Please hand in your solutions after the lectures if you want them to be corrected.

Problem 1. Fix $\alpha \in \mathbb{C}$. Sending an open $U \subset X=\mathbb{C} \backslash\{0\}$ to the complex vector space

$$
\mathscr{L}_{\alpha}(U)=\left\{f: U \rightarrow \mathbb{C} \text { holomorphic } \mid z f^{\prime}(z)=\alpha f(z)\right\} .
$$

gives a local system on X. Compute its monodromy around a generator of $\pi_{1}(X, 1)$.

Problem 2. Show that for the Weyl algebra $\mathscr{D}=\mathbb{C}[z]\langle\partial\rangle$ one has an isomorphism of left \mathscr{D}-modules

$$
\varphi: \quad \mathscr{D} / \mathscr{D}(z(z+1) \partial+1) \xrightarrow{\sim} \mathscr{D} / \mathscr{D}(z \partial+1) .
$$

Problem 3. Let k be a field. Consider the Weyl algebra $\mathscr{D}=\mathscr{D}_{n, K}$ over $K=k(s)$ and fix a non-constant polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$.
(a) Show that $\mathscr{M}=K\left[x_{1}, \ldots, x_{n}, 1 / f\right]$ is endowed with a left \mathscr{D}-module structure via

$$
x_{i}(g):=x_{i} \cdot g, \quad \partial_{i}(g):=\frac{\partial g}{\partial x_{i}}+\frac{s g}{f} \cdot \frac{\partial f}{\partial x_{i}} \quad \text { for } \quad g \in \mathscr{M}
$$

(b) Is this isomorphic to the "usual" \mathscr{D}-module structure where $\partial_{i}(g):=\frac{\partial g}{\partial x_{i}}$?

Problem 4. Determine the Bernstein-Sato polynomial $b_{f}(s) \in \mathbb{Q}[s]$ for each of the polynomials
(a) $f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$ with $e_{1}, \ldots, e_{n} \in \mathbb{N}_{0}$,
(b) $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{3}$.

Please hand in your solutions after the lectures if you want them to be corrected.

Problem 1. Let $\mathscr{D}=\mathscr{D}_{n, k}$ be the Weyl algebra in n variables over a field k.
(a) Check that both for the order and for the Bernstein filtration the associated graded $g r_{\bullet}^{F}(\mathscr{D})$ is a polynomial ring. What is the degree of the variables?
(b) In both cases, find the biggest $\delta \in \mathbb{N}_{0}$ with $\left[F_{i} \mathscr{D}, F_{j} \mathscr{D}\right] \subseteq F_{i+j-\delta} \mathscr{D}$ for all i, j.

Problem 2. In the lecture we have used that for a function $h: \mathbb{Z} \rightarrow \mathbb{Q}$ the following are equivalent:
(a) There exists $p(t) \in \mathbb{Q}[t]$ with $h(i)=p(i)$ for all large enough $i \in \mathbb{Z}$.
(b) There exists $q(t) \in \mathbb{Q}[t]$ with $h(i)-h(i-1)=q(i)$ for all large enough $i \in \mathbb{Z}$.

Verify this statement and show that in this case $\operatorname{deg}(p)=\operatorname{deg}(q)+1$.

Problem 3. (a) Show by induction on the degree that

$$
R=\{p \in \mathbb{Q}[t] \mid p(i) \in \mathbb{Z} \text { for all sufficiently large } i \in \mathbb{Z}\}
$$

is a free abelian group on the polynomials

$$
p_{d}(t)=\frac{t(t-1) \cdots(t-d+1)}{d!} \text { for } d \in \mathbb{N}_{0}
$$

(b) Let $\mathscr{D}=\mathscr{D}_{n, k}$ be the Weyl algebra over a field k. Deduce that if we write the Hilbert polynomial of a finitely generated \mathscr{D}-module \mathscr{M} with a good filtration $F_{\bullet} \mathscr{M}$ as

$$
p_{\mathscr{M}, F_{\bullet}}(t)=c \cdot \frac{t^{d}}{d!}+\text { lower order terms, } \quad \text { then } c \geq 0 \text { is an integer. }
$$

Please hand in your solutions after the lectures if you want them to be corrected.

Problem 1. Let $\mathscr{D}=k[x]\langle\partial\rangle$ for a field k of characteristic zero.
(a) Show that the morphism $\varphi: \mathscr{D} \oplus \mathscr{D} \rightarrow \mathscr{D},(a, b) \mapsto a \partial+b x$ is onto.
(b) Show that $\operatorname{ker}(\varphi)$ is isomorphic to the left submodule $\mathscr{D} \cdot x^{2}+\mathscr{D} \cdot \partial x \subset \mathscr{D}$ and deduce that the latter is projective. Is it free?

