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Introduction

Intersection theory is one of the most powerful tools in algebraic geometry, and its
applications are ubiquitous. Its general paradigm is that in the study of algebraic
varieties, we can extract discrete invariants such as Euler characteristics of coherent
sheaves via a simple calculus of intersection products. More specifically, the basic
goal is to understand intersections of subvarieties in a given ambient variety. Usually
the ambient variety will be smooth, but even when the subvarieties are smooth as
well, their intersection can be very singular, reducible and nonreduced. What makes
intersection theory work is the possibility to deform subvarieties, as one does in
topology by means of singular cohomology. Before discussing the analogy with
topology that will be the blueprint for our development of intersection theory in the
rest of this lecture, let us look at a few simple examples.

Prehistory: Bézout’s theorem

Let k be an algebraically closed field. How many points are there in the intersection
of two plane curves V ( f ),V (g)⊂A2

k cut out by polynomials f ,g∈ k[x,y] of positive
degree? It is easy to decide whether the intersection is finite:

|V ( f )∩V (g)|< ∞⇐⇒ dimV ( f )∩V (g) = 0

⇐⇒ V ( f ) and V (g) have no common component

⇐⇒ f and g have no common factor

When the intersection is finite, we expect that it consists of precisely deg( f ) ·deg(g)
many points, but this statement has to be understood properly: For instance, consider
the zero loci of

f = y− x2 and ga,b = ay−bx for fixed (a,b) ∈ k2 \{(0,0)}.

1



2 Introduction

For ab ̸= 0 we have |V ( f )∩V (ga,b)| = 2 as expected. For b = 0 the intersection
consists only of a single point, but this point should be counted with multiplicity
two because the two curves are tangent at this point; for a = 0 the two curves again
meet only in a single point, but their closures in the projective plane will meet in the
point [0 : 1 : 0] ∈ P2(k) at infinity:

V ( f )

V (g1,b)

V (g1,0)

V (g0.1)

(1,∞) := [0 : 1 : 0]

(0,0)

(1,b)

Hence if we want intersection numbers to stay constant in families, then

• we should work with projective varieties, and

• we should count points with appropriate multiplicities.

Finding the right definition of intersection multiplicities was one of the key points
in the development of intersection theory. Here we can write down things by hand:

Definition. Let f ,g∈ k[x,y] be polynomials of positive degree. Let p∈V ( f )∩V (g)
be a point which does not lie on any common irreducible component of the two
curves V ( f ) and V (g). Then we define the intersection multiplicity of the curves
at p to be

ip( f ,g) := dimk OA2,p/( f ,g) where OA2,p := { a
b | a,b ∈ k[x,y],b(p) ̸= 0}

One easily checks that the above definition is invariant under affine-linear coordinate
changes, which allows to define ip(C,D) ∈ N for projective curves C,D ⊂ P2

k and
any point p ∈ (C∩D)(k) by using affine charts. We then have:

Theorem (Bézout). For any curves C,D ⊂ P2
k without common components, we

have
∑

p∈(C∩D)(k)
ip(C,D) = deg(C)deg(D).
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More generally, let H1, . . . ,Hn ⊂ Pn
k be hypersurfaces, n ∈N. If Z = H1∩·· ·∩Hn is

finite, then
∑

p∈Z(k)
ip(H1, . . . ,Hn) = deg(H1) · · ·deg(Hn)

for the intersection multiplicities

ip(H1, . . . ,Hn) = dimk OPn,p/( f1, . . . , fn),

where fi ∈ OPn,p is the germ of a local equation that cuts out Hi ⊂ Pn
k .

The proof is elementary, using Hilbert polynomials. We will recover it later as a
special case of general results about the intersection product on smooth varieties.

An example from enumerative geometry

We can also count more complicated objects in terms of intersection numbers. For
instance, it is a classical problem to determine the number of all conics tangent to
a suitable number of other conics in general position in the projective plane. Any
conic can be written as

Cs = V+( fs) ⊂ P2
k with fs = ax2 +by2 + cz2 +dxy+ exz+ f yz

for a unique point s = [a : b : c : d : e : f ] ∈ S = P5
k . Here the parameter space S

includes also all singular conics, but using discriminants one may check that inside
it the smooth conics form an open dense subset.

Lemma. Assume that char(k) /∈ {2,3}. Then for every smooth conic Q ⊂ P2
k the

subset

ZQ := {s ∈ S |Cs is tangent to Q at some point p ∈ Q(k)} ⊂ S = P5
k

is an irreducible hypersurface of degree deg(ZQ) = 6.

Proof. Since char(k) ̸= 2, any two smooth conics are isomorphic via a linear change
of coordinates in the projective plane. Hence we may assume that Q is given by

Q = V+(yz− x2) ⊂ P2
k .

Thus Q is the image of the closed immersion i : P1
k ↪→ P2

k , [u : v] 7→ [uv : u2 : v2], and
its scheme-theoretic intersection with Cs is obtained by pulling back the defining
equation fs(x,y,z) = 0 under this closed immersion. As a closed subscheme of P1

k
we have

Cs∩Q =V+(i∗( fs))⊂ P1
k with i∗( fs) = fs(uv,u2,v2)

= (a+ f )u2v2 +bu4 + cv4 +du3v+ euv3
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Thus Cs ∩Q is cut out by a homogenous polynomial of degree d = 4 in u,v. By
definition the two curves Cs and Q are tangent at some point of the intersection iff
this degree four equation has a double root. In the chart v = 1, this condition is
equivalent to the condition that the quartic polynomial

gs(u) = fs(u,1) ∈ k[u]

has a double root. If we factor the polynomial as gs(u) = c ·∏d
i=1(u−αs,i), then the

existence of a double root of the polynomial is tantamount to the vanishing of the
discriminant

∆s = c2d−2 ·∏
i< j

(αs,i−αs, j)
2

By Galois theory this discriminant is a polynomial in the coefficients a+ f ,b,c,d,e
of gs. If all coefficients of gs are multiplied by a scalar λ , then the roots of gs do not
change but the leading coefficient c is rescaled by c2d−2. Hence ∆s is a homogenous
polynomial of degree 2d−2 = 6 in the coefficients of gs, and therefore its vanishing
locus is a hypersurface of degree six in S. ⊓⊔

For dimension reasons, to arrive at a finite number of points in P5
k we need to

intersect five hyperplanes. Hence there should exist a finite number of smooth conics
that are tangent to five other conics in general position as illustrated in the picture
below (taken from www.juliahomotopycontinuation.org/3264/):

We want to know how many solutions there are:

Problem (Steiner 1848). Given five general conics in the plane, how many smooth
conics are there which are tangent to all five given conics?

By the higher-dimensional Bézout theorem the expected answer is 65 = 7776,
as claimed by Steiner. However, there was a mistake in his argument; the problem
is that for any smooth conic Q, the hypersurface ZQ ⊂ P5

k contains the Veronese
surface

P2
k = {[u2 : v2 : w2 : uv : uw : vw] | [x : y : z] ∈ P2

k} ⊂ P5
k

www.juliahomotopycontinuation.org/3264/
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because this surface parametrizes double lines V+((ux+ vy+wz)2) ⊂ P2
k and any

such double line intersects our smooth conic in a point with multiplicity two. Hence
for any five smooth conics Q1, . . . ,Q5 ⊂ P2

k , the intersection ZQ1 ∩ ·· · ∩ ZQ5 will
never be finite, it always contains the Veronese surface. To find the correct count of
conics, one has to deal with the excess intersection along the Veronese surface in a
suitable way, which leads to the following famous result:

Theorem (de Jonquiéres 1859, Chasles 1864, Fulton-MacPherson 1978). The
number of smooth conics that are tangent to five given smooth conics in general
position in the plane is

N = 3264.

