∈ N0 and k ∈ {0, 1, . . . , n}, we have

∆0(n+ 2, k + 1) ≥ ∆0(n, k).
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Proof. Let n ∈ N0 and k ∈ {0, 1, . . . , n}. Then there exists a fixed δ ∈ Z or δ ∈ Z+ 1
2

(if n is even or odd, respectively) with −n
2
≤ δ ≤ n

2
such that k = n

2
+ δ, namely

δ = k − n
2
. Applying Lemma 4.16 yields

∆0(n, k) = ∆0

(
n,

n

2
+ δ
)
≤ ∆0

(
n+ 2,

n+ 2

2
+ δ
)
= ∆0(n+ 2, k + 1),

just as desired. ♥

This finally concludes the proof dealing with the infinitely many cases n ≥ 5.

Fragment 2 / 3 of Main Theorem (Completion of Subproof for n ≥ 5)

The number λ 2
∗ = (a+ b+ c−C)2 is less than or equal to each eigenvalue of D 2

n for

all n ≥ 5.

It follows that λ∗ ≤ |λ| for all eigenvalues λ of Dn, where n ≥ 5.

Proof. Recall from page 46 that it suffices to consider the case 1 = a ≥ b ≥ c > 0.

In that case, follow the procedure described in Lemma 4.13.

� Base Cases: See Lemma 4.15.

� Induction Step: See Corollary 4.17 and Corollary 4.12.

By Lemma 4.13, this completes the proof by triangle induction of the fact that

∆0(n, k) ≥ 0 and ∆1(n, k) ≥ 0 holds for all n ≥ 5 and k ∈ {0, 1, . . . , n}. ♥

Combining the Fragments 1 and 2, we now know λ∗ ≤ |λ| for all eigenvalues λ of all

Dn, where n ∈ N0. That is, we finally know that if scal(a,b,c) > 0, then

λ∗(a,b,c) := min | spec(D)| = λ∗ = a+ b+ c− 1

2

(ab
c
+

bc

a
+

ca

b

)
> 0 (3)

for the Dirac operator associated with S3
(a,b,c) endowed with either orientation (see the

remark at the beginning of page 45 on reversing the orientation of S3).

Now it just remains to prove spectral invariance, but this is merely a cosy calculation

to end the day (or rather, the icing on the cake that the reader absolutely deserves for

enduring the proof of λ∗(a,b,c) = λ∗).
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Spectral Invariance

In this very last part of the paragraph, we will complete the proof of the Main Theorem,

earning our well-deserved retirement from homogeneous 3-spheres. Just as Lauret did

with the Laplace operator, we will show that the Dirac spectrum of S3
(a,b,c) determines

the isometry class of ⟨ · , · ⟩(a,b,c) if scal(a,b,c) > 0.

We know that λ∗(a,b,c) is a spectral invariant by (3). The result cited below states

that vol(a,b,c) and scal(a,b,c) are also spectral invariants, on whose aid we will rely.

Theorem 4.18 (Volume and Total Scalar Curvature are Spectral Invariants)

Let Mn be a closed spin manifold of dimension n ≥ 3. Then the Dirac spectrum

determines the volume volM and the total scalar curvature
∫
M scalM of M.

Proof. This was proven by Baum (formerly Dlubek) and Friedrich by calculating

the asymptotic expansion of the Zeta function of D2 (which is constructed from

the spectrum), whose first two coefficients are expressions in volM and
∫
M scalM,

respectively. See [8] for reference. ♥

Since
∫
S3 scal(a,b,c) = scal(a,b,c) vol(a,b,c) in our case, we know that scal(a,b,c) is a spectral

invariant. This already leads us to the final proof.

Fragment 3 / 3 of Main Theorem (Spectral Invariance of ⟨ · , · ⟩(a,b,c))

The triple {vol(a,b,c), scal(a,b,c), λ∗(a,b,c)} determines (a, b, c) up to order.

In other words, two arbitrary homogeneous 3-spheres of positive scalar curvature

are Dirac isospectral if and only if they are isometric.

...

Proof. We know the isometry class of ⟨ · , · ⟩(a,b,c) if we know the triple (a, b, c) up

to order. This is the case if we know the symmetric polynomials

σ1 = a+ b+ c, σ2 = ab+ bc+ ca, and σ3 = abc.

This is because we then know the polynomial x3−σ1x
2+σ2x−σ3, which is obtained

by expanding (x− a)(x− b)(x− c). In particular, we know its roots a, b, and c.

