T. Krämer

Please hand in your solutions after the lectures if you want them to be corrected.

Problem 1. Fix $\alpha \in \mathbb{C}$. Sending an open $U \subset X = \mathbb{C} \setminus \{0\}$ to the complex vector space

$$\mathscr{L}_{\alpha}(U) = \{ f: U \to \mathbb{C} \text{ holomorphic } | zf'(z) = \alpha f(z) \}.$$

gives a local system on X. Compute its monodromy around a generator of $\pi_1(X, 1)$.

Problem 2. Show that for the Weyl algebra $\mathscr{D} = \mathbb{C}[z]\langle \partial \rangle$ one has an isomorphism of left \mathscr{D} -modules

$$\varphi: \quad \mathscr{D}/\mathscr{D}(z(z+1)\partial+1) \ \overset{\sim}{\longrightarrow} \ \mathscr{D}/\mathscr{D}(z\partial+1).$$

Problem 3. Let k be a field. Consider the Weyl algebra $\mathscr{D} = \mathscr{D}_{n,K}$ over K = k(s) and fix a non-constant polynomial $f \in k[x_1, \ldots, x_n]$.

(a) Show that $\mathcal{M} = K[x_1, \dots, x_n, 1/f]$ is endowed with a left \mathscr{D} -module structure via

 $x_i(g) := x_i \cdot g, \quad \partial_i(g) := \frac{\partial g}{\partial x_i} + \frac{sg}{f} \cdot \frac{\partial f}{\partial x_i} \quad \text{for} \quad g \in \mathscr{M}.$

(b) Is this isomorphic to the "usual" \mathscr{D} -module structure where $\partial_i(g) := \frac{\partial g}{\partial x_i}$?

Problem 4. Determine the Bernstein-Sato polynomial $b_f(s) \in \mathbb{Q}[s]$ for each of the polynomials

- (a) $f(x_1, ..., x_n) = x_1^{e_1} \cdots x_n^{e_n}$ with $e_1, ..., e_n \in \mathbb{N}_0$,
- (b) $f(x_1, x_2) = x_1^2 x_2^3$.

T. Krämer

Please hand in your solutions after the lectures if you want them to be corrected.

Problem 1. Let $\mathscr{D} = \mathscr{D}_{n,k}$ be the Weyl algebra in *n* variables over a field *k*.

- (a) Check that both for the order and for the Bernstein filtration the associated graded $gr_{\bullet}^{F}(\mathscr{D})$ is a polynomial ring. What is the degree of the variables?
- (b) In both cases, find the biggest $\delta \in \mathbb{N}_0$ with $[F_i \mathscr{D}, F_j \mathscr{D}] \subseteq F_{i+j-\delta} \mathscr{D}$ for all i, j.

Problem 2. In the lecture we have used that for a function $h : \mathbb{Z} \to \mathbb{Q}$ the following are equivalent:

- (a) There exists $p(t) \in \mathbb{Q}[t]$ with h(i) = p(i) for all large enough $i \in \mathbb{Z}$.
- (b) There exists $q(t) \in \mathbb{Q}[t]$ with h(i) h(i-1) = q(i) for all large enough $i \in \mathbb{Z}$.

Verify this statement and show that in this case $\deg(p) = \deg(q) + 1$.

Problem 3. (a) Show by induction on the degree that

 $R = \left\{ p \in \mathbb{Q}[t] \mid p(i) \in \mathbb{Z} \text{ for all sufficiently large } i \in \mathbb{Z} \right\}$

is a free abelian group on the polynomials

$$p_d(t) = \frac{t(t-1)\cdots(t-d+1)}{d!} \quad \text{for} \quad d \in \mathbb{N}_0.$$

(b) Let $\mathscr{D} = \mathscr{D}_{n,k}$ be the Weyl algebra over a field k. Deduce that if we write the Hilbert polynomial of a finitely generated \mathscr{D} -module \mathscr{M} with a good filtration $F_{\bullet}\mathscr{M}$ as

 $p_{\mathscr{M},F_{\bullet}}(t) = c \cdot \frac{t^d}{d!} + lower \ order \ terms, \quad \text{then } c \ge 0 \text{ is an integer.}$

T. Krämer

Please hand in your solutions after the lectures if you want them to be corrected.

Problem 1. Let $\mathscr{D} = k[x]\langle \partial \rangle$ for a field k of characteristic zero.

