Problem 1.1. Let k be a field.

(a) Let R be a k-algebra which is a domain, not necessarily of finite type over k. Show that its Krull dimension is at most the transcendence degree of the quotient field of R, i.e. we have

$$\dim R \leq \operatorname{trdeg}_k(\operatorname{Quot}(R)).$$

(b) Illustrate by an example that in general the above inequality can be strict.

Problem 1.2. Let k be a field. Let C be a normal curve over k that is birational to \mathbb{P}_{k}^{1} .

- (a) Show that C is isomorphic to an open subset of \mathbb{P}^1_k .
- (b) Deduce that if C is not proper, then it is affine and $\Gamma(C, \mathcal{O}_C)$ is a factorial ring.

Problem 1.3. Let k be an algebraically closed field with $char(k) \neq 2$.

- (a) Show that $A = k[x, y]/(y^2 x^3 x)$ is a domain which is integral over R = k[x].
- (b) Define an automorphism $\sigma: A \to A$ by $\sigma_{|R} = \text{id}$ and $\sigma(y) = -y$. Show that we have a multiplicative map

 $N\colon A \to R, \quad N(a) := a \cdot \sigma(a).$

(c) Show that $A^{\times} = k^{\times}$ and that x, y are irreducible elements in A. Deduce that A is not factorial, and that Spec(A) is not isomorphic to an open subset of the affine line over k.

Problem 1.4. Let $C \subset \mathbb{P}^2_k$ be the projective closure of $C_0 = \operatorname{Spec}(A) \subset \mathbb{A}^2_k$ from problem 1.3.

- (a) Show that C is normal and the complement $C \setminus C_0$ consists of a single point o.
- (b) Let $p, q, r \in C$ be distinct closed points. Show that the following are equivalent:
 - There is a rational function $f \in k(C)^{\times}$ with $\operatorname{div}(f) = [p] + [q] + [r] 3[o]$.
 - The three points p, q, r are collinear, i.e. they lie on a common line $\ell \subset \mathbb{P}_k^2$.
- (c) What does this say about the Picard group Pic(C)?

Problem 2.1. Let k be a field.

- (a) Show that for any finite set of closed points on a proper normal curve C over k, there exists a rational function $f \in k(C)^{\times}$ which has poles only in the points from that set.
- (b) Deduce that every non-proper normal curve C_0 over k is affine.

Hint: Find a proper normal curve $C \supset C_0$ and $f: C \to \mathbb{P}^1_k$ with $f^{-1}(\mathbb{A}^1_k) = C_0$.

Problem 2.2. Let $f: C' \to C$ be a morphism of normal curves over an alg. closed field k.

- (a) Check that we have a natural morphism $f^*(\Omega^1_{C/k}) \to \Omega^1_{C'/k}$ of line bundles.
- (b) Now assume that f is finite. Show by looking at stalks at the generic point that the above morphism is injective iff the extension of function fields $k(C) \hookrightarrow k(C')$ is separable.
- (c) Show that in this case:
 - The quotient $\Omega^1_{C'/C} := \Omega^1_{C'/k} / f^*(\Omega^1_{C/k})$ is a skyscraper sheaf, and

$$\Omega^1_{C'/k} \simeq f^*(\Omega^1_{C/k}) \otimes_{\mathcal{O}_{C'}} \mathcal{O}_{C'}(R)$$

for the ramification divisor $R := \sum_{p \in C'} \text{length}_{\mathcal{O}_{C',p}}(\Omega^1_{C'/C,p}) \cdot [p] \in \text{Div}(C').$

• The genus g_{C^\prime} of the covering curve is related to the genus g_C of the target curve via

$$2g_{C'} - 2 = \deg(f) \cdot (2g_C - 2) + \deg(R).$$

• If char(k) $\nmid e_p(f)$ for all closed points $p \in C'$, then deg(R) = $\sum_{p \in C'} (e_p(f) - 1)$.

Problem 2.3. Let k be an algebraically closed field with $char(k) \neq 2$.

(a) Let C be the proper normal compactification of the affine curve $V(y^2-h(x))\subset \mathbb{A}^2_k$ for a square-free polynomial

 $h(x) \in k[x]$ of degree $\deg(h) = 2g + 2 \ge 4$.

How many 'points at infinity' (i.e. points in the complement $C \setminus C_0$) are there?