This explains the title of the intersection theory book by Eisenbud and Harris. We
will see later in the lecture where the number 3264 comes from, and learn techniques
to deal with many similar counting problems. In the above result the specific value
of N does not seem to have a big theoretical significance, the interesting thing is
that the number is well-defined and computable. However, sometimes the numbers
obtained from intersection theory do have a theoretical meaning: For instance, it is
a classical result that any smooth cubic surface S ⊂ P3

k contains precisely 27 lines,
and the configuration of these lines is related to the root system E6 from Lie theory.
While the above results are all very old, enumerative geometry continues to be an
important topic of current research for instance in Gromov-Witten theory, quantum
cohomology and mirror symmetry.

Singular (co)homology as a blueprint

Before we develop the basic notions of intersection theory, let take a brief look at
some analogous notions from topology as a blueprint. For any complex projective
variety X its singular cohomology H∗(X) =

⊕
i∈Z Hi(X) is a graded commutative

ring for the cup product

∪ : H i(X)⊗H j(X) −→ H i+ j(X).

The singular homology H∗(X) =
⊕

i∈Z H i(X) is a graded module for this ring via
the cap product

∩ : H i(X)⊗H j(X) −→ H j−i(X).

Cohomology is a contravariant functor while homology is a covariant functor; the
functorialities are compatible in the sense that for any morphism f : Y → X we have
the projection formula

f∗( f ∗(α)∩β ) = α ∩ f∗(β ) for α ∈ H∗(Y ),β ∈ H∗(X), f : Y → X .

If X is smooth of complex dimension n, we have the Poincaré duality isomorphism

PD: H i(X)
∼−→ H2n−i(X), α 7→ α ∩ [X ]
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taking the cup product with the fundamental class [X ] ∈ H2n(X). In this case, we
define the intersection product · on homology to be Poincaré dual to the cup product
on cohomology:

Hi(X)⊗H j(X) Hi+ j−2n(X)

H2n−i(X)⊗H2n− j(X) H4n−i− j(X)

·

PD−1

∪

PD

Generalizing the fundamental class that appears in Poincaré duality, we can define
for any closed subvariety Z ⊂ X of dimension d a cycle class [Z]∈H2d(X) by taking
a triangulation of the subvariety. From the viewpoint of algebraic geometry, the span
of these cycle classes is the really interesting part of the homology.

Remark. For simplicity, we have formulated the above only in the case when X
is projective and hence compact. However, everything in this section works in the
same way also for smooth non-compact varieties if we replace singular homology
by Borel-Moore homology, defined like singular homology but using locally finite
rather than finite chains of simplices. In particular, we always have an isomorphism
between cohomology and Borel-Moore homology in the complementary degree,
and every closed subvariety has a cycle class in Borel-Moore homology.

Example (pushforward of cycles). Let Z ⊂ X be a closed subvariety, f : X → Y
a morphism to another smooth variety, and put W = f (Z) ⊂ Y . Then there are two
cases:

• Either f : Z→W restricts over some open subset of W to a topological covering
map. We then denote the degree of this covering map by deg(Z/W ) ∈ N.

• Or dim(W )< dim(Z). In this case we formally put deg(Z/W ) = 0.

In both cases, it follows from the definition via triangulations that the pushforward
of the cycle class [Z] ∈ H2d(X) (where d = dimZ) is

f∗[Z] = deg(Z/W ) · [W ] ∈ H2d(Y ).

Example (intersection numbers). For closed subvarieties Z1,Z2 ⊂ X , we may
view their cycle classes not only in the homology of the ambient smooth variety X
but also as classes [Zi]∈H2di(Zi) where di = dim(Zi). If in the above diagram for the
definition of the intersection product, we replace the Poincaré duality isomorphism
by its relative version

PD: H2(n−di)(X ,X \Zi)
∼−→ H2di(Zi)

and the cup product by

∪ : H2(n−d1)(X ,X \Z1)⊗H2(n−d2)(X ,X \Z2) −→ H4n−2d1−2d2(X ,X \(Z1∩Z2)),
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we can regard the intersection product between the two given cycle classes as an
element

[Z1] · [Z2] ∈ H2(d1+d2−n)(Z1∩Z2).

This is most useful if the subvarieties intersect properly in the sense that Z1∩Z2 is of
pure dimension d1 +d2−n: In this case the top homology group of the intersection
is the free group

H2(d1+d2−n)(Z1∩Z2) ≃
⊕
W

Z · [W ]

where the direct sum runs over the irreducible components W of Z1∩Z2, and hence
we obtain a decomposition

[Z1] · [Z2] = ∑
W

iW (Z1,Z2) · [W ] with iW (Z1,Z2) ∈ N,

so we have found a topological definition of intersection multiplicities.

Example (Chern classes). A Weil divisor on X is by definition an element of the
free abelian group

Div(X) :=
⊕
Z⊂X

Z

where the sum runs over all codimension one subvarieties Z ⊂ X . We write Weil
divisors as finite formal sums

D = ∑
Z⊂X

nZ(D) · [Z] with nZ(D) ∈ Z.

If X is smooth, then every line bundle L ∈ Pic(X) can be written as L ≃ OX (D)
for some Weil divisor D ∈ Div(X) which is unique up to linear equivalence. One
can show that the cycle class

[D] := ∑
Z⊂X

nZ(D) · [Z] ∈ H2(X)

only depends on the linear equivalence class of the divisor D ∈ Div(X). So there
is a unique homomorphism c1 : Pic(X)→ H2(X) such that the following diagram
commutes:

Div(X) H2(X)

Div(X)/∼ Pic(X)∼

∃!c1

We call c1(L ) ∈ H2(X) the first Chern class of the line bundle L ∈ Pic(X). More
generally, one can show there is a unique way to attach to every vector bundle E on
a smooth complex variety X a total Chern class

c(E ) = ∑
i≥0

ci(E ) ∈ H∗(X) with ci ∈ H2i(X)
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such that the following axioms hold:

a) Naturality: For any morphism f : Y → X we have ci( f ∗(E )) = f ∗(ci(E )).

b) Whitney formula: For direct sums of vector bundles c(E ⊕F ) = c(E )∪ c(F ).

c) Normalization: For line bundles L ∈ Pic(X) we have c(L ) = 1+c1(L ) for the
first Chern class c1(L ) ∈ H2(X) constructed above.

Chern classes measure how far a vector bundle is from being trivial. To get a feeling
of their geometric meaning, we mention the following interpretation that could be
used for an alternative definition:

Theorem. Let E be a vector bundle of rank r which is generated by its global
sections. Then for generically chosen sections s0,s1, . . . ,sr ∈H0(X ,E ) and 0≤ i≤ r
the loci

Z(s0, . . . ,si) :=
{

p ∈ X | s0(p), . . . ,si(p) are linearly dependent in E /mpE
}

are closed in X and we have

cr−i(E ) = [Z(s0, . . . ,si)].

The goal of this lecture is to develop an algebraic analog of the above results in
singular homology that works for algebraic varieties X over any field k. Concretely,
we will

• define Chow groups A∗(X), the algebraic analog of Borel-Moore homology,

• develop the notion of cycle classes and Chern classes in these Chow groups,

• show that if X is smooth, then A∗(X) comes with a natural intersection product,

• study the basic properties and sample applications of this intersection product.

As we will see, the notion of Chern classes is a crucial ingredient in the development
of the theory. To conclude this introduction, let us illustrate its use in applications
by a brief outlook on the Riemann-Roch theorem.

