Problem 1.1. Let k be a field.
(a) Let R be a k-algebra which is a domain, not necessarily of finite type over k. Show that its Krull dimension is at most the transcendence degree of the quotient field of R, i.e. we have

$$
\operatorname{dim} R \leq \operatorname{trdeg}_{k}(\operatorname{Quot}(R))
$$

(b) Illustrate by an example that in general the above inequality can be strict.

Problem 1.2. Let k be a field. Let C be a normal curve over k that is birational to \mathbb{P}_{k}^{1}.
(a) Show that C is isomorphic to an open subset of \mathbb{P}_{k}^{1}.
(b) Deduce that if C is not proper, then it is affine and $\Gamma\left(C, \mathcal{O}_{C}\right)$ is a factorial ring.

Problem 1.3. Let k be an algebraically closed field with $\operatorname{char}(k) \neq 2$.
(a) Show that $A=k[x, y] /\left(y^{2}-x^{3}-x\right)$ is a domain which is integral over $R=k[x]$.
(b) Define an automorphism $\sigma: A \rightarrow A$ by $\sigma_{\mid R}=$ id and $\sigma(y)=-y$. Show that we have a multiplicative map

$$
N: \quad A \rightarrow R, \quad N(a):=a \cdot \sigma(a) .
$$

(c) Show that $A^{\times}=k^{\times}$and that x, y are irreducible elements in A. Deduce that A is not factorial, and that $\operatorname{Spec}(A)$ is not isomorphic to an open subset of the affine line over k.

Problem 1.4. Let $C \subset \mathbb{P}_{k}^{2}$ be the projective closure of $C_{0}=\operatorname{Spec}(A) \subset \mathbb{A}_{k}^{2}$ from problem 1.3.
(a) Show that C is normal and the complement $C \backslash C_{0}$ consists of a single point o.
(b) Let $p, q, r \in C$ be distinct closed points. Show that the following are equivalent:

- There is a rational function $f \in k(C)^{\times}$with $\operatorname{div}(f)=[p]+[q]+[r]-3[o]$.
- The three points p, q, r are collinear, i.e. they lie on a common line $\ell \subset \mathbb{P}_{k}^{2}$.
(c) What does this say about the Picard group $\operatorname{Pic}(C)$?

Problem 2.1. Let k be a field.
(a) Show that for any finite set of closed points on a proper normal curve C over k, there exists a rational function $f \in k(C)^{\times}$which has poles only in the points from that set.
(b) Deduce that every non-proper normal curve C_{0} over k is affine.

Hint: Find a proper normal curve $C \supset C_{0}$ and $f: C \rightarrow \mathbb{P}_{k}^{1}$ with $f^{-1}\left(\mathbb{A}_{k}^{1}\right)=C_{0}$.

Problem 2.2. Let $f: C^{\prime} \rightarrow C$ be a morphism of normal curves over an alg. closed field k.
(a) Check that we have a natural morphism $f^{*}\left(\Omega_{C / k}^{1}\right) \rightarrow \Omega_{C^{\prime} / k}^{1}$ of line bundles.
(b) Now assume that f is finite. Show by looking at stalks at the generic point that the above morphism is injective iff the extension of function fields $k(C) \hookrightarrow k\left(C^{\prime}\right)$ is separable.
(c) Show that in this case:

- The quotient $\Omega_{C^{\prime} / C}^{1}:=\Omega_{C^{\prime} / k}^{1} / f^{*}\left(\Omega_{C / k}^{1}\right)$ is a skyscraper sheaf, and

$$
\Omega_{C^{\prime} / k}^{1} \simeq f^{*}\left(\Omega_{C / k}^{1}\right) \otimes_{\mathcal{O}_{C^{\prime}}} \mathcal{O}_{C^{\prime}}(R)
$$

for the ramification divisor $R:=\sum_{p \in C^{\prime}} \operatorname{length}_{\mathcal{O}_{C^{\prime}, p}}\left(\Omega_{C^{\prime} / C, p}^{1}\right) \cdot[p] \in \operatorname{Div}\left(C^{\prime}\right)$.

- The genus $g_{C^{\prime}}$ of the covering curve is related to the genus g_{C} of the target curve via

$$
2 g_{C^{\prime}}-2=\operatorname{deg}(f) \cdot\left(2 g_{C}-2\right)+\operatorname{deg}(R) .
$$

- If $\operatorname{char}(k) \nmid e_{p}(f)$ for all closed points $p \in C^{\prime}$, then $\operatorname{deg}(R)=\sum_{p \in C^{\prime}}\left(e_{p}(f)-1\right)$.