- (b) Show that there exists a morphism $f: C \to \mathbb{P}^1_k$ of degree two. Determine its ramification divisor, and deduce from the previous problem that the curve C has genus g.
- (c) Consider the open dense subset $U=D(y)\cap V(y^2-h(x))\subset C.$ Show that the differential forms

$$\frac{dx}{y}, x\frac{dx}{y}, x^2\frac{dx}{y}, \ldots, x^{g-1}\frac{dx}{y} \in H^0(U, \Omega^1_{C/k})$$

extend uniquely to global sections of $\Omega^1_{C/k}$ and form a basis of $H^0(C, \Omega^1_{C/k})$ over k.

Problem 3.1. Let X be a scheme over a field k, and $\mathscr{L} \in \operatorname{Pic}(X)$. Let $s_0, \ldots, s_m \in \Gamma(X, \mathscr{L})$ and $t_0, \ldots, t_n \in \Gamma(X, \mathscr{L})$ be two sets of sections that span the same basepoint-free linear series

$$V = \langle s_0, \dots, s_m \rangle_k = \langle t_0, \dots, t_n \rangle_k \subset \Gamma(X, \mathscr{L}).$$

Show that for $m \ge n$ the morphisms

$$f := [s_0 : \dots : s_m] \colon X \longrightarrow \mathbb{P}_k^m$$
$$g := [t_0 : \dots : t_n] \colon X \longrightarrow \mathbb{P}_k^n$$

satisfy $g = p \circ f$ where $p: \mathbb{P}_k^m \dashrightarrow \mathbb{P}_k^n$ is a linear projection followed by an automorphism.

Problem 3.2. Let k be a field and $X = \mathbb{P}^2_k$ with homogenous coordinates $x, y, z \in \Gamma(X, \mathscr{O}_X(1))$.

(a) Show that $\mathscr{L} = \mathscr{O}_X(2)$ is very ample and $V = \langle x^2, y^2, z^2, y(x-z), (x-y)z \rangle \subset \Gamma(X, \mathscr{L})$ defines a closed immersion

$$\varphi_{\mathscr{L},V} \colon X \hookrightarrow \mathbb{P}^4_k.$$

(b) Let $p \in X$ be a closed point. Show that the linear series $W = \{s \in \Gamma(X, \mathscr{L}) \mid s(p) = 0\}$ gives a locally closed immersion $\varphi_{\mathscr{L},W} \colon X \setminus p \hookrightarrow \mathbb{P}^4_k$ which after blowing up the point p extends to a closed immersion

$$\tilde{\varphi}_{\mathscr{L},W}$$
: $\tilde{X} = \operatorname{Bl}_p(X) \hookrightarrow \mathbb{P}_k^4$.

Show moreover that $\tilde{X} \subset \mathbb{P}_k^4$ is a surface which is covered by a family of disjoint lines in \mathbb{P}_k^4 which are the proper transforms of the lines through the point p in $X = \mathbb{P}_k^2$.

Problem 3.3. Let X be a scheme of finite type over a Noetherian ring R.

- (a) Show that if there exists an ample line bundle on X, then X is separated.
- (b) Now let X be the affine line over a field k with the origin doubled.
 - Compute the group Pic(X). Which line bundles are globally generated?
 - Verify directly (without using (a)) that there are no ample line bundles on X.

Problem 3.4. Let k be a field, and let $X = \operatorname{Proj}(R)$ for a graded k-algebra R generated by finitely many elements of degree one. Show that we have a functor

$$\Gamma_* \colon \operatorname{QCoh}(X) \to \operatorname{GrMod}(R), \quad \mathscr{M} \mapsto \Gamma_*(\mathscr{M}) \, := \, \bigoplus_{d \ge 0} \, \Gamma(X, \mathscr{M} \otimes \mathscr{O}_X(d))$$

and that every $\mathscr{M} \in \operatorname{QCoh}(X)$ arises as $\mathscr{M} \simeq \widetilde{M}$ for the graded *R*-module $M := \Gamma_*(\mathscr{M})$.

Problem 4.1. Verify for the spectrum $X = \operatorname{Spec}(R)$ of the local ring $R = (\mathbb{C}[s, t]/(s^2 - t^3))_{(s,t)}$ that

$$\operatorname{Pic}(X) \simeq 0$$
 but $\operatorname{Pic}(X \times \mathbb{A}^1) \not\simeq 0$.

Problem 4.2. Let k be a field. Consider the hypersurface $Z = V_+(f) \subset \mathbb{P}^n_k$ for an irreducible homogenous polynomial $f \in k[x_0, \ldots, x_n]$ of degree d > 1, and denote by $H_0, \ldots, H_n \subset \mathbb{P}^n_k$ the coordinate hyperplanes.