Since vol(a,b,c) depends only on
√

| det⟨ · , · ⟩(a,b,c)| = (abc)−1, we know that σ3 is

determined by the Dirac spectrum. We may then assume σ3 = 1 without loss of
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generality. This just serves to simplify the further calculation, in which we want to

obtain σ1 and σ2 from λ∗(a,b,c) and scal(a,b,c).

Indeed, under the assumption σ3 = abc = 1, one can derive

2λ∗(a,b,c) = 2(a+ b+ c)−
(ab
c
+

bc

a
+

ca

b

)
= 2(a+ b+ c)− (a2b2 + b2c2 + c2a2)

= 2(a+ b+ c)−
(
(ab+ bc+ ca)2 − 2(ab · bc+ bc · ca+ ca · ab)

)
= 2σ1 − (σ2

2 − 2σ1σ3)

= 4σ1 − σ2
2

and, reusing the identity a2b2 + b2c2 + c2a2 = σ2
2 − 2σ1σ3,

scal(a,b,c) = 4(a2 + b2 + c2)− 2
(a2b2

c2
+

b2c2

a2
+

c2a2

b2

)
(recall Proposition 1.5)

= 4(a2 + b2 + c2)− 2(a4b4 + b4c4 + c4a4)

= 4
(
(a+ b+ c)2 − 2(ab+ bc+ ca)

)
− 2
(
(a2b2 + b2c2 + c2a2)2 − 2(a2b2 · b2c2 + b2c2 · c2a2 + c2a2 · a2b2)

)
= 4(σ1

2 − 2σ2)− 2
(
(σ2

2 − 2σ1σ3)
2 − 2σ3

2(σ1
2 − 2σ2)

)
= 8(σ1

2 − 2σ2)− 2(σ2
2 − 2σ1)

2

= 8σ1
2 − 16σ2 − 2σ2

4 + 8σ1σ2
2 − 8σ1

2

= 4λ∗(a,b,c)σ2
2 − 16σ2.

The latter implies

σ2 =
2

λ∗(a,b,c)
±
√( 2

λ∗(a,b,c)

)2
+

scal(a,b,c)
4λ∗(a,b,c)

.

Since scal(a,b,c) > 0, this yields exactly one positive solution for σ2, which we can

plug into the first identity to obtain a unique solution for σ1. We then know that

all the values σ1, σ2, and σ3 are determined by the Dirac spectrum. ♥

⇝
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Congratulations!
We can now — finally — combine the three fragments of the Main Theorem...

Main Theorem (Dirac Eigenvalues of Homogeneous 3-Spheres)

Let S3
(a,b,c) be a homogeneous 3-sphere of positive scalar curvature, endowed with

either orientation.

Then the smallest absolute value of its Dirac eigenvalues is given by

λ∗(a,b,c) = a+ b+ c− 1

2

(ab
c
+

bc

a
+

ca

b

)
> 0,

and its Dirac spectrum determines the underlying metric up to isometry (within the

class of homogeneous 3-spheres).

...and die in peace.

(◦Θ ) ) Θ◦)...z
zz♥
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Conclusion

In this thesis, we dealt with the spin geometry of the Lie group S3 endowed with the

naturally-arising left-invariant metrics. We derived a formula for the associated Dirac

operator (which was already known before in a much more general setting) only by

elementary means. We eventually succeeded in calculating the smallest Dirac eigenvalue

of each homogeneous 3-sphere of positive scalar curvature (which, to the knowledge

of the author, was not known before) and proved that two such spheres are Dirac

isospectral if and only if they are isometric.

That’s it — there is nothing more to conclude about the mathematical theory.

Really. It’s not much, but it’s honest work. However, as for the thesis per se, there are

a few more words to say:

The author would like to express his gratitude to his supervisor for suggesting him

a topic that allowed the creation of new knowledge (be it only to a negligible extent)

instead of something that only involves researching literature, which probably would

have been very boring. Nevertheless, it was also an educational experience to review

many mathematical concepts from the lectures Differential Geometry I–IV, which the

author now understands a little better.

The most satisfying experience, however, was the continuous process of being totally

intimidated and clueless at the beginning, gradually obtaining hypotheses and gaining

knowledge through numerical experiments (or even by accident), and being able to

write things down rigorously. It has been truly fulfilling that everything worked out in

the end, which is the highest reward a mathematician can hope for.

The End
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