Problem 2.3. Let k be an algebraically closed field with $\operatorname{char}(k) \neq 2$.
(a) Let C be the proper normal compactification of the affine curve $V\left(y^{2}-h(x)\right) \subset \mathbb{A}_{k}^{2}$ for a square-free polynomial

$$
h(x) \in k[x] \quad \text { of degree } \quad \operatorname{deg}(h)=2 g+2 \geq 4
$$

How many 'points at infinity' (i.e. points in the complement $C \backslash C_{0}$) are there?
(b) Show that there exists a morphism $f: C \rightarrow \mathbb{P}_{k}^{1}$ of degree two. Determine its ramification divisor, and deduce from the previous problem that the curve C has genus g.
(c) Consider the open dense subset $U=D(y) \cap V\left(y^{2}-h(x)\right) \subset C$. Show that the differential forms

$$
\frac{d x}{y}, x \frac{d x}{y}, x^{2} \frac{d x}{y}, \ldots, x^{g-1} \frac{d x}{y} \in H^{0}\left(U, \Omega_{C / k}^{1}\right)
$$

extend uniquely to global sections of $\Omega_{C / k}^{1}$ and form a basis of $H^{0}\left(C, \Omega_{C / k}^{1}\right)$ over k.

Problem 3.1. Let X be a scheme over a field k, and $\mathscr{L} \in \operatorname{Pic}(X)$. Let $s_{0}, \ldots, s_{m} \in \Gamma(X, \mathscr{L})$ and $t_{0}, \ldots, t_{n} \in \Gamma(X, \mathscr{L})$ be two sets of sections that span the same basepoint-free linear series

$$
V=\left\langle s_{0}, \ldots, s_{m}\right\rangle_{k}=\left\langle t_{0}, \ldots, t_{n}\right\rangle_{k} \subset \Gamma(X, \mathscr{L})
$$

Show that for $m \geq n$ the morphisms

$$
\begin{aligned}
f & :=\left[s_{0}: \cdots: s_{m}\right]: X \longrightarrow \mathbb{P}_{k}^{m} \\
g & :=\left[t_{0}: \cdots: t_{n}\right]: X \longrightarrow \mathbb{P}_{k}^{n}
\end{aligned}
$$

satisfy $g=p \circ f$ where $p: \mathbb{P}_{k}^{m} \rightarrow \mathbb{P}_{k}^{n}$ is a linear projection followed by an automorphism.

Problem 3.2. Let k be a field and $X=\mathbb{P}_{k}^{2}$ with homogenous coordinates $x, y, z \in \Gamma\left(X, \mathscr{O}_{X}(1)\right)$.
(a) Show that $\mathscr{L}=\mathscr{O}_{X}(2)$ is very ample and $V=\left\langle x^{2}, y^{2}, z^{2}, y(x-z),(x-y) z\right\rangle \subset \Gamma(X, \mathscr{L})$ defines a closed immersion

$$
\varphi_{\mathscr{L}, V}: \quad X \hookrightarrow \mathbb{P}_{k}^{4} .
$$

(b) Let $p \in X$ be a closed point. Show that the linear series $W=\{s \in \Gamma(X, \mathscr{L}) \mid s(p)=0\}$ gives a locally closed immersion $\varphi \mathscr{L}, W: X \backslash p \hookrightarrow \mathbb{P}_{k}^{4}$ which after blowing up the point p extends to a closed immersion

$$
\tilde{\varphi}_{\mathscr{L}, W}: \quad \tilde{X}=\operatorname{Bl}_{p}(X) \hookrightarrow \mathbb{P}_{k}^{4}
$$

Show moreover that $\tilde{X} \subset \mathbb{P}_{k}^{4}$ is a surface which is covered by a family of disjoint lines in \mathbb{P}_{k}^{4} which are the proper transforms of the lines through the point p in $X=\mathbb{P}_{k}^{2}$.

Problem 3.3. Let X be a scheme of finite type over a Noetherian ring R.
(a) Show that if there exists an ample line bundle on X, then X is separated.
(b) Now let X be the affine line over a field k with the origin doubled.

- Compute the group $\operatorname{Pic}(X)$. Which line bundles are globally generated?
- Verify directly (without using (a)) that there are no ample line bundles on X.

Problem 3.4. Let k be a field, and let $X=\operatorname{Proj}(R)$ for a graded k-algebra R generated by finitely many elements of degree one. Show that we have a functor

$$
\Gamma_{*}: \quad \operatorname{QCoh}(X) \rightarrow \operatorname{GrMod}(R), \quad \mathscr{M} \mapsto \Gamma_{*}(\mathscr{M}):=\bigoplus_{d \geq 0} \Gamma\left(X, \mathscr{M} \otimes \mathscr{O}_{X}(d)\right)
$$

and that every $\mathscr{M} \in \mathrm{QCoh}(X)$ arises as $\mathscr{M} \simeq \tilde{M}$ for the graded R-module $M:=\Gamma_{*}(\mathscr{M})$.