- (a) Show that $U := \mathbb{P}_k^n \setminus Z$ is affine and covered by affine open subsets $U_i := U \setminus H_i$.
- (b) Show that $\operatorname{Pic}(U) \not\simeq 0$ but $\operatorname{Pic}(U_i) \simeq 0$ for $i = 0, 1, \dots, n$.

Hence an affine scheme with a cover by spectra of UFD's need not be the spectrum of a UFD.

Problem 4.3. Consider the normalization $\pi: \widetilde{C} \to C$ of an integral proper curve C over an algebraically closed field k. For closed points $p \in C$, let $\widetilde{\mathcal{O}}_{C,p}$ be the normalization of the corresponding local ring. Denote by \mathscr{K}_C the sheaf of total quotient rings of the curve. Deduce from the short exact sequence of sheaves

$$0 \longrightarrow \pi_*(\mathscr{O}_{\widetilde{C}}^{\times})/\mathscr{O}_C^{\times} \longrightarrow \mathscr{K}_C^{\times}/\mathscr{O}_C^{\times} \longrightarrow \mathscr{K}_C^{\times}/\pi_*(\mathscr{O}_{\widetilde{C}}^{\times}) \longrightarrow 0$$

that we have a short exact sequence of abelian groups

$$0 \longrightarrow \bigoplus_{p \in C} \widetilde{\mathscr{O}}_{C,p}^{\times} / \mathscr{O}_{C,p}^{\times} \longrightarrow \operatorname{Pic}(C) \longrightarrow \operatorname{Pic}(\widetilde{C}) \longrightarrow 0.$$

Problem 4.4. Let k be an algebraically closed field. Deduce from the previous exercise:

(a) The Picard group of the cuspidal cubic $C = V(y^2z - x^3) \subset \mathbb{P}^2_k = \operatorname{Proj} k[x, y, z]$ fits in an exact sequence

 $0 \to \mathbb{G}_a \longrightarrow \operatorname{Pic}(C) \longrightarrow \operatorname{Pic}(\widetilde{C}) \to 0$ for the additive group $\mathbb{G}_a = (k, +)$.

(b) The Picard group of the nodal cubic $C=V(y^2z-x^2(x+z))\subset \mathbb{P}^2_k$ fits in an exact sequence

 $0 \to \mathbb{G}_m \longrightarrow \operatorname{Pic}(C) \longrightarrow \operatorname{Pic}(\widetilde{C}) \to 0$ for the multiplicative group $\mathbb{G}_m = (k^{\times}, \cdot)$.

Problem 5.1. Describe $\Omega^1_{X/S}$ for each of the following morphisms:

- (a) $X = \operatorname{Spec}(\mathbb{Z}[i]) \to S = \operatorname{Spec}(\mathbb{Z}),$
- (b) $X = \operatorname{Spec}(\mathbb{C}[x, y]/(xy)) \to S = \operatorname{Spec}(\mathbb{C}),$
- (c) $X = \operatorname{Bl}_p(S) \to S = \mathbb{A}^2_{\mathbb{C}}$, the blowup of the plane in the point $p = (0,0) \in \mathbb{A}^2(\mathbb{C})$.

Is $\Omega^1_{X/S} \in \operatorname{Mod}(\mathscr{O}_X)$ locally free? At which points $p \in X$ is the morphism $X \to S$ smooth?

Problem 5.2. Verify the claim from the lecture that the morphism $\operatorname{Spec}(\mathbb{F}_p(t)) \to \operatorname{Spec}(\mathbb{F}_p(t^p))$ is neither smooth nor unramified. More generally, let X be a scheme over a field k. Show that the following properties are equivalent:

- (a) $X \to \operatorname{Spec}(k)$ is étale.
- (b) $X \to \operatorname{Spec}(k)$ is unramified.
- (c) $X \simeq \bigsqcup_{i \in I} \operatorname{Spec}(k_i)$ for finite separable field extensions $k_i \supseteq k$.

Problem 5.3. Let X, Y be two locally Noetherian integral schemes and $f: Y \to X$ a dominant morphism of finite type such that the extension $k(X) \subset k(Y)$ of the corresponding function fields is separable (resp. finite and separable).