Outlook: Riemann-Roch

For smooth projective curves the Euler characteristic of a line bundle L ∈ Pic(C)
is given in terms of its degree and the genus of the curve by the Riemann-Roch
theorem

dimk H0(C,L )−dimk H1(C,L ) = deg(L )+1−g.

The message here is that it is much easier to compute the Euler characteristic of a
coherent sheaf than to compute its individual sheaf cohomology groups. The right
hand side of the Riemann-Roch formula is an expression in Chern classes, since
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the degree of a line bundle only depends on its first Chern class. Motivated by the
integration of differential forms in de Rham cohomology, it is common to use the
notation ∫

C
: H2(C) −→ Z

for the homomorphism which is the composite of H2(X)→ H0(X),α 7→ α ∩ [X ]
with the natural homomorphism H0(X)→ Z counting the number of points; with
this notation the right hand side of the Riemann-Roch formula can be rewritten as
the ‘integral’

deg(L )+1−g =
∫

X
(c1(L )+ 1

2 c1(TC))

where TC denotes the tangent bundle of the curve. More generally, for any smooth
projective variety X of dimension d over an arbitrary field there is a natural degree
homomorphism ∫

X
: Ad(X) −→ Z

and the Riemann-Roch theorem has the following far-reaching generalization:

Theorem (Hirzebruch-Riemann-Roch). Let E be a vector bundle on a smooth
projective variety X. Then

∑
i
(−1)i dimk H i(X ,E ) =

∫
X

ch(E ) · td(X).

Here the Chern character ch(E ) and the Todd class td(X) and certain expressions
in Chern classes that will be studied in more detail later; their first terms are given
explicitly by

ch(E ) = rk(E )+ c1(E )+ 1
2 c1(E )2−·· ·

td(X) = 1+ 1
2 c1(X)+ 1

12 (c1(X)2 + c2(X))+ · · · where ci(X) := ci(TX ).

Conventions

For the rest of the lecture we fix an arbitrary base field k. By a scheme we mean
a separated scheme of finite type over a field. By a variety we mean an integral
scheme. Subvarieties and subschemes will always be assumed to be closed unless
we explicitly say otherwise.





Chapter I
Chow groups

1 The order of zeroes and poles

Let X be a variety, i.e. an integral scheme of finite type over a field k, and consider
its function field

k(X) = OX ,η for the generic point η ∈ X

= colimUOX (U) with the colimit over all open U ⊂ X

= Quot(OX (U)) for any affine open U ⊂ X .

The elements of k(X) are called rational functions. Explicitly, rational functions are
given by eLet W1, . . . ,Wr ⊂W be its irreducible components,quivalence classes of
pairs ( f ,U) where U ⊂ X is a nonempty open subset and f ∈ OX (U), and where
we declare two such pairs ( f1,U1) and ( f2,U2) to be equivalent if they satisfy
f1|U1∩U2 = f2|U1∩U2 . We will often drop the domain of definition of rational func-
tions and simply denote them by f ∈ k(X).

Example 1.1. We have

k(Pn
k) = k( x1

x0
, . . . , xn

x0
) by restriction to the affine open U = An

k ⊂ Pn
k

= { f
g | f ,g ∈ k[x0, . . . ,xn] homogenous of the same degree and g ̸= 0}

Similarly one obtains that

k(Pm
k ×Pn

k) = { f
g | f ,g ∈ k[x0, . . . ,xm][y0, . . . ,yn]

bihomogenous of the same bidegree and g ̸= 0}

For any square-free polynomial f ∈ k[x]\{0}, the curve X =V (y2− f (x))⊂A3
k has

the function field
k(X) = k(x)[y]/(y2− f (x))

11
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To any rational function we will attach a divisor of zeroes and poles consisting
of certain subvarieties of codimension one. Recall that the dimension of a variety X
is given by

dimX = sup{n ∈ N0 | ∃closed subvarieties∅ ̸= X0 ⊊ X1 ⊊ · · ·⊊ Xn = X}
= dimOX (U) Krull dimension of OX (U) for any affine open U ⊂ X

= trdeg(k(X)/k) transcendence degree of the field extension k(X)⊃ k

The codimension of a subvariety Z ⊂ X is given by

codimX Z = dimX−dimZ

= sup{d ∈ N0 | ∃closed subvarietiesZ = X0 ⊊ X1 ⊊ · · ·⊊ Xd = X}
= dimOX ,Z Krull dimension of the local ring of X along Z

where as usual we put OX ,Z := OX ,ξ for the generic point ξ ∈ Z.

Example 1.2. Let Z ⊂ X be a subvariety with codimX Z = 1. If Z ̸⊂ Sing(X), then
the generic point of the subvariety Z must lie the smooth locus of X . Hence the
local ring OX ,Z is a regular ring. Since this local ring is also a domain of Krull
dimension one, it follows that OX ,Z is a discrete valuation ring. We then denote the
corresponding valuation by

ordZ : k(X)× = Quot(OX ,Z)
× −→ Z

and call ordZ( f ) the order of pole or vanishing of the rational function f ∈ k(X).

If Z ⊂ Sing(X), then the local ring OX ,Z is no longer a discrete valuation ring, but
we can still define the order pole or vanishing using the notion of length. Recall that
any finitely generated module M over a Noetherian ring A has a composition series

M = M0 ⊋ M1 ⊋ · · ·⊋ Mr = 0

with Mi−1/Mi ≃ A/pi for some prime ideal pi⊴A. We say M has finite length if all
the pi are maximal ideals. In this case the length r of the chain is independent of the
chosen chain and is called the length ℓA(M) of the module.

Example 1.3. If A contains a subfield k⊂ A that maps isomorphically to the residue
field modulo every maximal ideal, then for every finite length A-module M its length
is the dimension ℓA(M) = dimk M.

The following example illustrates why in general we want to use the length rather
than the dimension over the base field:

Example 1.4. Let A = OX ,Z for Z =V (y)⊂ X = A2
k = Speck[x,y]. For M := A/(y)

we have

M ≃ k(x), hence dimk(A/(y)) = ∞ but ℓA(M) = 1.
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The finiteness of the length in the above example carries over to local rings of
any variety along a subvariety of codimension one:

Lemma 1.5. Let A be a Noetherian local domain of Krull dimension one. Then for
any a ∈ A\{0} the quotient A/(a) has finite length as an A-module.

Proof. Let M0 = A/(a) ⊋ M1 ⊋ · · · ⊋ Mr = 0 with Mi/Mi+1 ≃ A/pi for suitable
prime ideals pi⊴A. Since A has Krull dimension one, every nonzero prime ideal is
maximal, so we only need to show pi ̸= 0 for all i. But this is clear: If pi = 0, then
we have a surjective homomorphism

Mi ↠ Mi/Mi+1 ≃ A/(0) = A.

But a acts by zero on Mi while it acts nontrivially on A, a contradiction. ⊓⊔

Corollary 1.6. For any subvariety Z ⊂ X with codimX Z = 1, there exists a unique
group homomorphism

ordZ : k(X)× −→ Z

such that on nonzero elements of the local ring A = OX ,Z ⊂ k(X) it is given by the
length

ordZ( f ) = ℓA(A/( f )) for all ∈ A\{0}.

Proof. Lemma 1.5 shows that for any f ∈ A \ {0} the A-module M = A/( f ) has
finite length, hence the map

ordZ : A\{0} −→ N0, f 7→ ℓA(A/( f )).

is well-defined. The map is additive in the sense that ordZ( f g) = ordZ( f )+ordZ(g)
for all f ,g ∈ A \ {0}, since the length is additive in short exact sequences and we
have an exact sequence

0 −→ A/( f )
g−→ A/( f g) −→ A/(g) −→ 0.