Problem 4.1. Verify for the spectrum $X=\operatorname{Spec}(R)$ of the local ring $R=\left(\mathbb{C}[s, t] /\left(s^{2}-t^{3}\right)\right)_{(s, t)}$ that

$$
\operatorname{Pic}(X) \simeq 0 \quad \text { but } \quad \operatorname{Pic}\left(X \times \mathbb{A}^{1}\right) \nsucceq 0
$$

Problem 4.2. Let k be a field. Consider the hypersurface $Z=V_{+}(f) \subset \mathbb{P}_{k}^{n}$ for an irreducible homogenous polynomial $f \in k\left[x_{0}, \ldots, x_{n}\right]$ of degree $d>1$, and denote by $H_{0}, \ldots, H_{n} \subset \mathbb{P}_{k}^{n}$ the coordinate hyperplanes.
(a) Show that $U:=\mathbb{P}_{k}^{n} \backslash Z$ is affine and covered by affine open subsets $U_{i}:=U \backslash H_{i}$.
(b) Show that $\operatorname{Pic}(U) \nsucceq 0$ but $\operatorname{Pic}\left(U_{i}\right) \simeq 0$ for $i=0,1, \ldots, n$.

Hence an affine scheme with a cover by spectra of UFD's need not be the spectrum of a UFD.

Problem 4.3. Consider the normalization $\pi: \widetilde{C} \rightarrow C$ of an integral proper curve C over an algebraically closed field k. For closed points $p \in C$, let $\widetilde{\mathscr{O}}_{C, p}$ be the normalization of the corresponding local ring. Denote by \mathscr{K}_{C} the sheaf of total quotient rings of the curve. Deduce from the short exact sequence of sheaves

$$
0 \longrightarrow \pi_{*}\left(\mathscr{O}_{\widetilde{C}}^{\times}\right) / \mathscr{O}_{C}^{\times} \longrightarrow \mathscr{K}_{C}^{\times} / \mathscr{O}_{C}^{\times} \longrightarrow \mathscr{K}_{C}^{\times} / \pi_{*}\left(\mathscr{O}_{\widetilde{C}}^{\times}\right) \longrightarrow 0
$$

that we have a short exact sequence of abelian groups

$$
0 \longrightarrow \bigoplus_{p \in C} \widetilde{\mathscr{O}}_{C, p}^{\times} / \mathscr{O}_{C, p}^{\times} \longrightarrow \operatorname{Pic}(C) \longrightarrow \operatorname{Pic}(\widetilde{C}) \longrightarrow 0 .
$$

Problem 4.4. Let k be an algebraically closed field. Deduce from the previous exercise:
(a) The Picard group of the cuspidal cubic $C=V\left(y^{2} z-x^{3}\right) \subset \mathbb{P}_{k}^{2}=\operatorname{Proj} k[x, y, z]$ fits in an exact sequence

$$
0 \rightarrow \mathbb{G}_{a} \longrightarrow \operatorname{Pic}(C) \longrightarrow \operatorname{Pic}(\widetilde{C}) \rightarrow 0 \quad \text { for the additive group } \mathbb{G}_{a}=(k,+)
$$

(b) The Picard group of the nodal cubic $C=V\left(y^{2} z-x^{2}(x+z)\right) \subset \mathbb{P}_{k}^{2}$ fits in an exact sequence

$$
0 \rightarrow \mathbb{G}_{m} \longrightarrow \operatorname{Pic}(C) \longrightarrow \operatorname{Pic}(\widetilde{C}) \rightarrow 0 \quad \text { for the multiplicative group } \mathbb{G}_{m}=\left(k^{\times}, \cdot\right)
$$

Problem 5.1. Describe $\Omega_{X / S}^{1}$ for each of the following morphisms:
(a) $X=\operatorname{Spec}(\mathbb{Z}[i]) \rightarrow S=\operatorname{Spec}(\mathbb{Z})$,
(b) $X=\operatorname{Spec}(\mathbb{C}[x, y] /(x y)) \rightarrow S=\operatorname{Spec}(\mathbb{C})$,
(c) $X=\operatorname{Bl}_{p}(S) \rightarrow S=\mathbb{A}_{\mathbb{C}}^{2}$, the blowup of the plane in the point $p=(0,0) \in \mathbb{A}^{2}(\mathbb{C})$.

Is $\Omega_{X / S}^{1} \in \operatorname{Mod}\left(\mathscr{O}_{X}\right)$ locally free? At which points $p \in X$ is the morphism $X \rightarrow S$ smooth?

Problem 5.2. Verify the claim from the lecture that the morphism $\operatorname{Spec}\left(\mathbb{F}_{p}(t)\right) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\left(t^{p}\right)\right)$ is neither smooth nor unramified. More generally, let X be a scheme over a field k. Show that the following properties are equivalent:
(a) $X \rightarrow \operatorname{Spec}(k)$ is étale.
(b) $X \rightarrow \operatorname{Spec}(k)$ is unramified.
(c) $X \simeq \bigsqcup_{i \in I} \operatorname{Spec}\left(k_{i}\right)$ for finite separable field extensions $k_{i} \supseteq k$.