- (a) Show that there is an open dense $V \subset Y$ such that $f|_V \colon V \to X$ is smooth (resp. étale).
- (b) Show that if moreover the morphism f is proper and the fiber $f^{-1}(\eta) \to \operatorname{Spec}(k(\eta))$ over the generic point $\eta \in X$ is smooth, then one may find an open dense subset $U \subset X$ such that the restriction $f|_{f^{-1}(U)} \colon f^{-1}(U) \to U$ is smooth (resp. étale).

Problem 5.4. Let $f: X \to S$ be a morphism of schemes, and let Sch_S be the category of schemes over S. Consider the functor

 $T_{X/S}$: Sch_S^{op} \longrightarrow Sets, $Z \mapsto \operatorname{Hom}_{S}(Z[\varepsilon], X)$

where $Z[\varepsilon] = Z \times \operatorname{Spec} \mathbb{Z}[\varepsilon]$ denotes the trivial first order thickening of Z (with $\epsilon^2 = 0$).

(a) If X = Spec(B) and S = Spec(A) are affine, show that the functor $T_{X/S}$ is represented by

$$T_{X/S} = \operatorname{Spec}(\operatorname{Sym}_B^{\bullet}(\Omega^1_{B/A})) \in \operatorname{Sch}_S.$$

(b) Generalize your result to morphisms between arbitrary (not necessarily affine) schemes.

Problem 6.1. Let X, Y be schemes of finite type over a field k.

- (a) Show that if k is algebraically closed and X and Y are regular, then $X \times_k Y$ is regular.
- (b) Illustrate by an example that this fails in general if k is not algebraically closed.

Problem 6.2. Let p > 0 be a prime.

(a) Let k be a field of characteristic p, and let $a \in k$ be an element which is not a p-th power in k. Show that the curve

$$X = V(x^p + y^p - a) \subset \mathbb{A}^2_k$$

is not smooth over k, but normal, hence regular. Do the same for $Y = V(x^p + y^2 - a)$.

(b) Is the scheme $Z = \operatorname{Spec} \mathbb{Z}[x, y]/(xy - p)$ regular? Is is smooth over $\operatorname{Spec} \mathbb{Z}$?

Problem 6.3. Let $f: X \to Y$ be a morphism of schemes. Fix a point $x \in X$, and let y = f(x).

(a) Show that for the fiber $X_y = X \times_Y \text{Spec}(\kappa(y))$ we have an exact sequence of $\kappa(x)$ -vector spaces:

 $0 \longrightarrow T_x X_y \longrightarrow T_x X \longrightarrow \kappa(x) \otimes_{\kappa(y)} T_y Y$

- (b) Suppose now that f has a section $g: Y \to X$ with x = g(y). Show:
 - We have $\kappa(x) = \kappa(y)$ and $T_x X \simeq T_x X_y \oplus T_y Y$.
 - If X, Y are regular and locally Noetherian and f is of finite type, then f is smooth at x and

$$\mathscr{O}_{X,x} \simeq \mathscr{O}_{Y,y}[[t_1,\ldots,t_d]] \text{ where } d = \dim_x X_y.$$

Problem 6.4. Let k be a field. By smooth we mean smooth over k.

(a) Let $f_1, \ldots, f_m \in k[x_0, \ldots, x_n]$ be homogenous. Show that the closed subscheme

$$X = V_+(f_1, \dots, f_m) \subset \mathbb{P}_k^n = \operatorname{Proj} k[x_0, \dots, x_n]$$

is smooth at a point $p \in X(k)$ if and only if $\operatorname{rk}(\partial f_i/\partial x_j)(p) = n - \dim_p X$.

(b) Let $X_0 = V(y^2 - g(x)) \subset \mathbb{A}^2_k$. For which $g \in k[x]$ is the closure $X = \overline{X}_0 \subset \mathbb{P}^2_k$ smooth?

Problem 7.1.

- (a) Is the \mathbb{Z} -module $M = \mathbb{Q}$ flat? Is it projective? Is it free?
- (b) Let $A = \prod_{i \in \mathbb{N}} \mathbb{F}_2$. Show that the A-module

$$M = \prod_{i \in \mathbb{N}} \mathbb{F}_2 / \bigoplus_{i \in \mathbb{N}} \mathbb{F}_2$$

is finitely generated and flat over A, but not projective over A.

(c) Is the morphism $\operatorname{Spec}(\mathbb{C}[x, y, z, w]/(z, w) \cap (x+z, y+w)) \to \operatorname{Spec}(\mathbb{C}[x, y])$ flat? Describe its fibers and the irreducible components of its source.