Since k(X) = Quot(A), the claim now follows with

ordZ

(
f
g

)
= ordZ( f )−ordZ(g) for all f ,g ∈ A\{0};

the additivity ensures that this is well-defined and gives a homomorphism. ⊓⊔

Example 1.7. If dimX = 1, any codimension one subvariety has the form Z = {p}
for some closed point p ∈ X . The local ring along the subvariety is then the local
ring OX ,p at that point, with residue field κ(p) = OX ,p/mp. Hence if κ(p) = k,
then example 1.3 implies

ordZ( f ) = dimk(OX ,p/( f )) for all f ∈ OX ,p.

To illustrate the behaviour of the vanishing order at a singular point, consider the
cuspidal cubic X =V (y2− x3)⊂ A2

k = Speck[x,y]. Let Z = {(0,0)} be its singular



14 I Chow groups

point. Then

ordZ(x) = dimk k[x,y]/(y2− x3,y) = dimk k[x]/x3 = 3,
ordZ(y) = dimk k[x,y]/(y2− x3,x) = dimk k[y]/(y2) = 2.

Hence the rational function f = y/x ∈ k(X)× has

ordZ( f ) = ordZ(y)−ordZ(x) = 1 > 0

even though clearly f /∈ OX ,p. Note that OX ,p is not a discrete valuation ring.

2 Cycles and rational equivalence

We can now define the algebraic analog of Borel-Moore homology. It generalizes
the Weil divisor class group to subvarieties of higher codimension:

Definition 2.1. Let X be a scheme (not necessarily integral) and d ∈ N0.

a) A d-cycle on X is an element of the free abelian group

Zd(X) :=
⊕
Z⊂X

Z · [Z]

over all subvarieties Z ⊂ X of dimension dimZ = d. We write d-cycles as finite
formal sums

α = ∑
Z⊂X

nZ(α) · [Z] with multiplicities nZ(α) ∈ N0.

b) For subvarieties W ⊂ X of dimension d+1 and rational functions f ∈ k(W )× we
consider the cycle

cyc( f ) := ∑
Z⊂W

ordZ( f ) · [Z] ∈ Zd(W ) ⊂ Zd(X)

where the sum runs over all subvarieties Z ⊂W with codimW Z = 1. We say that a
cycle α ∈ Zd(X) is rationally equivalent to zero if there exists a finite collection
of subvarieties W1, . . . ,Wr of dimension d +1 and rational functions fi ∈ k(Wi)

×

such that

α =
r

∑
i=1

cyc( fi).

c) The cycles rationally equivalent to zero form a subgroup Ratd(X)⊂ Zd(X) since
we have cyc(1/ f ) = −cyc( f ). The quotient Ad(X) := Zd(X)/Ratd(X) is called
the d-th Chow group of X . We put

Z∗(X) :=
⊕
d≥0

Zd(X) and A∗(X) :=
⊕
d≥0

Ad(X).
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d) Two cycles α,β ∈ Zd(X) are called rationally equivalent if they have the same
image in the Chow group, i.e. if α−β ∈ Ratd(X). We then write α ∼ β .

Note that since Z∗(X) and A∗(X) are defined in terms of integral subschemes, the
only depend on the underlying reduced closed subscheme X red ⊂ X . For a more
visual explanation of rational equivalence, we need a notion of fundamental cycles
for arbitrary (not necessarily integral) subschemes:

Definition 2.2. For any subscheme Z ⊂ X with irreducible components Z1, . . . ,Zr
its fundamental cycle is defined by

[Z] :=
r

∑
i=1

mi · [Zi] ∈ Zd(X). where mi := ℓOZ,Zi
(OZ,Zi) ∈ N.

Its image in the Chow group A•(X) is called the fundamental class of Z in X .

This leads to the following interpretation of the notion of rational equivalence via
morphisms to the projective line:

Example 2.3. For any subvariety W ⊂ X and any rational function f ∈ k(W )× the
definitions imply

cyc( f ) = [ f−1(0)]− [ f−1(∞)]

where f−1(0), f−1(∞) ⊂W denote the scheme-theoretic fibers of f : W → P1. We
can therefore regard rational equivalence as a way of saying that two cycles are
related by an algebraic deformation over P1 as indicated in the following picture:

XW

f−1(0)

f−1(∞)

P10 ∞

f

By construction Ad(X) = 0 for d /∈ {0,1, . . . ,dim(X)}, and the Chow group in
the top degree is freely generated by irreducible components:
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Example 2.4. Let n = dimX , and let X1, . . . ,Xr be the irreducible components of X
of dimension n. Then

An(X) = Zn(X) =
r⊕

i=1

Z · [Xi] since Ratn(X) = 0.

So the top degree Chow group of a variety looks like the top degree Borel-Moore
homology (= degree zero cohomology) of a complex manifold. At the opposite end,
the degree zero Chow groups of affine and projective spaces also look like degree
zero Borel-Moore homology (= top degree cohomology):

Lemma 2.5. For any n > 0 we have A0(An)≃ 0 and A0(Pn)≃ Z.

Proof. Let p ∈ An be a closed point, and let q = π(p) ∈ An−1 be its image under
the projection

π : An −→ An−1, (x1, . . . ,xn) 7→ (x1, . . . ,xn−1).

The subvariety W = π−1(q) ⊂ An is a line over the residue field κ = κ(q), indeed
we have

W ≃ Specκ[xn].

Now p is a closed point on this line, hence we have {p} = V ( f ) ⊂ Specκ[xn] for
some f ∈ κ[xn] = OW (W )⊂ k(W ). Then

[p] = cyc( f ) ∈ Rat0(An) ⊂ Z0(An).

Hence the fundamental cycle of any point in affine space is rationally equivalent to
zero. Since A0(An) is generated by such cycles, we get A0(An) = 0. Note that this
is an algebraic version of a homotopy argument: We are “deforming” a point in An

along a line W to a point at infinity as one would do in Borel-Moore homology:

An−1

W

q

p

∞

Essentially the same argument works in the projective case: Let p ∈ Pn be a
closed point different from ∞ := [0 : · · · : 0 : 1]. Up to a permutation of the first n
coordinates, we may assume the given point lies in the affine chart An ⊂ Pn of
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points with coordinates [1 : x1 : · · · : xn]. Let W ⊂ An be the affine line constructed
previously. Its closure is a projective line given by W = W ∪{∞}. The function f
from above is still a rational function on this projective line, but now it has a pole
at the point ∞, indeed cyc( f ) = [p]− d · [∞] where d = [κ : k] is the degree of the
residue field extension. This shows that the homomorphism

Z −→ A0(Pn), m 7→ m · [∞]

is surjective. It is then an isomorphism: The cycle m · [∞] is rationally equivalent
to zero only for m = 0. Indeed, otherwise there would exist a curve W ⊂ Pn and
principal divisors on each irreducible component of the curve such that the sum of
the principal divisors (taken over all components of W ) is m · [∞]. But the degree of
principal divisors is zero on each component, so this can happen only if m = 0. ⊓⊔

The simplicity of the above example is misleading, in general the Chow groups
of complex varieties capture much finer geometric information than Borel-Moore
homology, even in degree zero! This becomes visible already for smooth projective
curves X of genus g > 0, where A0(X)≃ Pic(X). More generally we have:

Example 2.6. Let X be a variety of dimension n. Then Zn−1(X) is the group of Weil
divisors on the variety, and a Weil divisor is rationally equivalent to zero iff it is a
principal divisor. Hence An−1(X) is the Weil divisor class group. In particular, we
get a homomorphism

c1 : Pic(X) −→ An−1(X)

by sending a Cartier divisor to the associated Weil divisor. From the comparison
between Cartier divisors and Weil divisors in algebraic geometry, we know that this
homomorphism c1 : Pic(X)→ An−1(X) is

• injective if X is normal,
• an isomorphism if X locally factorial.