Problem 2. Let $\mathscr{D}=k[x]\langle\partial\rangle$ as above.
(a) Compute $\operatorname{Ext}_{\mathscr{D}}^{\bullet}\left(\mathscr{M}_{2}, \mathscr{M}_{1}\right)$ for all choices of $\mathscr{M}_{i}=\mathscr{D} / \mathscr{D} P_{i}$ with $P_{1}, P_{2} \in\{x, \partial\}$.
(b) In all cases where $\operatorname{Ext}_{\mathscr{D}}^{1}\left(\mathscr{M}_{2}, \mathscr{M}_{1}\right) \neq\{0\}$, try to describe explicitly a nonsplit extension

$$
0 \rightarrow \mathscr{M}_{1} \rightarrow \mathscr{M} \rightarrow \mathscr{M}_{2} \rightarrow 0 \quad \text { with } \quad \mathscr{M} \in \operatorname{Mod}(\mathscr{D}) .
$$

Problem 3. Consider $\mathscr{D}=\mathscr{D}_{n, k}$ with the order filtration. For $P \in F_{d}(\mathscr{D}) \backslash F_{d-1}(\mathscr{D})$ we define its symbol to be the image $\sigma(P)=[P] \in \operatorname{Gr}_{d}^{F}(\mathscr{D})$. More generally, for a left ideal $\mathscr{I} \unlhd \mathscr{D}$ we put

$$
\sigma(\mathscr{I})=\langle\sigma(P) \mid P \in \mathscr{I}\rangle \unlhd \operatorname{Gr}_{\bullet}^{F}(\mathscr{D})
$$

Show that
(a) the characteristic variety of $\mathscr{M}=\mathscr{D} / \mathscr{I}$ is the zero locus Char $(\mathscr{M})=Z(\sigma(\mathscr{I}))$,
(b) it can happen that $\mathscr{I}=\mathscr{D} \cdot\left(P_{1}, \ldots, P_{m}\right)$ but $Z(\sigma(\mathscr{I})) \neq Z\left(\sigma\left(P_{1}\right), \ldots, \sigma\left(P_{m}\right)\right)$.

Problem 4. We say that in an abelian category a morphism $\varphi: \mathscr{M} \rightarrow \mathscr{N}$ of filtered objects is strict if $F_{i}(\mathscr{N}) \cap \varphi(\mathscr{M})=\varphi\left(F_{i}(\mathscr{M})\right)$ for all $i \in \mathbb{Z}$.
(a) Show that for any exact sequence of strict morphisms of filtered objects the associated sequence of graded objects is exact. Can strictness be dropped?
(b) Show that for $\mathscr{D}=\mathscr{D}_{n, k}$ every $\mathscr{M} \in \operatorname{Mod}(\mathscr{D})$ with a good filtration admits a resolution

$$
\cdots \xrightarrow{d_{2}} \mathscr{M}_{1} \xrightarrow{d_{1}} \mathscr{M}_{0} \xrightarrow{d_{0}} \mathscr{M} \rightarrow 0
$$

where the $\mathscr{M}_{i}=\bigoplus_{j=1}^{n_{i}} \mathscr{D}\left(a_{i j}\right)$ are free filtered modules and all d_{i} are strict.

Let X be a smooth variety over an algebraically closed field k. Unless otherwise stated we always assume that $\operatorname{char}(k)=0$.

Problem 1. Let \mathscr{T} be a Lie algebroid on X and $U\left(\mathscr{T} / \mathscr{O}_{X}\right)$ its universal enveloping algebra as defined in the lecture. Show that sheaves of left modules for $U\left(\mathscr{T} / \mathscr{O}_{X}\right)$ correspond bijectively to \mathscr{O}_{X}-modules \mathscr{M} endowed with a homomorphism of sheaves of Lie algebras

$$
\mathscr{T} \oplus \mathscr{O}_{X} \longrightarrow \mathscr{E} n d_{k}(\mathscr{M})
$$

such that

$$
\begin{aligned}
& f \cdot(\xi \cdot m)=(f \cdot \xi) \cdot m \\
& \xi \cdot(f \cdot m)=\xi(f) \cdot m+f \cdot(\xi \cdot m) \quad \forall f \in \mathscr{O}_{X}, \xi \in \mathscr{T}, m \in \mathscr{M} .
\end{aligned}
$$

Can you formulate corresponding statements for right modules?