Problem 5.3. Let X, Y be two locally Noetherian integral schemes and $f: Y \rightarrow X$ a dominant morphism of finite type such that the extension $k(X) \subset k(Y)$ of the corresponding function fields is separable (resp. finite and separable).
(a) Show that there is an open dense $V \subset Y$ such that $\left.f\right|_{V}: V \rightarrow X$ is smooth (resp. étale).
(b) Show that if moreover the morphism f is proper and the fiber $f^{-1}(\eta) \rightarrow \operatorname{Spec}(k(\eta))$ over the generic point $\eta \in X$ is smooth, then one may find an open dense subset $U \subset X$ such that the restriction $\left.f\right|_{f^{-1}(U)}: f^{-1}(U) \rightarrow U$ is smooth (resp. étale).

Problem 5.4. Let $f: X \rightarrow S$ be a morphism of schemes, and let Sch_{S} be the category of schemes over S. Consider the functor

$$
T_{X / S}: \quad \operatorname{Sch}_{S}^{\mathrm{op}} \longrightarrow \text { Sets, } \quad Z \mapsto \operatorname{Hom}_{S}(Z[\varepsilon], X)
$$

where $Z[\varepsilon]=Z \times \operatorname{Spec} \mathbb{Z}[\varepsilon]$ denotes the trivial first order thickening of $Z\left(\right.$ with $\left.\epsilon^{2}=0\right)$.
(a) If $X=\operatorname{Spec}(B)$ and $S=\operatorname{Spec}(A)$ are affine, show that the functor $T_{X / S}$ is represented by

$$
T_{X / S}=\operatorname{Spec}\left(\operatorname{Sym}_{B}^{\bullet}\left(\Omega_{B / A}^{1}\right)\right) \in \operatorname{Sch}_{S} .
$$

(b) Generalize your result to morphisms between arbitrary (not necessarily affine) schemes.

Problem 6.1. Let X, Y be schemes of finite type over a field k.
(a) Show that if k is algebraically closed and X and Y are regular, then $X \times_{k} Y$ is regular.
(b) Illustrate by an example that this fails in general if k is not algebraically closed.

Problem 6.2. Let $p>0$ be a prime.
(a) Let k be a field of characteristic p, and let $a \in k$ be an element which is not a p-th power in k. Show that the curve

$$
X=V\left(x^{p}+y^{p}-a\right) \subset \mathbb{A}_{k}^{2}
$$

is not smooth over k, but normal, hence regular. Do the same for $Y=V\left(x^{p}+y^{2}-a\right)$.
(b) Is the scheme $Z=\operatorname{Spec} \mathbb{Z}[x, y] /(x y-p)$ regular? Is is smooth over Spec \mathbb{Z} ?

Problem 6.3. Let $f: X \rightarrow Y$ be a morphism of schemes. Fix a point $x \in X$, and let $y=f(x)$.
(a) Show that for the fiber $X_{y}=X \times_{Y} \operatorname{Spec}(\kappa(y))$ we have an exact sequence of $\kappa(x)$-vector spaces:

$$
0 \longrightarrow T_{x} X_{y} \longrightarrow T_{x} X \longrightarrow \kappa(x) \otimes_{\kappa(y)} T_{y} Y
$$

(b) Suppose now that f has a section $g: Y \rightarrow X$ with $x=g(y)$. Show:

- We have $\kappa(x)=\kappa(y)$ and $T_{x} X \simeq T_{x} X_{y} \oplus T_{y} Y$.
- If X, Y are regular and locally Noetherian and f is of finite type, then f is smooth at x and

$$
\widehat{\mathscr{O}}_{X, x} \simeq \widehat{\mathscr{O}}_{Y, y}\left[\left[t_{1}, \ldots, t_{d}\right]\right] \quad \text { where } \quad d=\operatorname{dim}_{x} X_{y} .
$$

Problem 6.4. Let k be a field. By smooth we mean smooth over k.
(a) Let $f_{1}, \ldots, f_{m} \in k\left[x_{0}, \ldots, x_{n}\right]$ be homogenous. Show that the closed subscheme

$$
X=V_{+}\left(f_{1}, \ldots, f_{m}\right) \subset \mathbb{P}_{k}^{n}=\operatorname{Proj} k\left[x_{0}, \ldots, x_{n}\right]
$$

is smooth at a point $p \in X(k)$ if and only if $\operatorname{rk}\left(\partial f_{i} / \partial x_{j}\right)(p)=n-\operatorname{dim}_{p} X$.
(b) Let $X_{0}=V\left(y^{2}-g(x)\right) \subset \mathbb{A}_{k}^{2}$. For which $g \in k[x]$ is the closure $X=\bar{X}_{0} \subset \mathbb{P}_{k}^{2}$ smooth?

Problem 7.1.

(a) Is the \mathbb{Z}-module $M=\mathbb{Q}$ flat? Is it projective? Is it free?
(b) Let $A=\prod_{i \in \mathbb{N}} \mathbb{F}_{2}$. Show that the A-module

$$
M=\prod_{i \in \mathbb{N}} \mathbb{F}_{2} / \bigoplus_{i \in \mathbb{N}} \mathbb{F}_{2}
$$

is finitely generated and flat over A, but not projective over A.
(c) Is the morphism $\operatorname{Spec}(\mathbb{C}[x, y, z, w] /(z, w) \cap(x+z, y+w)) \rightarrow \operatorname{Spec}(\mathbb{C}[x, y])$ flat? Describe its fibers and the irreducible components of its source.

