Problem 1.1. Deduce from the multiplicativity of the exponential function that for any smooth paths $\gamma_{1}, \gamma_{2}, \gamma_{3}:[0,1] \rightarrow \mathbb{C}^{*}$ with $\gamma_{1}(t) \gamma_{2}(t) \gamma_{3}(t)=1$ for all $t$, one has the identity

$$
\int_{\gamma_{1}} \frac{d z}{z}+\int_{\gamma_{2}} \frac{d z}{z}+\int_{\gamma_{3}} \frac{d z}{z}=0
$$

Problem 1.2. Let $a, b \in \mathbb{R}_{>0}$ with $a \leq b$. Show that for any $\varphi_{0} \in\left[0, \frac{\pi}{2}\right]$ the arclength of the ellipse segment

$$
\mathbb{E}\left(\varphi_{0}\right)=\left\{(a \cos (\varphi), b \sin (\varphi)) \in \mathbb{R}^{2} \mid \varphi \in\left[0, \varphi_{0}\right]\right\}
$$

can be written as

$$
\ell\left(\varphi_{0}\right)=\frac{b}{2} \int_{x_{0}}^{x_{1}} \frac{1-c x}{\sqrt{x(1-x)(1-c x)}} d x \quad \text { with } \quad x_{0}, x_{1} \in \mathbb{R} \quad \text { and } \quad c=1-\frac{a^{2}}{b^{2}} .
$$

Problem 2.1. Let $S$ be a Riemann surface.
(a) Show that for any branched cover $p: X \rightarrow S$ the topological space $X$ has a unique Riemann surface structure making $p$ a morphism of Riemann surfaces.
(b) For $\Sigma \subset S$ discrete, show that any topological covering map $p_{0}: X_{0} \rightarrow S \backslash \Sigma$ extends uniquely to a branched cover $p: X \rightarrow S$.

Problem 2.2. Let $f(x) \in \mathbb{C}[x] \backslash\{0\}$, and put $\Sigma=f^{-1}(0) \cup\{\infty\} \subset S=\mathbb{P}^{1}(\mathbb{C})$.
(a) Check that

$$
p_{0}: X_{0}=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=f(x) \neq 0\right\} \rightarrow S \backslash \Sigma
$$

is a double cover. Describe its unique extension $p: X \rightarrow S$ over each $s \in \Sigma$.
(b) If $f(x)=x(x+1)(x-1)(x-\lambda)$ with $\lambda \in \mathbb{C} \backslash\{0, \pm 1\}$, determine $g(u) \in \mathbb{C}[u]$ such that

$$
p^{-1}(S \backslash\{0\}) \simeq\left\{(u, v) \in \mathbb{C}^{2} \mid v^{2}=g(u)\right\}
$$

Problem 2.3. Let $f(x)=x(x-1)(x-\lambda)$ with $\lambda \in \mathbb{C} \backslash\{0,1\}$, and consider the branched cover

$$
p: \quad E=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=f(x)\right\} \cup\{\infty\} \longrightarrow \mathbb{P}^{1}(\mathbb{C}) .
$$

Show that the differential form

$$
\omega=\frac{d x}{\sqrt{f(x)}}
$$

which is a priori only well-defined locally on the complement $E \backslash p^{-1}(\{0,1, \lambda, \infty\})$, extends to a holomorphic differential form on all of $E$.

All elliptic functions on this sheet are for a given lattice $\Lambda \subset \mathbb{C}$. Put $\wp(z)=\wp_{\Lambda}(z)$.

Problem 3.1. (a) Show that if $f$ is an elliptic function of degree $\operatorname{deg}(f)=d$, then its derivative is an elliptic function of degree

$$
\operatorname{deg}\left(f^{\prime}\right) \in\{d+1, \ldots, 2 d\}
$$

and give examples for the extreme cases $\operatorname{deg}\left(f^{\prime}\right)=d+1$ and $\operatorname{deg}\left(f^{\prime}\right)=2 d$.
(b) For $n=1,2,3$, find $h_{1}, h_{2} \in \mathbb{C}(x)$ with $\left(\wp^{\prime}(z)\right)^{-n}=h_{1}(\wp(z))+h_{2}(\wp(z)) \cdot \wp^{\prime}(z)$.