Problem 2. In the lecture we formally defined the symbol of $P \in F_{d} \mathscr{D}_{X}$ in local coordinates x_{1}, \ldots, x_{n} as the d-fold commutator

$$
\sigma_{d}(P)=\frac{1}{d!}[\cdots[[P, f], f], \ldots, f] \in \mathscr{O}_{X}\left[\xi_{1}, \ldots, \xi_{n}\right] \quad \text { with } \quad f=\sum_{i=1}^{n} \xi_{i} \partial_{i}
$$

Verify that

$$
\sigma_{d}\left(\sum_{|I| \leq d} f_{I} \partial^{I}\right)=\sum_{|I|=d} f_{I} \xi^{I} \quad \text { for all } \quad f_{I} \in \mathscr{O}_{X}
$$

Problem 3. In the lecture we have seen three possible definitions for the sheaf of differential operators on X : As the universal enveloping algebra of the tangent Lie algebroid, its image inside $\mathscr{E} n d_{k}\left(\mathscr{O}_{X}\right)$, or via Grothendieck's definition. Are the two maps

$$
U\left(\mathscr{T}_{X} / \mathscr{O}_{X}\right) \rightarrow \mathscr{D}_{X} \hookrightarrow \mathscr{D}^{\text {iff }} X_{X}
$$

isomorphisms for the affine line $X=\mathbb{A}_{k}^{1}$ in characteristic $\operatorname{char}(k)=p>0$?

Problem 4. Show directly from the definition of the sheaf $\mathscr{D} i f f_{X} \subset \mathscr{E} n d_{k}\left(\mathscr{O}_{X}\right)$ of Grothendieck differential operators that if x_{1}, \ldots, x_{n} is a local coordinate system on X, then

$$
\left\{P \in \mathscr{D}^{\text {iff }_{X}} \mid\left[P, x_{i}\right]=0 \text { for } i=1, \ldots, n\right\}=\mathscr{O}_{X} .
$$

Let X be a smooth variety over an algebraically closed field k with $\operatorname{char}(k)=0$.

Problem 1. Let \mathscr{E} be a locally free \mathscr{O}_{X}-module with a connection $\nabla: \mathscr{E} \rightarrow \Omega_{X}^{1}(\mathscr{E})$.
(a) Show that

$$
(\nabla \alpha)(\xi \otimes \eta)=\nabla_{\xi}(\alpha(\eta))-\nabla_{\eta}(\alpha(\xi))-\alpha([\xi, \eta]) \quad \text { for all } \alpha \in \Omega_{X}^{1}(\mathscr{E}), \xi, \eta \in \mathscr{T}_{X}
$$

(b) Deduce that the connection ∇ is flat iff $\left[\nabla_{\xi}, \nabla_{\eta}\right]=\nabla_{[\xi, \eta]}$.

Problem 2. Assume that $X=\operatorname{Spec}(A)$ is affine, and put $D=H^{0}\left(X, \mathscr{D}_{X}\right)$.
(a) Fix $f \in A$. Show that for every $P \in D$ there exist $Q_{1}, Q_{2} \in D$ and $n_{1}, n_{2} \in \mathbb{N}$ with

$$
P \cdot f^{n_{1}}=f \cdot Q_{1} \quad \text { and } \quad f^{n_{2}} \cdot P=Q_{2} \cdot f
$$

(b) Deduce that $D \otimes_{A} A_{f} \simeq A_{f} \otimes_{A} D \simeq H^{0}\left(U, \mathscr{D}_{X}\right)$ for the open $U=\operatorname{Spec}\left(A_{f}\right)$.

Problem 3. Let V be an n-dimensional k-vector space with dual $V^{*}=\operatorname{Hom}_{k}(V, k)$, say

$$
\begin{aligned}
V & =\text { Spec } k\left[x_{1}, \ldots, x_{n}\right] \quad \text { with linear coordinates } \quad x_{1}, \ldots, x_{n} \in V^{*} \\
V^{*} & =\text { Spec } k\left[y_{1}, \ldots, y_{n}\right] \quad \text { with the dual coordinates } \quad y_{1}, \ldots, y_{n} \in V^{* *}
\end{aligned}
$$

where the dual coordinates satisfy $y_{i}\left(x_{j}\right)=\delta_{i j}$. Define the Fourier transform as the functor

$$
\Phi_{V}: \operatorname{Mod}_{q c}\left(\mathscr{D}_{V}\right) \longrightarrow \operatorname{Mod}_{q c}\left(\mathscr{D}_{V^{*}}\right)
$$

which is the identity on the underlying vector spaces of global sections but with $\mathscr{D}_{V^{*}}$ acting on the Fourier transform of $\mathscr{M} \in \operatorname{Mod}_{q c}\left(\mathscr{D}_{V}\right)$ by

$$
\left.\begin{array}{r}
y_{i} \cdot m:=\partial_{x_{i}} \cdot m \\
\partial_{y_{i}} \cdot m:=-x_{i} \cdot m
\end{array}\right\} \text { for } m \in H^{0}\left(V^{*}, \Phi_{V}(\mathscr{M})\right)=H^{0}(V, \mathscr{M}) .
$$