- (a) Show that the morphism $\varphi : \mathscr{D} \oplus \mathscr{D} \to \mathscr{D}, (a, b) \mapsto a\partial + bx$ is onto.
- (b) Show that $\ker(\varphi)$ is isomorphic to the left submodule $\mathscr{D} \cdot x^2 + \mathscr{D} \cdot \partial x \subset \mathscr{D}$ and deduce that the latter is projective. Is it free?

Problem 2. Let $\mathscr{D} = k[x]\langle \partial \rangle$ as above.

- (a) Compute $\operatorname{Ext}_{\mathscr{D}}^{\bullet}(\mathscr{M}_2, \mathscr{M}_1)$ for all choices of $\mathscr{M}_i = \mathscr{D}/\mathscr{D}P_i$ with $P_1, P_2 \in \{x, \partial\}$.
- (b) In all cases where $\operatorname{Ext}_{\mathscr{D}}^{1}(\mathscr{M}_{2},\mathscr{M}_{1}) \neq \{0\}$, try to describe explicitly a nonsplit extension

$$0 \to \mathscr{M}_1 \to \mathscr{M} \to \mathscr{M}_2 \to 0 \quad \text{with} \quad \mathscr{M} \in \operatorname{Mod}(\mathscr{D}).$$

Problem 3. Consider $\mathscr{D} = \mathscr{D}_{n,k}$ with the order filtration. For $P \in F_d(\mathscr{D}) \setminus F_{d-1}(\mathscr{D})$ we define its *symbol* to be the image $\sigma(P) = [P] \in \operatorname{Gr}_d^F(\mathscr{D})$. More generally, for a left ideal $\mathscr{I} \leq \mathscr{D}$ we put

$$\sigma(\mathscr{I}) = \langle \sigma(P) \mid P \in \mathscr{I} \rangle \trianglelefteq \operatorname{Gr}_{\bullet}^{F}(\mathscr{D})$$

Show that

- (a) the characteristic variety of $\mathscr{M} = \mathscr{D}/\mathscr{I}$ is the zero locus $\operatorname{Char}(\mathscr{M}) = Z(\sigma(\mathscr{I})),$
- (b) it can happen that $\mathscr{I} = \mathscr{D} \cdot (P_1, \ldots, P_m)$ but $Z(\sigma(\mathscr{I})) \neq Z(\sigma(P_1), \ldots, \sigma(P_m))$.

Problem 4. We say that in an abelian category a morphism $\varphi : \mathcal{M} \to \mathcal{N}$ of filtered objects is *strict* if $F_i(\mathcal{N}) \cap \varphi(\mathcal{M}) = \varphi(F_i(\mathcal{M}))$ for all $i \in \mathbb{Z}$.

- (a) Show that for any exact sequence of strict morphisms of filtered objects the associated sequence of graded objects is exact. Can strictness be dropped?
- (b) Show that for $\mathscr{D} = \mathscr{D}_{n,k}$ every $\mathscr{M} \in Mod(\mathscr{D})$ with a good filtration admits a resolution

 $\cdots \xrightarrow{d_2} \mathscr{M}_1 \xrightarrow{d_1} \mathscr{M}_0 \xrightarrow{d_0} \mathscr{M} \to 0$

where the $\mathcal{M}_i = \bigoplus_{j=1}^{n_i} \mathcal{D}(a_{ij})$ are free filtered modules and all d_i are strict.

www.math.hu-berlin.de/~kraemeth/d-modules/

Lectures on \mathscr{D} -Modules	Problem Set 4
T. Krämer	June 11, 2019

Let X be a smooth variety over an algebraically closed field k. Unless otherwise stated we always assume that char(k) = 0.

Problem 1. Let \mathscr{T} be a Lie algebroid on X and $U(\mathscr{T}/\mathscr{O}_X)$ its universal enveloping algebra as defined in the lecture. Show that sheaves of left modules for $U(\mathscr{T}/\mathscr{O}_X)$ correspond bijectively to \mathscr{O}_X -modules \mathscr{M} endowed with a homomorphism of sheaves of Lie algebras

$$\mathscr{T} \oplus \mathscr{O}_X \longrightarrow \mathscr{E}nd_k(\mathscr{M})$$

such that

$$\begin{aligned} f \cdot (\xi \cdot m) &= (f \cdot \xi) \cdot m, \\ \xi \cdot (f \cdot m) &= \xi(f) \cdot m + f \cdot (\xi \cdot m) \quad \forall \ f \in \mathcal{O}_X, \ \xi \in \mathcal{T}, \ m \in \mathcal{M}. \end{aligned}$$

Can you formulate corresponding statements for right modules?