The assumptions of normality resp. local factoriality cannot be dropped:

Exercise 2.7. Show that for the cuspidal cubic X = V+(y2z− x3) ⊂ P2 over any
algebraically closed field k with chark ̸= 2,3, the Picard group fits into an exact
sequence

0→ k×→ Pic(X)→ A0(X)→ 0 with A0(X) ≃ Z.

Exercise 2.8. Show that on the cone X = V (z2− xy) ⊂ A3 the line Z = V (x,z) is a
Weil divisor that does not come from a Cartier divisor, and deduce that for this cone
we have

Pic(X) ≃ 0 but A1(X) ≃ Z/2Z.
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3 Localization and Mayer-Vietoris

In algebraic topology one often computes homology groups by restriction to open
subsets, for instance using the long exact sequence of a pair or the Mayer-Vietoris
sequence. We now develop similar techniques for Chow groups of a scheme X .

Proposition 3.1 (Localization sequence). Let i : Y ↪→ X be a closed subscheme,
and denote the open embedding of its complement by j : U = X \Y ↪→ X. Then for
any d ≥ 0 we have natural homomorphisms i∗, j∗ between Chow groups that fit into
the exact sequence

Ad(Y )
i∗−→ Ad(X)

j∗−→ Ad(U) −→ 0.

Proof. We have a natural inclusion Zd(Y ) ⊂ Zd(X) since any subvariety Z ⊂ Y is
also a subvariety of X . In the same way the definitions imply that for the subgroups
of cycles rationally equivalent to zero we have Ratd(Z) ⊂ Ratd(Y ). So i induces a
group homomorphism

i∗ : Ad(Z) −→ Ad(X) given on generators by [Z] 7→ [i(Z)].

To define the pullback under the open immersion j : U ↪→ X , consider the group
homomorphism

j∗ : Zd(X) −→ Zd(U) given on generators by [Z] 7→ [Z∩U ].

We need to verify that this homomorphism preserves rational equivalence in the
sense that j∗(Ratd(X))⊂ Ratd(U). We check this on generators: Let Z1,Z2 ⊂ X be
two subvarieties which define rationally equivalent cycles. By definition there exists
a subvariety W ⊂ X of dimension d + 1 and a rational function f ∈ k(W )× with
cyc( f ) = [Z1]− [Z2]. If W ∩U = ∅, then also Z1 ∩U = Z2 ∩U = ∅ and there is
nothing to show. Hence we may assume that W ∩U ̸= ∅. In this case W ∩U is an
open dense subset of W and by restriction of rational functions to this open dense
subset we get a commutative diagram

k(W )× k(W ∩U)×

Zd(W ) Zd(W ∩U)

cyc

∼

cyc

j∗

Thus j∗(Ratd(X))⊂ Ratd(U). So we get a homomorphism j∗ : Ad(X)→ Ad(U) on
Chow groups induced by the above one on cycles.

It remains to show exactness of the localization sequence. Surjectivity of j∗ is
clear since for any subvariety Z ⊂ U its closure Z ⊂ X is a subvariety of X such
that j∗[Z] = [U ]. For the exactness in the middle of the localization sequence, we
clearly have the inclusion im(i∗) ⊂ ker( j∗). Conversely, let α ∈ Zd(X) be a cycle
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with j∗(α)∼ 0. By definition there are subvarieties Wν ⊂U of dimension d+1 and
rational functions fν ∈ k(Wν)

× such that

j∗(α) = ∑
ν

cyc( fν).

The closure of Wν is a subvariety W ν ⊂X such that k(W ν)≃ k(Wν). Let f ν ∈ k(W ν)
be the unique rational function extending fν . Then as in the previous commutative
square j∗(cyc( f ν)) = cyc( fν), so

β := α−∑
ν

cyc( f ν) ∈ Zd(X)

is rationally equivalent to α and j∗(β ) = 0. The latter means that β is a cycle whose
intersection with U ⊂ X is zero, hence β is a linear combination of subvarieties
of Y = X \U . So β ∈ i∗(Zd(Y )), i.e. in Chow groups α ∈ i∗(Ad(Y )). ⊓⊔

Example 3.2. In general i∗ : Ad(Y )−→ Ad(X) need not be injective:

a) For i : Y = {0} ↪→ X = A1 we have i∗ : A0(Y ) = Z−→ A0(X) = 0.

b) For smooth curves i : Y ↪→ X = P2 we have i∗ : A0(Y ) = Pic(Y )→ A0(X) = Z.

c) More generally, let i : Y ↪→ X = Pn be a reduced hypersurface and Y1, . . . ,Yr ⊂ Pn

its irreducible components. We have natural identifications

An−1(Y ) =
⊕

i

Z · [Yi] ≃ Zr and An−1(X) = Pic(Pn) ≃ Z

such that the following diagram commutes:

An−1(Y ) An−1(X)

Zr Z
≀

i∗

≀

Thus i∗ cannot be injective for r > 1. Explicitly, the map at the bottom of the
diagram is given by (a1, . . . ,ar) 7→ a1d1 + · · ·+ardr where di = deg(Yi). By the
localization sequence the top Chow group of the complement of the reduced
hypersurface Y ⊂ Pn is then given by

An(Pn \Y ) ≃ Z/(d1, . . . ,dr).

Remark 3.3. In Borel-Moore homology for varieties over k = C, one has a long
exact sequence

· · · → HBM
i (Z) → HBM

i (X) → HBM
i (U) → HBM

i−1(Z) → ···

As the above example shows, the Chow groups do not fit into such a long exact
sequence. One can extend the localization sequence on Chow groups to a long exact
sequence via the higher Chow groups introduced by Bloch.
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Similarly to the localization sequence, we obtain the following analog of the
Mayer-Vietoris sequence in topology:

Proposition 3.4 (Mayer-Vietoris). Let X1,X2 be closed subschemes of X. Then we
have an exact sequence

Ad(X1∩X2) −→ Ad(X1)⊕Ad(X2) −→ Ad(X1∪X2) −→ 0 for each d ≥ 0.