Problem 7.2. Let $f: X \to Y$ be a finite morphism, with Y Noetherian.

- (a) Show that f is flat if and only if $f_*(\mathcal{O}_X)$ is locally free.
- (b) Show that if Y is integral, this is equivalent to $\dim_{\kappa(y)}(f_*(\mathscr{O}_X) \otimes_{\mathscr{O}_{Y,y}} \kappa(y)) = \text{constant.}$
- (c) Deduce that the normalization of an integral Noetherian non-normal scheme is not flat.

Problem 7.3. Let $f: Y \to X$ be a morphism of schemes, with X integral. Let $Z_1, Z_2 \subset Y$ be two closed subschemes which coincide over an open dense subscheme $U \subset X$ in the sense that $Z_1 \cap f^{-1}(U) = Z_1 \cap f^{-1}(U)$ as closed subschemes of $f^{-1}(U)$.

- (a) Show that if Z_1, Z_2 are both flat over X, then $Z_1 = Z_2$.
- (b) Illustrate by an example that this may fail if Z_1, Z_2 are not both flat over X.

Problem 7.4. Let $f: Y \to X$ be a flat morphism of finite type, where X and Y are Noetherian schemes. Show in the following steps that f is open:

- (a) Show that f(Y) contains a non-empty open subset $U \subset X$.
- (b) Show that $f(Y) \setminus U$ contains a non-empty open subset of $Z = X \setminus U$.
- (c) Show that $X \setminus f(Y) \subset X$ is closed, using that |X| is Noetherian.

Problem 8.1. Show that

- (a) for any commutative ring R, the category Mod(R) has enough injectives.
- (b) for any ringed space (X, \mathscr{O}_X) , the category $\operatorname{Mod}(\mathscr{O}_X)$ has enough injectives.

Problem 8.2. Let (X, \mathscr{O}_X) be a ringed space and $V \subset X$ a non-empty open subset.

- (a) Show that $j^*: \operatorname{Mod}(\mathscr{O}_X) \to \operatorname{Mod}(\mathscr{O}_V)$ sends injective objects to injective objects.
- (b) Does the same hold for the left adjoint functor $j_1: \operatorname{Mod}(\mathscr{O}_V) \to \operatorname{Mod}(\mathscr{O}_X)$?

Problem 8.3. Let \mathscr{A} be an abelian category.

(a) Deduce from the universal property of the kernel and cokernel the snake lemma: Every commutative diagram

$$\begin{array}{cccc} A' & \longrightarrow & A & \longrightarrow & A'' & \longrightarrow & 0 \\ & & \downarrow^{f'} & & \downarrow^{f} & & \downarrow^{f''} \\ & \longrightarrow & B' & \longrightarrow & B & \longrightarrow & B'' \end{array}$$

in ${\mathscr A}$ with exact rows induces an exact sequence

0

$$\ker(f') \to \ker(f) \to \ker(f'') \to \operatorname{coker}(f') \to \operatorname{coker}(f) \to \operatorname{coker}(f'').$$

(b) Deduce that any short exact sequence $0 \to K^{\bullet} \to L^{\bullet} \to M^{\bullet} \to 0$ of complexes in \mathscr{A} gives rise to a long exact sequence

$$\cdots \to H^{i-1}(M^{\bullet}) \to H^{i}(K^{\bullet}) \to H^{i}(L^{\bullet}) \to H^{i}(M^{\bullet}) \to H^{i+1}(K^{\bullet}) \to \cdots$$

Problem 8.4. A morphism of complexes in an abelian category is called a *quasi-isomorphism* if it induces an isomorphism between their cohomology groups in each degree.

(a) Let $\mathscr{A} = AbGps$ be the abelian category of abelian groups. Show that for every bounded above complex $K^{\bullet} \in \mathscr{C}^{-}(\mathscr{A})$ of *free* abelian groups K^{i} there exists a quasi-isomorphism between the complex and the direct sum of its cohomology groups:

$$K^{\bullet} \xrightarrow{\sim} \left[\cdots \xrightarrow{0} H^{i}(K^{\bullet}) \xrightarrow{0} H^{i+1}(K^{\bullet}) \xrightarrow{0} \cdots \right]$$

(b) Find an abelian category \mathscr{A} and complexes $K^{\bullet}, L^{\bullet} \in \mathscr{C}^{-}(\mathscr{A})$ which have isomorphic cohomology groups but no quasi-isomorphism between them in either direction.