Problem 2. In the lecture we formally defined the symbol of $P \in F_d \mathscr{D}_X$ in local coordinates x_1, \ldots, x_n as the *d*-fold commutator

$$\sigma_d(P) = \frac{1}{d!} [\cdots [[P, f], f], \dots, f] \in \mathscr{O}_X[\xi_1, \dots, \xi_n] \quad \text{with} \quad f = \sum_{i=1}^n \xi_i \,\partial_i.$$

Verify that

$$\sigma_d \left(\sum_{|I| \le d} f_I \, \partial^I \right) = \sum_{|I| = d} f_I \, \xi^I \quad \text{for all} \quad f_I \in \mathcal{O}_X.$$

Problem 3. In the lecture we have seen three possible definitions for the sheaf of differential operators on X: As the universal enveloping algebra of the tangent Lie algebroid, its image inside $\mathscr{E}nd_k(\mathscr{O}_X)$, or via Grothendieck's definition. Are the two maps

$$U(\mathscr{T}_X/\mathscr{O}_X) \twoheadrightarrow \mathscr{D}_X \hookrightarrow \mathscr{D}iff_X$$

isomorphisms for the affine line $X = \mathbb{A}_k^1$ in characteristic char(k) = p > 0?

Problem 4. Show directly from the definition of the sheaf $\mathscr{D}iff_X \subset \mathscr{E}nd_k(\mathscr{O}_X)$ of Grothendieck differential operators that if x_1, \ldots, x_n is a local coordinate system on X, then

$$\left\{P \in \mathscr{D}iff_X \mid [P, x_i] = 0 \text{ for } i = 1, \dots, n\right\} = \mathscr{O}_X.$$

www.math.hu-berlin.de/~kraemeth/d-modules/

Let X be a smooth variety over an algebraically closed field k with char(k) = 0.

Problem 1. Let \mathscr{E} be a locally free \mathscr{O}_X -module with a connection $\nabla : \mathscr{E} \to \Omega^1_X(\mathscr{E})$.

(a) Show that

$$(\nabla \alpha)(\xi \otimes \eta) = \nabla_{\xi}(\alpha(\eta)) - \nabla_{\eta}(\alpha(\xi)) - \alpha([\xi, \eta]) \text{ for all } \alpha \in \Omega^{1}_{X}(\mathscr{E}), \, \xi, \eta \in \mathscr{T}_{X}$$

(b) Deduce that the connection ∇ is flat iff $[\nabla_{\xi}, \nabla_{\eta}] = \nabla_{[\xi,\eta]}$.

Problem 2. Assume that X = Spec(A) is affine, and put $D = H^0(X, \mathscr{D}_X)$.

(a) Fix $f \in A$. Show that for every $P \in D$ there exist $Q_1, Q_2 \in D$ and $n_1, n_2 \in \mathbb{N}$ with $P = f^{n_1} = f Q$ and $f^{n_2} = P = Q$, f

$$P \cdot f^{**} = f \cdot Q_1$$
 and $f^{**} \cdot P = Q_2 \cdot f$.

(b) Deduce that $D \otimes_A A_f \simeq A_f \otimes_A D \simeq H^0(U, \mathscr{D}_X)$ for the open $U = \operatorname{Spec}(A_f)$.

Problem 3. Let V be an n-dimensional k-vector space with dual $V^* = \operatorname{Hom}_k(V, k)$, say

$$V = \operatorname{Spec} k[x_1, \dots, x_n] \quad \text{with linear coordinates} \quad x_1, \dots, x_n \in V^*$$
$$V^* = \operatorname{Spec} k[y_1, \dots, y_n] \quad \text{with the dual coordinates} \quad y_1, \dots, y_n \in V^{**}$$

where the dual coordinates satisfy $y_i(x_j) = \delta_{ij}$. Define the Fourier transform as the functor

$$\Phi_V: \operatorname{Mod}_{qc}(\mathscr{D}_V) \longrightarrow \operatorname{Mod}_{qc}(\mathscr{D}_{V^*})$$

which is the identity on the underlying vector spaces of global sections but with \mathscr{D}_{V^*} acting on the Fourier transform of $\mathscr{M} \in \operatorname{Mod}_{qc}(\mathscr{D}_V)$ by

$$\begin{array}{l} y_i \cdot m := \partial_{x_i} \cdot m \\ \partial_{y_i} \cdot m := -x_i \cdot m \end{array} \right\} \quad \text{for} \quad m \in H^0(V^*, \Phi_V(\mathscr{M})) = H^0(V, \mathscr{M}).$$