Show that Φ_{V} is an equivalence of categories and does not depend on the chosen dual coordinate systems. Deduce that for any linear map $f: V \rightarrow W$ of vector spaces the naive pushforward for \mathscr{D}-modules and the pullback under the transpose $\operatorname{map} f^{t}: W^{*} \rightarrow V^{*}$ satisfy

$$
\Phi_{W} \circ f_{\text {naive }}=\left(f^{t}\right)^{*} \circ \Phi_{V}
$$

Let X be a smooth variety over an algebraically closed field k with $\operatorname{char}(k)=0$. In what follows $\otimes=\otimes_{\mathscr{O}_{X}}$ always denotes the tensor product over \mathscr{O}_{X}.

Problem 1. Show that extending scalars via the homomorphism $\mathscr{O}_{X} \rightarrow \mathscr{D}_{X}$ gives exact functors

$$
\begin{array}{rlrl}
\operatorname{Coh}\left(\mathscr{O}_{X}\right) & \longrightarrow \operatorname{Coh}\left(\mathscr{D}_{X}\right), & \operatorname{Coh}\left(\mathscr{O}_{X}\right) & \longrightarrow \operatorname{Coh}\left(\mathscr{D}_{X}\right), \\
\mathscr{F} & \mapsto \mathscr{D}_{X} \otimes \mathscr{F} & \mathscr{G} & \mapsto \mathscr{G} \otimes \mathscr{D}_{X}
\end{array}
$$

and that one has the following isomorphisms of right \mathscr{D}_{X}-modules:

- $\omega_{X} \otimes\left(\mathscr{D}_{X} \otimes \mathscr{F}\right) \simeq \mathscr{G} \otimes \mathscr{D}_{X}$ for the coherent sheaf $\mathscr{G}=\omega_{X} \otimes \mathscr{F}$,
- $\mathscr{E}^{x} t_{\mathscr{D}_{X}}^{j}\left(\mathscr{D}_{X} \otimes \mathscr{F}, \mathscr{D}_{X}\right) \simeq \mathscr{G} \otimes \mathscr{D}_{X}$ for all $j \in \mathbb{N}_{0}$ and $\mathscr{G}=\mathscr{E}^{x} t_{\mathscr{O}_{X}}^{j}\left(\mathscr{F}, \mathscr{O}_{X}\right)$.

Problem 2. Show that for the Dirac module $\delta_{p} \in \operatorname{Coh}\left(\mathscr{D}_{X}\right)$ on a point $p \in X$ one has

$$
\mathscr{E}^{x} t_{\mathscr{D}_{X}}^{j}\left(\delta_{p}, \mathscr{D}_{X}\right) \simeq \begin{cases}\omega_{X} \otimes \delta_{p} & \text { if } j=\operatorname{dim} X \\ 0 & \text { otherwise }\end{cases}
$$

Problem 3. Show that the left \mathscr{D}_{X}-module \mathscr{O}_{X} admits a locally free resolution of the form

$$
\mathscr{D}_{X} \otimes \operatorname{Alt}_{\mathscr{O}_{X}}^{n}\left(\mathscr{T}_{X}\right) \xrightarrow{d} \mathscr{D}_{X} \otimes \operatorname{Alt}_{\mathscr{O}_{X}}^{n-1}\left(\mathscr{T}_{X}\right) \xrightarrow{d} \cdots \xrightarrow{d} \mathscr{D}_{X} \otimes \mathscr{T}_{X} \xrightarrow{d} \mathscr{D}_{X} \xrightarrow{\varphi} \mathscr{O}_{X} .
$$

Here $\varphi(P):=P(1)$ and the differentials are described in local coordinates $\left(x_{i}, \partial_{i}\right)$ by

$$
d\left(P \otimes \partial_{i_{1}} \wedge \cdots \wedge \partial_{i_{r}}\right)=\sum_{\nu=1}^{r}(-1)^{\nu+1}\left(P \cdot \partial_{i_{\nu}}\right) \otimes \partial_{i_{1}} \wedge \cdots \wedge \widehat{\partial}_{i_{\nu}} \wedge \cdots \wedge \partial_{i_{r}}
$$

where the notation on the right hand side means that the ν-th factor is omitted from the wedge product. Deduce that

$$
\mathscr{E}_{2} t_{\mathscr{D}_{X}}^{j}\left(\mathscr{O}_{X}, \mathscr{D}_{X}\right) \simeq \begin{cases}\omega_{X} & \text { if } j=\operatorname{dim} X \\ 0 & \text { otherwise }\end{cases}
$$