Problem 9.1. Show that for Noetherian schemes X, the following are equivalent:

- (a) The scheme X is affine.
- (b) The underlying reduced closed subscheme X^{red} is affine.
- (c) Every irreducible component of X is affine.

Problem 9.2. Let k be a field and $X = \mathbb{A}_k^n \setminus \{0\}$ for $n \in \mathbb{N}$. Compute $H^{\bullet}(X, \mathcal{O}_X)$.

Problem 9.3. Let \mathscr{A} be an abelian category with enough injectives, and let $A, B \in \mathscr{A}$.

(a) Put $\operatorname{Ext}^{i}_{\mathscr{A}}(B,-) := R^{i}\operatorname{Hom}_{\mathscr{A}}(B,-)$. Show that $\operatorname{Ext}^{1}_{\mathscr{A}}(B,A)$ is in natural bijection with the set of isomorphism classes of short exact sequences $0 \to A \to E \to B \to 0$ in \mathscr{A} , where two such sequences with middle terms E, E' are called *isomorphic* if they fit in a commutative diagram

Hint: Embed A into an injective $I \in \mathscr{A}$ and consider fiber products $E = I \times_Q B$.

(b) Describe the group structure on $\operatorname{Ext}^{1}_{\mathscr{A}}(B,A) = R^{1}\operatorname{Hom}_{\mathscr{A}}(B,A)$ in these terms.

Problem 9.4. Let (X, \mathscr{O}_X) be a ringed space and $\mathscr{G} \in \operatorname{Mod}(\mathscr{O}_X)$.

- (a) A \mathscr{G} -torsor is a sheaf \mathscr{F} of sets on X with an action $\mathscr{G} \times \mathscr{F} \to \mathscr{F}$ such that
 - the open sets $U \subset X$ with $\mathscr{F}(U) \neq \emptyset$ form a basis for the topology of X, and
 - for all such open sets, the action of the group $\mathscr{G}(U)$ on $\mathscr{F}(U)$ is simply transitive.

Show that \mathscr{G} -torsors form a category $T(\mathscr{G})$ in which every morphism is an isomorphism.

(b) Let $E(\mathscr{G})$ be the category of exact sequences $0 \to \mathscr{G} \to \mathscr{C}_X \to 0$ in $Mod(\mathscr{O}_X)$, with morphisms the isomorphisms of short exact sequences as in problem 9.3. Show that we have an equivalence of categories

$$\tau \colon \quad E(\mathscr{G}) \xrightarrow{\sim} T(\mathscr{G}), \qquad \tau(0 \to \mathscr{G} \xrightarrow{f} \mathscr{E} \xrightarrow{g} \mathscr{O}_X \to 0) \ := \ g^{-1}(1).$$

Hint: First show full faithfulness (locally), and deduce essential surjectivity via gluing.

(c) Show that the set $\text{Tors}(\mathcal{G})$ of isomorphism classes of \mathcal{G} -torsors forms a group and we have isomorphisms

$$H^1(X,\mathscr{G}) \simeq \operatorname{Ext}^1_{\operatorname{Mod}(\mathscr{O}_X)}(\mathscr{O}_X,\mathscr{G}) \simeq \operatorname{Tors}(\mathscr{G})$$

Problem 10.1. Let $X = \mathbb{P}_k^n$ for a field k. Show via the Euler sequence that

$$\dim_k H^i(X, \wedge^j \Omega^1_{X/k}) = \begin{cases} 1 & \text{if } 0 \le i = j \le n \\ 0 & \text{else.} \end{cases}$$

Deduce that for n > 1 the coherent sheaf $\Omega^1_{X/k}$ is *not* a successive extension of line bundles.

Problem 10.2. Let k be an algebraically closed field. Consider a plane curve $X = V_+(f) \subset \mathbb{P}^2_k$ which is cut out by a homogenous polynomial $f \in H^0(\mathbb{P}^2_k, \mathscr{O}(d))$ of degree d > 0. Show that we have

$$\dim_k H^1(X, \mathscr{O}_X) = \frac{(d-1)(d-2)}{2}.$$

Problem 10.3. Let k be an algebraically closed field, and $X \subset Y = \mathbb{P}^3_k$ a proper integral curve which is a complete intersection of two homogenous polynomials, i.e. $X = V_+(f_1, f_2) \subset Y$ for suitable $f_i \in H^0(Y, \mathscr{O}_Y(d_i))$ such that the multiplication map

$$\mathscr{O}_{V_+(f_1)} \xrightarrow{f_2} \mathscr{O}_{V_+(f_1)} \otimes_{\mathscr{O}_Y} \mathscr{O}_Y(d_2)$$

is injective. Show that we have an exact sequence

$$0 \longrightarrow \mathscr{O}_Y(-d_1 - d_2) \longrightarrow \mathscr{O}_Y(-d_1) \oplus \mathscr{O}_Y(-d_2) \longrightarrow \mathscr{O}_Y \longrightarrow \mathscr{O}_X \longrightarrow 0.$$