Problem 7.2. Let $f: X \rightarrow Y$ be a finite morphism, with Y Noetherian.
(a) Show that f is flat if and only if $f_{*}\left(\mathscr{O}_{X}\right)$ is locally free.
(b) Show that if Y is integral, this is equivalent to $\operatorname{dim}_{\kappa(y)}\left(f_{*}\left(\mathscr{O}_{X}\right) \otimes_{\mathscr{O}_{Y, y}} \kappa(y)\right)=$ constant.
(c) Deduce that the normalization of an integral Noetherian non-normal scheme is not flat.

Problem 7.3. Let $f: Y \rightarrow X$ be a morphism of schemes, with X integral. Let $Z_{1}, Z_{2} \subset Y$ be two closed subschemes which coincide over an open dense subscheme $U \subset X$ in the sense that $Z_{1} \cap f^{-1}(U)=Z_{1} \cap f^{-1}(U)$ as closed subsechemes of $f^{-1}(U)$.
(a) Show that if Z_{1}, Z_{2} are both flat over X, then $Z_{1}=Z_{2}$.
(b) Illustrate by an example that this may fail if Z_{1}, Z_{2} are not both flat over X.

Problem 7.4. Let $f: Y \rightarrow X$ be a flat morphism of finite type, where X and Y are Noetherian schemes. Show in the following steps that f is open:
(a) Show that $f(Y)$ contains a non-empty open subset $U \subset X$.
(b) Show that $f(Y) \backslash U$ contains a non-empty open subset of $Z=X \backslash U$.
(c) Show that $X \backslash f(Y) \subset X$ is closed, using that $|X|$ is Noetherian.

Problem 8.1. Show that
(a) for any commutative ring R, the category $\operatorname{Mod}(R)$ has enough injectives.
(b) for any ringed space $\left(X, \mathscr{O}_{X}\right)$, the category $\operatorname{Mod}\left(\mathscr{O}_{X}\right)$ has enough injectives.

Problem 8.2. Let $\left(X, \mathscr{O}_{X}\right)$ be a ringed space and $V \subset X$ a non-empty open subset.
(a) Show that $j^{*}: \operatorname{Mod}\left(\mathscr{O}_{X}\right) \rightarrow \operatorname{Mod}\left(\mathscr{O}_{V}\right)$ sends injective objects to injective objects.
(b) Does the same hold for the left adjoint functor $j_{!}: \operatorname{Mod}\left(\mathscr{O}_{V}\right) \rightarrow \operatorname{Mod}\left(\mathscr{O}_{X}\right)$?

Problem 8.3. Let \mathscr{A} be an abelian category.
(a) Deduce from the universal property of the kernel and cokernel the snake lemma: Every commutative diagram

in \mathscr{A} with exact rows induces an exact sequence

$$
\operatorname{ker}\left(f^{\prime}\right) \rightarrow \operatorname{ker}(f) \rightarrow \operatorname{ker}\left(f^{\prime \prime}\right) \rightarrow \operatorname{coker}\left(f^{\prime}\right) \rightarrow \operatorname{coker}(f) \rightarrow \operatorname{coker}\left(f^{\prime \prime}\right)
$$

(b) Deduce that any short exact sequence $0 \rightarrow K^{\bullet} \rightarrow L^{\bullet} \rightarrow M^{\bullet} \rightarrow 0$ of complexes in \mathscr{A} gives rise to a long exact sequence

$$
\cdots \rightarrow H^{i-1}\left(M^{\bullet}\right) \rightarrow H^{i}\left(K^{\bullet}\right) \rightarrow H^{i}\left(L^{\bullet}\right) \rightarrow H^{i}\left(M^{\bullet}\right) \rightarrow H^{i+1}\left(K^{\bullet}\right) \rightarrow \cdots
$$

Problem 8.4. A morphism of complexes in an abelian category is called a quasi-isomorphism if it induces an isomorphism between their cohomology groups in each degree.
(a) Let $\mathscr{A}=$ AbGps be the abelian category of abelian groups. Show that for every bounded above complex $K^{\bullet} \in \mathscr{C}^{-}(\mathscr{A})$ of free abelian groups K^{i} there exists a quasi-isomorphism between the complex and the direct sum of its cohomology groups:

$$
K^{\bullet} \xrightarrow{\sim}\left[\cdots \xrightarrow{0} H^{i}\left(K^{\bullet}\right) \xrightarrow{0} H^{i+1}\left(K^{\bullet}\right) \xrightarrow{0} \cdots\right]
$$

(b) Find an abelian category \mathscr{A} and complexes $K^{\bullet}, L^{\bullet} \in \mathscr{C}^{-}(\mathscr{A})$ which have isomorphic cohomology groups but no quasi-isomorphism between them in either direction.