Show that Φ_V is an equivalence of categories and does not depend on the chosen dual coordinate systems. Deduce that for any linear map $f: V \to W$ of vector spaces the naive pushforward for \mathscr{D} -modules and the pullback under the transpose map $f^t: W^* \to V^*$ satisfy

$$\Phi_W \circ f_{naive} = (f^t)^* \circ \Phi_V$$

Lectures on \mathscr{D} -Modules	Problem Set 6
T. Krämer	July 4, 2019

Let X be a smooth variety over an algebraically closed field k with $\operatorname{char}(k) = 0$. In what follows $\otimes = \otimes_{\mathscr{O}_X}$ always denotes the tensor product over \mathscr{O}_X .

Problem 1. Show that extending scalars via the homomorphism $\mathscr{O}_X \to \mathscr{D}_X$ gives exact functors

$$\begin{array}{ccc} \operatorname{Coh}(\mathscr{O}_X) & \longrightarrow & \operatorname{Coh}(\mathscr{D}_X), \\ \mathscr{F} & \mapsto & \mathscr{D}_X \otimes \mathscr{F} \end{array} & \begin{array}{ccc} \operatorname{Coh}(\mathscr{O}_X) & \longrightarrow & \operatorname{Coh}(\mathscr{D}_X), \\ \mathscr{G} & \mapsto & \mathscr{G} \otimes \mathscr{D}_X \end{array}$$

and that one has the following isomorphisms of right \mathcal{D}_X -modules:

- $\omega_X \otimes (\mathscr{D}_X \otimes \mathscr{F}) \simeq \mathscr{G} \otimes \mathscr{D}_X$ for the coherent sheaf $\mathscr{G} = \omega_X \otimes \mathscr{F}$,
- $\mathscr{E}xt^{j}_{\mathscr{D}_{X}}(\mathscr{D}_{X}\otimes\mathscr{F},\mathscr{D}_{X})\simeq\mathscr{G}\otimes\mathscr{D}_{X}$ for all $j\in\mathbb{N}_{0}$ and $\mathscr{G}=\mathscr{E}xt^{j}_{\mathscr{O}_{X}}(\mathscr{F},\mathscr{O}_{X}).$

Problem 2. Show that for the Dirac module $\delta_p \in \operatorname{Coh}(\mathscr{D}_X)$ on a point $p \in X$ one has

$$\mathscr{E}xt^{j}_{\mathscr{D}_{X}}(\delta_{p},\mathscr{D}_{X}) \simeq \begin{cases} \omega_{X} \otimes \delta_{p} & \text{if } j = \dim X, \\ 0 & \text{otherwise.} \end{cases}$$

Problem 3. Show that the left \mathscr{D}_X -module \mathscr{O}_X admits a locally free resolution of the form

$$\mathscr{D}_X \otimes \operatorname{Alt}^n_{\mathscr{O}_X}(\mathscr{T}_X) \xrightarrow{d} \mathscr{D}_X \otimes \operatorname{Alt}^{n-1}_{\mathscr{O}_X}(\mathscr{T}_X) \xrightarrow{d} \cdots \xrightarrow{d} \mathscr{D}_X \otimes \mathscr{T}_X \xrightarrow{d} \mathscr{D}_X \xrightarrow{\varphi} \mathscr{O}_X.$$

Here $\varphi(P) := P(1)$ and the differentials are described in local coordinates (x_i, ∂_i) by

$$d(P \otimes \partial_{i_1} \wedge \dots \wedge \partial_{i_r}) = \sum_{\nu=1}^r (-1)^{\nu+1} (P \cdot \partial_{i_\nu}) \otimes \partial_{i_1} \wedge \dots \wedge \widehat{\partial}_{i_\nu} \wedge \dots \wedge \partial_{i_r}$$

where the notation on the right hand side means that the ν -th factor is omitted from the wedge product. Deduce that

$$\mathscr{E}xt^{j}_{\mathscr{D}_{X}}(\mathscr{O}_{X},\mathscr{D}_{X}) \simeq \begin{cases} \omega_{X} & \text{if } j = \dim X, \\ 0 & \text{otherwise.} \end{cases}$$

www.math.hu-berlin.de/~kraemeth/d-modules/