Deduce that

$$\dim_k H^1(X, \mathscr{O}_X) = \binom{d_1 + d_2 - 1}{3} - \binom{d_1 - 1}{3} - \binom{d_2 - 1}{3}$$

and conclude that there exist projective curves that cannot be embedded in the plane.

Problem 10.4. Let X be a projective scheme over a Noetherian ring and $\mathscr{F}^1 \to \mathscr{F}^2 \to \cdots \to \mathscr{F}^r$ an exact sequence of coherent sheaves on X. Show that there exists an integer n_0 such that for all $n \ge n_0$ the following sequence remains exact:

$$\Gamma(X, \mathscr{F}^1(n)) \to \Gamma(X, \mathscr{F}^2(n)) \to \dots \to \Gamma(X, \mathscr{F}^r(n)).$$

Problem 11.1. Let k be a field, and let $X = V_+(f_1, \ldots, f_r) \subset \mathbb{P}_k^n$ be a complete intersection of dimension dim(X) = n - r > 0 cut out by a sequence of hypersurfaces $f_i \in H^0(\mathbb{P}_k^n, \mathcal{O}(d_i))$ of degrees $d_1, \ldots, d_r \geq 1$. Show:

- (a) The restriction maps $H^0(\mathbb{P}^n_k, \mathscr{O}(m)) \to H^0(X, \mathscr{O}(m)|_X)$ are surjective for all m.
- (b) The scheme X is geometrically connected.
- (c) If X is smooth over k, then $\omega_X := \wedge^{n-r} \Omega^1_X \simeq \mathscr{O}(d_1 + \cdots + d_r n 1)|_X$.

Problem 11.2. Let X be a projective 1-dimensional scheme over an algebraically closed field which contains a cycle of curves in the sense that for some integer $n \ge 2$ there are pairwise distinct 1-dimensional integral closed subschemes $C_1, \ldots, C_n \subset X$ and pairwise distinct closed points $p_1, \ldots, p_n \in X$ with

$$p_i \in C_i \cap C_{i+1 \mod n}$$

for all $i \in \{1, \ldots, n\}$. Show that $H^1(X, \mathscr{F}) \neq 0$ for the image $\mathscr{F} = \operatorname{im}(\mathscr{O}_X \to \bigoplus_{i=1}^n \mathscr{O}_{C_i})$, and deduce that

$$H^1(X, \mathscr{O}_X) \neq 0.$$

Problem 11.3. Let $X = \mathbb{P}^1_k$ for an infinite field k.

- (a) Show that \mathscr{O}_X cannot be written as a quotient of a projective object in $\operatorname{Mod}(\mathscr{O}_X)$. Hint: Consider $j_!(\mathscr{O}_U) \twoheadrightarrow i_*(\kappa(p))$ for $j: U \hookrightarrow X$ open and a closed point $i: \{p\} \hookrightarrow X$.
- (b) Show that \mathscr{O}_X cannot be written as a quotient of a projective object in $\operatorname{QCoh}(X)$. Hint: Consider $\mathscr{L} \twoheadrightarrow \mathscr{L} \otimes \kappa(p)$ for a line bundle $\mathscr{L} \in \operatorname{Pic}(X)$ and a closed point $p \in X$.