Problem 9.1. Show that for Noetherian schemes X, the following are equivalent:
(a) The scheme X is affine.
(b) The underlying reduced closed subscheme $X^{\text {red }}$ is affine.
(c) Every irreducible component of X is affine.

Problem 9.2. Let k be a field and $X=\mathbb{A}_{k}^{n} \backslash\{0\}$ for $n \in \mathbb{N}$. Compute $H^{\bullet}\left(X, \mathscr{O}_{X}\right)$.

Problem 9.3. Let \mathscr{A} be an abelian category with enough injectives, and let $A, B \in \mathscr{A}$.
(a) Put $\operatorname{Ext}_{\mathscr{A}}^{i}(B,-):=R^{i} \operatorname{Hom}_{\mathscr{A}}(B,-)$. Show that $\operatorname{Ext}_{\mathscr{A}}^{1}(B, A)$ is in natural bijection with the set of isomorphism classes of short exact sequences $0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$ in \mathscr{A}, where two such sequences with middle terms E, E^{\prime} are called isomorphic if they fit in a commutative diagram

Hint: Embed A into an injective $I \in \mathscr{A}$ and consider fiber products $E=I \times_{Q} B$.
(b) Describe the group structure on $\operatorname{Ext}_{\mathscr{A}}^{1}(B, A)=R^{1} \operatorname{Hom}_{\mathscr{A}}(B, A)$ in these terms.

Problem 9.4. Let $\left(X, \mathscr{O}_{X}\right)$ be a ringed space and $\mathscr{G} \in \operatorname{Mod}\left(\mathscr{O}_{X}\right)$.
(a) A \mathscr{G}-torsor is a sheaf \mathscr{F} of sets on X with an action $\mathscr{G} \times \mathscr{F} \rightarrow \mathscr{F}$ such that

- the open sets $U \subset X$ with $\mathscr{F}(U) \neq \varnothing$ form a basis for the topology of X, and
- for all such open sets, the action of the group $\mathscr{G}(U)$ on $\mathscr{F}(U)$ is simply transitive.

Show that \mathscr{G}-torsors form a category $T(\mathscr{G})$ in which every morphism is an isomorphism.
(b) Let $E(\mathscr{G})$ be the category of exact sequences $0 \rightarrow \mathscr{G} \rightarrow \mathscr{E} \rightarrow \mathscr{O}_{X} \rightarrow 0$ in $\operatorname{Mod}\left(\mathscr{O}_{X}\right)$, with morphisms the isomorphisms of short exact sequences as in problem 9.3. Show that we have an equivalence of categories

$$
\tau: \quad E(\mathscr{G}) \xrightarrow{\sim} T(\mathscr{G}), \quad \tau\left(0 \rightarrow \mathscr{G} \xrightarrow{f} \mathscr{E} \xrightarrow{g} \mathscr{O}_{X} \rightarrow 0\right):=g^{-1}(1) .
$$

Hint: First show full faithfulness (locally), and deduce essential surjectivity via gluing.
(c) Show that the set $\operatorname{Tors}(\mathscr{G})$ of isomorphism classes of \mathscr{G}-torsors forms a group and we have isomorphisms

$$
H^{1}(X, \mathscr{G}) \simeq \operatorname{Ext}_{\operatorname{Mod}\left(\mathscr{O}_{X}\right)}^{1}\left(\mathscr{O}_{X}, \mathscr{G}\right) \simeq \operatorname{Tors}(\mathscr{G})
$$

Problem 10.1. Let $X=\mathbb{P}_{k}^{n}$ for a field k. Show via the Euler sequence that

$$
\operatorname{dim}_{k} H^{i}\left(X, \wedge^{j} \Omega_{X / k}^{1}\right)= \begin{cases}1 & \text { if } 0 \leq i=j \leq n \\ 0 & \text { else }\end{cases}
$$

Deduce that for $n>1$ the coherent sheaf $\Omega_{X / k}^{1}$ is not a successive extension of line bundles.

Problem 10.2. Let k be an algebraically closed field. Consider a plane curve $X=V_{+}(f) \subset \mathbb{P}_{k}^{2}$ which is cut out by a homogenous polynomial $f \in H^{0}\left(\mathbb{P}_{k}^{2}, \mathscr{O}(d)\right)$ of degree $d>0$. Show that we have

$$
\operatorname{dim}_{k} H^{1}\left(X, \mathscr{O}_{X}\right)=\frac{(d-1)(d-2)}{2}
$$

Problem 10.3. Let k be an algebraically closed field, and $X \subset Y=\mathbb{P}_{k}^{3}$ a proper integral curve which is a complete intersection of two homogenous polynomials, i.e. $X=V_{+}\left(f_{1}, f_{2}\right) \subset Y$ for suitable $f_{i} \in H^{0}\left(Y, \mathscr{O}_{Y}\left(d_{i}\right)\right)$ such that the multiplication map

$$
\mathscr{O}_{V_{+}\left(f_{1}\right)} \xrightarrow{f_{2}} \mathscr{O}_{V_{+}\left(f_{1}\right)} \otimes_{\mathscr{O}_{Y}} \mathscr{O}_{Y}\left(d_{2}\right)
$$

is injective. Show that we have an exact sequence

$$
0 \longrightarrow \mathscr{O}_{Y}\left(-d_{1}-d_{2}\right) \longrightarrow \mathscr{O}_{Y}\left(-d_{1}\right) \oplus \mathscr{O}_{Y}\left(-d_{2}\right) \longrightarrow \mathscr{O}_{Y} \longrightarrow \mathscr{O}_{X} \longrightarrow 0
$$