Proof. Consider the subgroups Zd(Xν)⊂ Zd(X1∪X2) and Ratd(Xν)⊂Ratd(X1∪X2)
for ν = 1,2. Since subvarieties are by definition irreducible, every subvariety of the
union X1 ∪X2 is contained in X1 or X2 (or both). So the definition of cycles and
rational equivalence imply

• Zd(X1∪X2) = Zd(X1)+Zd(X2),
• Ratd(X1∪X2) = Ratd(X1)+Ratd(X2),

where the right hand side denotes the sum of subgroups inside the given ambient
group. Hence the difference map

∆ : Zd(X1)⊕Zd(X2) ↠ Zd(X1∪X2), (α,β ) 7→ α−β

is surjective and restricts to a surjection ∆Rat between subgroups of cycles rationally
equivalent to zero as shown in the following commutative diagram whose rows are
exact:

0 ker(∆Rat) Ratd(X1)⊕Ratd(X2) Ratd(X1∪X2) 0

0 Zd(X1∩X2) Zd(X1)⊕Zd(X2) Zd(X1∪X2) 0

∃ϕ

∆Rat

∆

The snake lemma then gives an exact sequence

0 −→ coker(ϕ) −→ Ad(X1)⊕Ad(X2) −→ Ad(X1∪X2) −→ 0

The claim now follows from the fact that coker(ϕ) is a quotient of Ad(X1 ∩X2),
which is clear since Rd(X1∩X2)⊂ ker(∆Rat). ⊓⊔

4 Example: Affine bundles

As an application of the localization sequence, let us take a look at the Chow groups
of affine bundles. By an affine bundle of rank n we mean a morphism p : E → X of
schemes such that there is a cover X =

⋃
i Ui by open subsets Ui ⊂ X over which we

have isomorphisms
p−1(Ui) ≃ An×Ui for all i.
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If the transition morphisms between different charts are linear in the sense that they
are given by morphisms Ui ∩U j → GLn, then we call p : E → X a vector bundle
or GLn-bundle. More generally, one could impose that the transition maps only lie
in the group of affine-linear transformations Affn = (An,+)⋊GLn and then call p
an Affn-bundle. In what follows we need neither of these assumptions, we use the
most general notion of affine bundles where the transition functions can be arbitrary
automorphisms. The following is a special case of the flat pullback that we will
discuss in more detail later:

Definition 4.1. Let p : E → X be an affine bundle. For any subvariety Z ⊂ X of
dimension d the preimage p−1(Z)⊂ E is a subvariety of dimension d+n, so we get
a homomorphism

p∗ : Zd(X) −→ Zd+n(E), [Z] 7→ [p−1(Z)].

If W ⊂ X is a subvariety of dimension d + 1, then the preimage V = p−1(W ) is a
subvariety of dimension d+n+1, and one easily checks that we have a commutative
diagram

k(W )× k(V )×

Zd(X) Zd+n(Y )

p∗

cyc cyc

p∗

Hence p∗(Ratd(X)) ⊂ Ratd+n(E) and the pullback on cycles descends to a natural
homomorphism

p∗ : Ad(X) −→ Ad+n(E).

If n > 1, then the homomorphism Zd(X)→ Zd+n(E) is clearly not surjective: Not
every cycle on an affine bundle comes by pullback from the base space. But every
cycle can be deformed into one that comes by pullback from the base:

Theorem 4.2. Let p : E → X be an affine bundle of rank n. Then for all d ∈ Z the
homomorphism

p∗ : Ad(X) ↠ Ad+n(E) is surjective.
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Proof. We first reduce to the case of a trivial bundle: By definition of affine bundles
we may pick a closed subscheme Y ⊂ X such that p−1(U)≃ An×U over the open
subset U = X \Y ⊂ X . The localization sequences for the open embedding U ↪→ X
and for the embedding of its preimage EU = p−1(U) ↪→ E fit into a commutative
diagram

Ad(Y ) Ad(X) Ad(U) 0

Ad(EY ) Ad(E) Ad(EU ) 0

p∗Y p∗ p∗U

with exact rows, where pY : EY = p−1(Y )→ Y and pU : EU = p−1(U)→ U are
again affine bundles. By induction on the dimension we may assume that p∗Y is
surjective, and by the diagram it then only remains to show p∗U is surjective.

Replacing X be U we may hence assume E ≃An×X . In this case, the projection
factors as

E ≃ An×X −→ An−1×X −→ ·· · −→ A1×X −→ ;X

where each step is a trivial bundle of rank one. So we may assume n = 1 and use a
similar argument as in lemma 2.5: We want to show that for any subvariety Z ⊂ E of
dimension d +1, its class is rationally equivalent to a class that comes by pullback
from X . Replacing X by the closure of f (Z), we may assume X is a variety and the
morphism p : Z→ X is dominant. There are then two cases:

Either dimX = dimZ−1. In this case Z = E, so [Z] = p∗[X ] and we are done. Or
dimX = dimZ. In this case dimE > dimZ, so Z cannot contain the generic fiber of
the projection p : E = A1×X → X . By base change to the function field K = k(X)
we then see that

ZK = Z×X SpecK ⊊ EK = SpecK[t]

is a proper closed subscheme, hence of the form ZK = V ( f ) ⊂ SpecK[t] for some
polynomial f ∈ K[t] with deg f > 0. View f as a rational function on the variety E,
then we obtain for the corresponding cycle that cyc( f ) = Z+Z′ where Z′ ∈ Zd+1(E)
is a linear combination of subvarieties which do not meet the generic fiber. Thus
every component of Z′ maps to a subvariety of dimension≤ d in X and therefore has
positive-dimensional fibers over its image. Since p : E → X has relative dimension
one, it follows that Z′ is the pullback of a cycle on X , and again we are done. ⊓⊔

If p : E → X is a vector bundle, we will later deduce from the theory of Chern
classes that the epimorphism p∗ in the above theorem is an isomorphism. For the
trivial bundle E = X ×An this can be seen as a homotopy invariance for Chow
groups, analogous to the homotopy invariance for Borel-Moore homology. Before
proceeding further, let us note the following trivial consequence:
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Corollary 4.3. We have

Ad(An) ≃

{
Z for d = n,
0 otherwise.

Proof. Clearly Ai(Speck) is isomorphic to Z for i = 0 and zero otherwise. So the
result follows from the previous theorem for the affine bundle p : An→ Speck. ⊓⊔

5 Proper pushforward

In the localization sequence we have seen that any closed immersion gives rise to
a pushforward functor on Chow groups. The following example shows that there is
no way to make Chow groups into a covariant functor for arbitrary morphisms:

Example 5.1. Let i : Speck ↪→A1 be the embedding of a point and p : A1→ Speck
the structure morphism. Then p ◦ i = id. If Chow groups can be made a covariant
functor for arbitrary morphisms, it follows that the identity map on A0(Speck) = Z
factors as

A0(Speck) A0(A1) A0(Speck)
i∗

id

p∗

which is absurd since A0(A1)≃ 0 by lemma 2.5, whereas A0(Speck)≃ Z ̸= 0.

The problem is that the obvious pushforward p∗ : Z0(A1)→ Z0(Speck) does not
respect rational equivalence: On the affine line we can move points to infinity as
in lemma 2.5. This is analogous to the case of Borel-Moore homology which also
is not a covariant functor for all continuous maps. But Borel-Moore homology is a
covariant functor for all proper maps: Continuous maps such that the preimage of
any compact set is compact. We will see the same holds for Chow groups.

Recall that a morphism of schemes is proper if it is separated, of finite type and
universally closed. Closed immersions and projective morphisms are proper, while
affine morphisms are not proper unless they are finite.

Definition 5.2. Let f : X →Y be a proper morphism. For any subvariety Z ⊂ X , the
properness implies that the image f (Z)⊂Y is again closed, and we endow it with the
reduced subscheme structure. Then for the dominant morphism f : Z↠W = f (Z)
of varieties we have:

• Either dimW < dimX , in which case we put deg(Z/W ) = 0.

• Or dimW = dimX , in which case f : Z→W is a generically finite morphism and
we denote its generic degree by deg(Z/W ) = [k(Z) : k(W )] ∈ N.
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We define f∗[Z] := deg(Z/W ) · [W ] and extend this definition linearly to a group
homomorphism

f∗ : Zd(X) −→ Zd(Y ).

Remark 5.3. The pushforward on cycles is a functor: If X
f−→ Y

g−→ Z are two
proper morphisms, then we have

(g◦ f )∗ = g∗ ◦ f∗ : Ad(X) −→ Ad(Z)

as one sees immediately from the transitivity of degrees in field extensions.