Problem 11.4. Let X be a noetherian scheme, and assume that $\operatorname{Coh}(X)$ has enough locally free sheaves. For any coherent sheaf $\mathscr{F} \in \operatorname{Coh}(X)$, define its homological dimension $\operatorname{hd}(\mathscr{F})$ by

 $\mathrm{hd}(\mathscr{F}) := \min \{ n \in \mathbb{N}_0 \mid \exists \text{ locally free resolution } 0 \to \mathscr{L}_n \to \cdots \to \mathscr{L}_0 \to \mathscr{F} \to 0 \} \cup \{\infty\}.$

Show:

- (a) \mathscr{F} is locally free iff $\mathscr{E}xt^1_{\mathscr{O}_X}(\mathscr{F},\mathscr{G}) = 0$ for all $\mathscr{G} \in \operatorname{Mod}(X)$.
- (b) $\operatorname{hd}(\mathscr{F}) \leq n$ iff $\mathscr{E}xt^{i}_{\mathscr{O}_{X}}(\mathscr{F},\mathscr{G}) = 0$ for all i > n and all $\mathscr{G} \in \operatorname{Mod}(X)$.
- (c) $\operatorname{hd}(\mathscr{F}) = \sup_{x \in X} \operatorname{pd}(\mathscr{F}_x)$ (where pd: $\operatorname{Mod}(\mathscr{O}_{X,x}) \to \mathbb{N}_0 \cup \{\infty\}$ denotes the projective dimension, i.e. the smallest length of a resolution by projective modules over $\mathscr{O}_{X,x}$).

Problem 12.1. Let X be a Cohen-Macaulay scheme, and denote by $\pi: \tilde{X} = \text{Bl}_Z(X) \to X$ its blowup along a complete intersection $Z \subset X$.

- (a) Show that $E = \pi^{-1}(Z)$ is Cohen-Macaulay, and deduce that \tilde{X} is Cohen-Macaulay.
- (b) Let $f: X \to S$ be a morphism to a regular scheme S such that all fibers of f are equidimensional of the same dimension. Fix a closed point $\tilde{x} \in E$ with images $x = \pi(\tilde{x})$ and s = f(x). Show that the following two properties are equivalent:
 - $f \circ \pi \colon \tilde{X} \to S$ is flat at \tilde{x} .
 - $\dim_x(Z) \dim_x(Z \cap X_s) \ge \dim_s(S) 1.$

Problem 12.2. Let X be a smooth variety of dimension n over a field k. Let $\pi: \tilde{X} \to X$ be its blowup in a point $p \in X(k)$, and let $E = \pi^{-1}(p) \simeq \mathbb{P}_k^{n-1}$ be the exceptional divisor.

- (a) Show that the normal bundle of $E \subset \tilde{X}$ is isomorphic to $\mathscr{O}_E(-1)$.
- (b) Let $\mathscr{M} := \omega_{\tilde{X}} \otimes \pi^*(\omega_X^{\vee}) \in \operatorname{Pic}(\tilde{X})$. Show that the restriction $\mathscr{M}|_{\tilde{X}\setminus E}$ is trivial, and deduce that $\omega_{\tilde{X}} \simeq \pi^*(\omega_X) \otimes \mathscr{O}_{\tilde{X}}((n-1)E).$

Problem 12.3. Let $f: X \to Y$ be a finite morphism of Noetherian schemes.

(a) Let $\mathscr{G} \in \operatorname{Coh}(X)$. Show that up to isomorphism there exists a unique $f^!(\mathscr{G}) \in \operatorname{Coh}(X)$ with

 $f_*(f^!(\mathscr{G})) \simeq \mathscr{H}om_Y(f_*(\mathscr{O}_X), \mathscr{G})$ in $\operatorname{Mod}(f_*\mathscr{O}_X),$

(b) Show that we have $f_*\mathscr{H}om(\mathscr{F}, f^!(\mathscr{G})) \simeq \mathscr{H}om_Y(f_*(\mathscr{F}), \mathscr{G})$ for all $\mathscr{F} \in \operatorname{Coh}(X)$.

Problem 12.4. Let X be a projective scheme of pure dimension n over a field k.

(a) Let $f: X \to Y$ be a finite flat morphism to another projective scheme over k. Show that for any dualizing sheaf $(\omega_Y^\circ, \operatorname{tr}_Y)$ on Y we get a dualizing sheaf $(\omega_X^\circ, \operatorname{tr}_X)$ on X by taking $\omega_X^\circ := f^!(\omega_Y^\circ)$ (with notations as in the previous problem), endowed with the trace map

$$\operatorname{tr}_X: H^n(X, f^! \omega_Y^\circ) \simeq H^n(Y, f_* f^! \omega_Y^\circ) \longrightarrow H^n(Y, \omega_Y^\circ) \xrightarrow{\operatorname{tr}_Y} k_Y$$

(b) Use this to construct on any projective Cohen-Macaulay scheme X of pure dimension n over k a dualizing sheaf, by taking $f: X \to Y = \mathbb{P}^n$ to be a suitable projection.