Problem 3.2. Show that up to a translation the Weierstrass function is determined uniquely by its differential equation: If $F$ is a meromorphic function on an open domain $\varnothing \neq U \subseteq \mathbb{C}$ satisfying

$$
\left(F^{\prime}(z)\right)^{2}=4 F(z)^{3}-g_{2} \cdot F(z)-g_{3} \quad \text { for } \quad\left\{\begin{array}{l}
g_{2}=60 G_{4}(\Lambda) \\
g_{3}=140 G_{6}(\Lambda)
\end{array}\right.
$$

then we must have $F(z)=\wp(z+a)$ for some constant $a \in \mathbb{C}$.

Problem 3.3. Show that the following properties are equivalent:
(a) We have $g_{2}(\Lambda), g_{3}(\Lambda) \in \mathbb{R}$.
(b) We have $G_{2 n}(\Lambda) \in \mathbb{R}$ for all $n \geq 2$.
(c) We have $\wp(\bar{z})=\overline{\wp(z)}$ for all $z \in \mathbb{C}$.
(d) The lattice $\Lambda \subset \mathbb{C}$ is invariant under complex conjugation.

Put $\mathcal{F}=\{\tau \in \mathbb{H}| | \operatorname{Re}(\tau) \mid \leq 1 / 2$ and $|\tau| \geq 1\}$.
Problem 4.1. Determine all points $\tau \in \mathcal{F}$ that are equivalent modulo $\Gamma=S l_{2}(\mathbb{Z})$ to the point

$$
\frac{5 i+6}{4 i+5} \text { respectively } \frac{2+8 i}{17} \in \mathbb{H}
$$

Problem 4.2. Find natural numbers $n_{1}, \ldots, n_{k} \in \mathbb{N}$ for which one has the matrix identity

$$
\left[\begin{array}{cc}
4 & 9 \\
11 & 25
\end{array}\right]=S T^{n_{1}} \cdots S T^{n_{k}} \quad \text { with } \quad S=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right], T=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] .
$$

Is such a representation unique? More generally, show that the modular group has the presentation

$$
S l_{2}(\mathbb{Z}) \simeq\left\langle S, T \mid S^{2}=(S T)^{3}=1\right\rangle .
$$

Problem 4.3. (a) Show that $\overline{G_{k}(\bar{\tau})}=G_{k}(\tau)$ for all $\tau \in \mathbb{H}, k \geq 4$.
(b) Show that the $j$-function takes real values on the set $\partial \mathcal{F} \cup i \cdot \mathbb{R}_{>0}$.
(c) Conversely, show that any real number arises as $j\left(\tau_{0}\right)$ for some $\tau_{0} \in \partial \mathcal{F} \cup i \cdot \mathbb{R}_{>0}$.

Problem 4.4. Verify that the derivative of a meromorphic modular form of weight zero is a meromorphic modular form of weight two. Deduce that if $f, g$ are modular forms of a given weight $k$, then $f g^{\prime}-f^{\prime} g$ is a modular form of weight $2 k+2$.

Let $k$ be a field. For elliptic curves with a flex point at infinity we take this flex point as the neutral element for the group structure.

Problem 5.1. Let $f \in k\left[x_{0}, x_{1}, x_{2}\right]$ be a homogenous polynomial and $C_{f} \subset \mathbb{P}^{2}$ the corresponding plane curve. Show that for $\operatorname{char}(k)=0$, a smooth point $p \in C_{f}(k)$ is a flex point of the curve iff

$$
\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)(p)=0
$$

What happens if the assumption on the characteristic $\operatorname{char}(k)$ is dropped?

Problem 5.2. Find the order of the point $p$ on the elliptic curve $E$ when
(a) $p=(3,12)$ and $E$ is given by $y^{2}=x^{3}-14 x^{2}+81 x$.
(b) $p=(3,8)$ and $E$ is given by $y^{2}=x^{3}-43 x+166$.

Problem 5.3. Put $f(x, y)=y^{2}-x^{3}+432 c^{2}$ for fixed $c \in k$.
(a) For which $c$ is the cubic $E=\{(x, y) \mid f(x, y)=0\} \cup\{\infty\} \subset \mathbb{P}^{2}$ smooth?
(b) In the smooth case, find $M \in \mathrm{PGl}_{3}(k)$ that induces on affine coordinates the transformation

$$
(x, y) \mapsto(u, v)=\left(\frac{6 c}{x}+\frac{y}{6 x}, \frac{6 c}{x}-\frac{y}{6 x}\right)
$$

What is the equation for the cubic in the new affine coordinates $(u, v)$ ?
(c) Now let $k=\mathbb{Q}$. Determine the group $E(\mathbb{Q})$ in the case $c=1$.