Deduce that

$$
\operatorname{dim}_{k} H^{1}\left(X, \mathscr{O}_{X}\right)=\binom{d_{1}+d_{2}-1}{3}-\binom{d_{1}-1}{3}-\binom{d_{2}-1}{3}
$$

and conclude that there exist projective curves that cannot be embedded in the plane.

Problem 10.4. Let X be a projective scheme over a Noetherian ring and $\mathscr{F}^{1} \rightarrow \mathscr{F}^{2} \rightarrow \cdots \rightarrow$ \mathscr{F}^{r} an exact sequence of coherent sheaves on X. Show that there exists an integer n_{0} such that for all $n \geq n_{0}$ the following sequence remains exact:

$$
\Gamma\left(X, \mathscr{F}^{1}(n)\right) \rightarrow \Gamma\left(X, \mathscr{F}^{2}(n)\right) \rightarrow \cdots \rightarrow \Gamma\left(X, \mathscr{F}^{r}(n)\right) .
$$

Problem 11.1. Let k be a field, and let $X=V_{+}\left(f_{1}, \ldots, f_{r}\right) \subset \mathbb{P}_{k}^{n}$ be a complete intersection of dimension $\operatorname{dim}(X)=n-r>0$ cut out by a sequence of hypersurfaces $f_{i} \in H^{0}\left(\mathbb{P}_{k}^{n}, \mathscr{O}\left(d_{i}\right)\right)$ of degrees $d_{1}, \ldots, d_{r} \geq 1$. Show:
(a) The restriction maps $H^{0}\left(\mathbb{P}_{k}^{n}, \mathscr{O}(m)\right) \rightarrow H^{0}\left(X,\left.\mathscr{O}(m)\right|_{X}\right)$ are surjective for all m.
(b) The scheme X is geometrically connected.
(c) If X is smooth over k, then $\omega_{X}:=\left.\wedge^{n-r} \Omega_{X}^{1} \simeq \mathscr{O}\left(d_{1}+\cdots+d_{r}-n-1\right)\right|_{X}$.

Problem 11.2. Let X be a projective 1-dimensional scheme over an algebraically closed field which contains a cycle of curves in the sense that for some integer $n \geq 2$ there are pairwise distinct 1-dimensional integral closed subschemes $C_{1}, \ldots, C_{n} \subset X$ and pairwise distinct closed points $p_{1}, \ldots, p_{n} \in X$ with

$$
p_{i} \in C_{i} \cap C_{i+1} \bmod n
$$

for all $i \in\{1, \ldots, n\}$. Show that $H^{1}(X, \mathscr{F}) \neq 0$ for the image $\mathscr{F}=\operatorname{im}\left(\mathscr{O}_{X} \rightarrow \bigoplus_{i=1}^{n} \mathscr{O}_{C_{i}}\right)$, and deduce that

$$
H^{1}\left(X, \mathscr{O}_{X}\right) \neq 0
$$

Problem 11.3. Let $X=\mathbb{P}_{k}^{1}$ for an infinite field k.
(a) Show that \mathscr{O}_{X} cannot be written as a quotient of a projective object in $\operatorname{Mod}\left(\mathscr{O}_{X}\right)$.

Hint: Consider $j!\left(\mathscr{O}_{U}\right) \rightarrow i_{*}(\kappa(p))$ for $j: U \hookrightarrow X$ open and a closed point $i:\{p\} \hookrightarrow X$.
(b) Show that \mathscr{O}_{X} cannot be written as a quotient of a projective object in $\mathrm{QCoh}(X)$.

Hint: Consider $\mathscr{L} \rightarrow \mathscr{L} \otimes \kappa(p)$ for a line bundle $\mathscr{L} \in \operatorname{Pic}(X)$ and a closed point $p \in X$.