Since properness is stable under base change, a proper morphism f : X → Y has
all fibers f−1(y)→ Specκ(y) proper. Intuitively, this means that the fibers do not
allow for deformations of points to “extra points at infinity” as in example 5.1, and
indeed the proper pushforward descends to Chow groups:

Theorem 5.4. Let f : X → Y be a proper morphism. Then f∗(Ratd(X))⊂ Ratd(Y ),
hence we obtain an induced homomorphism

f∗ : Ad(X) −→ Ad(Y ) for each d ≥ 0.

Proof. By definition, any cycle rationally equivalent to zero is a sum of cycles of
the form cyc(r) where r ∈ k(W )× is a rational function on a subvariety W ⊂ X of
dimension d +1. We must show that each cycle of the form f∗(cyc(r)) is rationally
equivalent to zero. Replacing X by W and replacing Y by the underlying reduced
closed subscheme of f (W ), we are left with the following

Claim. Let f : X → Y be a proper surjective morphism of varieties. Then for any
rational function r ∈ k(X)× we have

f∗(cyc(r)) =

{
0 if dimY < dimX ,

cyc(NL/K(r)) if dimY = dimX ,

where NL/K : L→ K denotes the norm of the field extension K = k(Y )⊂ L = k(X).

We will divide the proof of this claim in two parts, dealing first with the case
where f is generically finite and then with the case where dimY < dimX .

Case 1: dimY = dimX. Here f is generically finite. We want to compare the
multiplicity with which a given subvariety Z ⊂ Y of codimension one enters in the
cycles f∗(cyc(r)) and cyc(NL/K( f )). This can be done locally near the generic point
of Z. Note that for dimension reasons the morphism f has finite fibers over the
generic point of Z, because codimY (Z) = 1 and dimY = dimX . So after shrinking Y
to a neighborhood of the generic point of Z we may assume that f : X → Y has
finite fibers. From algebraic geometry we know that any proper morphism with finite
fibers is a finite morphism, so we may assume f : X → Y is a finite morphism.
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Shrinking Y further, we may assume Y = SpecA0 is affine. Then X = SpecB0 for
a finite A0-algebra. Let A = OY,Z be the local ring along the given subvariety, then
the base change

B = B0⊗A0 A

is a domain with quotient field B⊗A K = L. The ring extension A ⊂ B is finite and
we have a bijection between

• maximal ideals mi⊴B, and
• subvarieties Vi ⊂ X dominating Z,

such that the corresponding local rings are given by Bmi ≃ OX ,Vi . What we need to
show is

∑
i

ordVi(r) · [k(Vi) : k(Z)] = ordZ(NL/K(r)),

indeed the left hand side is by definition the multiplicity of Z in the cycle f∗(cyc(r))
and the right hand side is the one in cyc(NL/K(r)). To check the above equality,
notice that both sides are additive with respect to factorizations of r as a product of
rational functions. Since k(Y ) = Quot(B), it will therefore suffice to show the above
equality when r ∈ B. In this case, the left hand side of the equality can be rewritten
as

∑
i

ordVi(r) · [k(Vi) : k(Z)] = ∑
i
ℓBmi

(Bmi/(r)) · [κ(mi) : κ(m)] = ℓA(B/(r))

for the maximal ideal m⊴A as one easily sees using the definition of length via
composition series. On the other hand, the right hand side of the desired equality
can be rewritten as

ordZ(NL/K(r)) = ordZ(det(ϕ)) for ϕ = (x 7→ rx) ∈ EndK(L).

by definition of the norm. The claim then boils down to ℓA(B/(r)) = ord(det(ϕ)),
and this is shown in the appendix in corollary 8.6.

Case 2: dimX > dimY . In this case we want to show that f∗(cyc(r)) = 0 for any
given rational function r ∈ k(X)×. This is trivial if dimX > dimY +1, since cyc(r)
is a cycle of codimension one on X . Hence in what follows we may assume that
dimX = dimY +1. By definition of the pushforward on cycles then

f∗(cyc(r)) = ∑
V

ordV (r) ·deg(V/Y ) · [Y ]

where the sum runs over all subvarieties V ⊂ X dominating Y . Since the sum on the
right hand side is a multiple of the fundamental class [Y ], we only need to show the
scalar identity

∑
V

ordV (r) ·deg(V/Y ) = 0.

For this we may replace X → Y by its generic fiber XK → SpecK. Thus we may
assume that Y = SpecK is the spectrum of a field. By our dimension assumption
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then X is a curve over K. Consider now the normalization n : X̃ → X . Since X̃ is a
smooth curve, we may find a finite morphism g : X̃ → P1

K . We get a commutative
diagram

X̃ X

P1
K Y SpecK

n

g f

p

Let r̃ ∈ k(X̃)× be the rational function corresponding to r via k(X̃)≃ k(X). Then by
functoriality of the pushforward on cycles

f∗(cyc(r)) = f∗n∗(cyc(r̃)) = p∗g∗(cyc(r̃)) = p∗(N(r̃))

where in the last step we have used the norm N : k(X̃)×→ k(P1
K)
× and the result for

generically finite morphisms from step 1. It then only remains to observe that for
any s ∈ k(P1

K)
× we have p∗(cyc(s)) = 0, which is clear by writing s as a quotient of

two homogenous polynomials of the same degree. ⊓⊔

In the last step of the above argument, we have reproven the well-known fact that
any principal divisor on a smooth projective curve has degree zero. Similarly we can
count points on any proper scheme:

Definition 5.5. Let f : X → Speck be proper. Then the degree homomorphism is
defined as the composite of the pushforward f∗ and the identification A0(Speck)=Z
given by the fundamental class of a point:

deg: A0(X)
f∗−→ A0(Speck) ≃ Z, ∑

i
ni · [pi] 7→ ∑

i
ni · [κ(pi) : k].

We extend this to A∗(X) by precomposing with the projection A∗(X)↠ A0(X) and
also denote it by ∫

X : A0(X) −→ Z

to evoke the analogy with the integral of top forms in de Rham cohomology.

Corollary 5.6 (Bézout). Let k be algebraically closed, and let C,D⊂ P2 be reduced
curves without common components. Then

∑
p∈P2(k)

ip(C,D) = deg(C)deg(D).

Proof. Both sides are additive with respect to the union of irreducible components,
so we may assume C is irreducible and we can talk about its function field. Pick
homogenous polynomials f ,g of degree deg( f )= deg(C) and deg(g)= deg(D) such
that

C =V+( f ), D =V+(g) ⊂ P2

as closed subschemes. We first reduce to the case where D is a line:
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Let h be a linear form such that the line L =V+(h)⊂ P2 intersects the curve C in
finitely many points. Let d = deg(g). The rational function g/hd ∈ k(P2)× restricts
to a well-defined rational function

r = (g/hd)|C ∈ k(C)×

because L∩C is finite, and

cyc(r) = ∑
p∈C(k)

ordp(r) · [p]

= ∑
p∈C(k)

(ℓ(OC,p/(g))−d · ℓ(OC,p/(h)) · [p]

= ∑
p∈C(k)

(ip(C,D)−d · ip(C,L)) · [p]

in Z0(C). Since cyc(r) ∈ Z0(C) is rationally equivalent to zero and the degree map
preserves rational equivalence, it follows that

0 = ∑
p∈C(k)

(ip(C,D)−d · ip(C,L)),

in other words

∑
p∈C(k)

ip(C,D) = d · ∑
p∈C(k)

ip(C,L) where d = deg(D).