Problem 5.4. Let $E \subset \mathbb{P}^{2}$ be the elliptic curve defined by $y^{2}=x^{3}-11$ over $\mathbb{Q}$. Show that
(a) a point $(s, t) \in E(\mathbb{Q})$ is in the image of the map $E(\mathbb{Q}) \rightarrow E(\mathbb{Q}), p \mapsto 2 p$ iff the polynomial

$$
x^{4}-4 s x^{3}+88 x+44 s \in \mathbb{Q}[x] \quad \text { has a rational root } x_{0} \in \mathbb{Q} .
$$

(b) the images of $p=(3,4), q=(15,58)$ in the quotient group $E(\mathbb{Q}) / 2 E(\mathbb{Q})$ are distinct and nonzero, hence linearly independent when the quotient is seen as a vector space over the field $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$.
(c) the map $(m, n) \mapsto m p+n q$ gives an embedding $\mathbb{Z}^{2} \hookrightarrow E(\mathbb{Q})$.

Problem 6.1. Let $E \subset \mathbb{P}^{2}$ be an irreducible singular cubic over a field $k$, defined in affine coordinates by a Weierstrass equation.
(a) Show that $E$ has a unique singular point $p=\left(x_{0}, y_{0}\right) \in E(\bar{k})$.
(b) If $p$ is a cusp with tangent line given by $y=\alpha x+\beta$, check that we have an isomorphism

$$
\varphi: \quad E \backslash\{p\} \xrightarrow{\sim} \mathbb{A}^{1}, \quad(x, y) \mapsto \frac{x-x_{0}}{y-\alpha x-\beta}
$$

such that $a, b, c \in E(\bar{k}) \backslash\{p\} \subset \mathbb{P}^{2}(\bar{k})$ are collinear iff $\varphi(a)+\varphi(b)+\varphi(c)=0$.
(c) If $p$ is a node with tangent lines $y=\alpha_{i} x+\beta_{i}$ defined over $k$, check that we have an isomorphism

$$
\varphi: \quad E \backslash\{p\} \xrightarrow{\sim} \mathbb{A}^{1} \backslash\{0\}, \quad(x, y) \mapsto \frac{y-\alpha_{1} x-\beta_{1}}{y-\alpha_{2} x-\beta_{2}}
$$

such that $a, b, c \in E(\bar{k}) \backslash\{p\} \subset \mathbb{P}^{2}(\bar{k})$ are collinear iff $\varphi(a) \cdot \varphi(b) \cdot \varphi(c)=1$.

Problem 6.2. Let $E$ be an elliptic curve over the complex numbers. Which of the following four cases can occur for a subgroup $H \subset E(\mathbb{C})$ ?
(a) $H$ is torsion and $H / 2 H$ trivial,
(c) $H$ is torsion-free and $H / 2 H$ trivial,
(b) $H$ is torsion and $H / 2 H$ infinite,
(d) $H$ is torsion-free and $H / 2 H$ infinite.

Problem 6.3. Let $a \in \mathbb{Z}$ be an integer which is not divisible by the fourth power of any prime, and consider the elliptic curve $E$ defined by $y^{2}=x^{3}-a x$.
(a) Show that $\left|\bar{E}\left(\mathbb{F}_{p}\right)\right|=p+1$ for all primes $p \equiv 3(\bmod 4)$.
(b) Show that

$$
E(\mathbb{Q})_{\text {tors }} \simeq \begin{cases}\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} & \text { if } a \text { is a square } \\ \mathbb{Z} / 4 \mathbb{Z} & \text { if } a=-4 \\ \mathbb{Z} / 2 \mathbb{Z} & \text { otherwise }\end{cases}
$$

Problem 6.4. Find the 2-power torsion and sets of representatives for $E(\mathbb{Q}) / 2 E(\mathbb{Q})$ for the elliptic curves defined by the following equations:
(a) $y^{2}=x(x-3)(x+4)$,
(b) $y^{2}=x(x-1)(x+3)$.