Problem 11.4. Let X be a noetherian scheme, and assume that $\operatorname{Coh}(X)$ has enough locally free sheaves. For any coherent sheaf $\mathscr{F} \in \operatorname{Coh}(X)$, define its homological dimension hd (\mathscr{F}) by
$\operatorname{hd}(\mathscr{F}):=\min \left\{n \in \mathbb{N}_{0} \mid \exists\right.$ locally free resolution $\left.0 \rightarrow \mathscr{L}_{n} \rightarrow \cdots \rightarrow \mathscr{L}_{0} \rightarrow \mathscr{F} \rightarrow 0\right\} \cup\{\infty\}$.
Show:
(a) \mathscr{F} is locally free iff $\mathscr{E} x t_{\mathscr{O}_{X}}^{1}(\mathscr{F}, \mathscr{G})=0$ for all $\mathscr{G} \in \operatorname{Mod}(X)$.
(b) $\operatorname{hd}(\mathscr{F}) \leq n$ iff $\mathscr{E} x t_{\mathscr{O}_{X}}^{i}(\mathscr{F}, \mathscr{G})=0$ for all $i>n$ and all $\mathscr{G} \in \operatorname{Mod}(X)$.
(c) $\operatorname{hd}(\mathscr{F})=\sup _{x \in X} \operatorname{pd}\left(\mathscr{F}_{x}\right)$ (where pd: $\operatorname{Mod}\left(\mathscr{O}_{X, x}\right) \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ denotes the projective dimension, i.e. the smallest length of a resolution by projective modules over $\mathscr{O}_{X, x}$).

Problem 12.1. Let X be a Cohen-Macaulay scheme, and denote by $\pi: \tilde{X}=\mathrm{Bl}_{Z}(X) \rightarrow X$ its blowup along a complete intersection $Z \subset X$.
(a) Show that $E=\pi^{-1}(Z)$ is Cohen-Macaulay, and deduce that \tilde{X} is Cohen-Macaulay.
(b) Let $f: X \rightarrow S$ be a morphism to a regular scheme S such that all fibers of f are equidimensional of the same dimension. Fix a closed point $\tilde{x} \in E$ with images $x=\pi(\tilde{x})$ and $s=f(x)$. Show that the following two properties are equivalent:

- $f \circ \pi: \tilde{X} \rightarrow S$ is flat at \tilde{x}.
- $\operatorname{dim}_{x}(Z)-\operatorname{dim}_{x}\left(Z \cap X_{S}\right) \geq \operatorname{dim}_{s}(S)-1$.

Problem 12.2. Let X be a smooth variety of dimension n over a field k. Let $\pi: \tilde{X} \rightarrow X$ be its blowup in a point $p \in X(k)$, and let $E=\pi^{-1}(p) \simeq \mathbb{P}_{k}^{n-1}$ be the exceptional divisor.
(a) Show that the normal bundle of $E \subset \tilde{X}$ is isomorphic to $\mathscr{O}_{E}(-1)$.
(b) Let $\mathscr{M}:=\omega_{\tilde{X}} \otimes \pi^{*}\left(\omega_{X}^{\vee}\right) \in \operatorname{Pic}(\tilde{X})$. Show that the restriction $\left.\mathscr{M}\right|_{\tilde{X} \backslash E}$ is trivial, and deduce that

$$
\omega_{\tilde{X}} \simeq \pi^{*}\left(\omega_{X}\right) \otimes \mathscr{O}_{\tilde{X}}((n-1) E)
$$

Problem 12.3. Let $f: X \rightarrow Y$ be a finite morphism of Noetherian schemes.
(a) Let $\mathscr{G} \in \operatorname{Coh}(X)$. Show that up to isomorphism there exists a unique $f^{!}(\mathscr{G}) \in \operatorname{Coh}(X)$ with

$$
f_{*}\left(f^{!}(\mathscr{G})\right) \simeq \mathscr{H} \operatorname{om}_{Y}\left(f_{*}\left(\mathscr{O}_{X}\right), \mathscr{G}\right) \quad \text { in } \quad \operatorname{Mod}\left(f_{*} \mathscr{O}_{X}\right)
$$

(b) Show that we have $f_{*} \mathscr{H} \operatorname{om}\left(\mathscr{F}, f^{!}(\mathscr{G})\right) \simeq \mathscr{H} \operatorname{om}_{Y}\left(f_{*}(\mathscr{F}), \mathscr{G}\right)$ for all $\mathscr{F} \in \operatorname{Coh}(X)$.

Problem 12.4. Let X be a projective scheme of pure dimension n over a field k.
(a) Let $f: X \rightarrow Y$ be a finite flat morphism to another projective scheme over k. Show that for any dualizing sheaf $\left(\omega_{Y}^{\circ}, \operatorname{tr}_{Y}\right)$ on Y we get a dualizing sheaf $\left(\omega_{X}^{\circ}, \operatorname{tr}_{X}\right)$ on X by taking $\omega_{X}^{\circ}:=f^{!}\left(\omega_{Y}^{\circ}\right)$ (with notations as in the previous problem), endowed with the trace map

$$
\operatorname{tr}_{X}: \quad H^{n}\left(X, f^{!} \omega_{Y}^{\circ}\right) \simeq H^{n}\left(Y, f_{*} f^{!} \omega_{Y}^{\circ}\right) \longrightarrow H^{n}\left(Y, \omega_{Y}^{\circ}\right) \xrightarrow{\operatorname{tr}_{Y}} k .
$$

(b) Use this to construct on any projective Cohen-Macaulay scheme X of pure dimension n over k a dualizing sheaf, by taking $f: X \rightarrow Y=\mathbb{P}^{n}$ to be a suitable projection.