Thus it suffices to prove the claim when D = L is a line. Repeating the argument
with the roles of the two curves interchanged, we are left with the case where C
and D are two distinct lines, in which case the result is trivial. ⊓⊔

Remark 5.7. In theorem 5.4, it is essential that proper morphisms are by definition
separated. For instance, let X be the projective line with a doubled origin, i.e. the
scheme obtained by glueing two copies of P1 along the open subset P1 \ {0}, and
let f : X → Speck be the structure morphism. The function r = x1/x0 ∈ k(X)× has
a simple zero at each of the two copies of the origin 01,02 ∈ X and a simple pole at
infinity, so cyc(r) = [01]+ [02]− [∞] and hence f∗[cyc(r)] ̸∼ 0.

Another application of theorem 5.4 is the translation between two different views
of rational equivalence: We have defined the notion of rational equivalence in terms
of principal divisors on subvarieties of dimension d +1. We could also define it via
families of subschemes of dimension d parametrized by the projective line: Given
a subvariety V ⊂ X ×P1 such that the projection p : V → P1 is dominant, we can
view V as a family of subschemes

i : Vt := p−1(t) ↪→ X×{t} = X for t ∈ P1(k)

as illustrated in the following picture (stolen from the book by Eisenbud-Harris):
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This leads to the following alternative interpretation of rational equivalence:

Proposition 5.8. A cycle α ∈ Zd(X) is rationally equivalent to zero iff there exists a
finite collection of subvarieties V ⊂ X ×P1 of dimension d +1 dominating P1 such
that

α = ∑
V

i∗ ([V0]− [V∞]) .

Proof. If V ⊂ X × P1 is a subvariety of dimension d + 1 dominating P1 via the
second projection, then viewing that projection as a rational function p ∈ k(V )× we
have [V0]− [V∞] = cyc(p) ∈ Ratd(V ). So i∗[V0]− i∗[V∞] ∈ Ratd(X) by theorem 5.4,
hence any cycle α of the form given above is rationally equivalent to zero.

Conversely, starting from our definition of rational equivalence, suppose we are
given a rational function r ∈ k(W )× on a subvariety W ⊂ X of dimension d+1. We
also write r : W → P1 for the morphism defined by the rational function and denote
by

V := graph(r) ⊂ W ×P1 ⊂ X×P1

the closure of its graph. The projection q : V →W is a birational proper morphism,
hence we have

cyc(r) = p∗[cyc(r ◦q)] = [V0]− [V∞].

Hence any cycle rationally equivalent to zero has the form in the proposition. ⊓⊔

6 Flat pullback

We have already seen two examples of a pullback between Chow groups: In the
localization sequence we have taken the pullback under an open embedding, and for
affine bundles we have defined the pullback under the projection to the base. Both
are special cases of the flat pullback to be defined below.
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Recall that a ring homomorphism A→ B is said to be flat the functor (−)⊗A B
from A-modules to B-modules is exact. A morphism f : X → Y of schemes is flat if
it has the following equivalent properties:

a) for every affine open subset V ⊂ Y and every affine open U ⊂ f−1(V ) the ring
homomorphism

f ♯ : OY (V ) −→ OX (U) is flat.

b) for every x ∈ X and y = f (x) the ring homomorphism f ♯ : OY,y→ OX ,x is flat.

By the local flatness criterion from algebraic geometry, the flatness condition in b)
is equivalent to

Tor1(κ(y),OX ,x) = 0

where κ(y) = OY,y/my and the Tor functor is taken over the local ring OY,y.

Example 6.1. Let X =V (xy)⊂ A2 be the union of the coordinate axes in the affine
plane. Then

• f : X −→ A1 given by g(x,y) = x is not flat,
• g : X −→ A1 given by f (x,y) = x+ y is flat.

Note that g−1(0) ≃ Speck[x]/(x2), so flat morphisms may have some non-reduced
fibers. The failure of flatness in the second example is due to the jump of the fiber
dimension over the origin:

A1

f

A1

g

In algebraic geometry one shows that a morphism from a reduced scheme to a
smooth curve is flat iff every irreducible component of the source dominates that
curve. Moreover, for any flat morphism f : X → Y of schemes and any x ∈ X with
image y = f (x) we have

dimx X = dimx f−1(y)+dimy Y

where the local dimension of X at x is defined by dimx X = dimOX ,x. For reducible
schemes the fibers may still have irreducible components of different dimension
even if the source of the morphism is connected:
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Example 6.2. The scheme X =V (xy,xz)⊂A3 = Speck[x,y,z] is connected and the
morphism

f : X → A1,(x,y,z) 7→ x+ y

is easily seen to be flat. Its fiber over c ∈ A1(k) is given as a set by

f−1(p) = {(c,0,0)}∪{(0,c, t) | t ∈ A1}.

Definition 6.3. A scheme X is equidimensional (also called pure dimensional) if
all its irreducible components have the same dimension. A morphism f : X → Y
is called equidimensional of relative dimension n if for any subvariety V ⊂ Y its
preimage

W = f−1(V ) is equidimensional with dimW = dimV +n.

Flat morphisms between varieties are automatically equidimensional:

Proposition 6.4. Let f : X → Y be a flat morphism, where Y is irreducible and X
is an equidimensional scheme. Then any base change of f is equidimensional of
relative dimension

n = dimX−dimY.

Proof. See Hartshorne, cor. III.9.6. ⊓⊔

In what follows, we make the convention that the term flat always means flat
and equidimensional. For any flat morphism f : X → Y of relative dimension n,
proposition 6.4 allows to define a homomorphism

f ∗ : Zd(Y ) −→ Zd+n(X), [Z] 7→ [ f−1(Z)]

by additive extension of the map sending a subvariety Z ⊂ Y of dimension d to the
fundamental cycle of the subscheme f−1(Z) ⊂ X . Note that in the definition we
only use subvarieties Z ⊂ Y , but a simple bookkeeping of lengths shows that the
same formula then holds for fundamental cycles of arbitrary subschemes:

Lemma 6.5. For any subscheme Z ⊂ Y we have

f ∗[Z] = [ f−1(Z)].

Proof. Let V ⊂ f−1(Z) be an irreducible component of the preimage of Z, seen as
a subvariety of the scheme f−1(Z). Let W = f (V )⊂Y be its closure, endowed with
the reduced subscheme structure so that it becomes a subvariety of Z. The flatness
of f implies that W is an irreducible component of Z (else we could find a local
section s ∈ OZ which is not a zero divisor in OZ but satisfies s|W = 0. The latter
condition would mean that the local section pulls back to a zero divisor in O f−1(Z),
which is impossible because flat ring homomorphisms preserve the property of not
being a zero divisor). Algebraically, the fact that W ⊂ Z is an irreducible component
means that the local ring OZ,W is an Artin ring, i.e. has Krull dimension zero.
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Consider now the homomorphism A = OZ,W → B −→ O f−1(Z),V . By definition
of fundamental cycles

• [ f−1(Z)] contains [V ] with multiplicity ℓB(B),
• [ f−1(W )] contains [V ] with multiplicity ℓB/mAB(B/mAB) = ℓA(B/mAB),
• [Z] contains [W ] with multiplicity ℓA(A).

Hence the claim boils down to the identity ℓB(B) = ℓA(A) · ℓA(B/mAB), which is
easily seen to hold for any local homomorphism between Artinian local rings. ⊓⊔

Corollary 6.6. If f : X → Y and g : Y → Z are flat morphisms, then f ◦g is flat and
we have

(g◦ f )∗ = f ∗ ◦g∗ : Zd(X) −→ Zd+n(Z) for n = dimX−dimZ.

Proof. For any subvariety V ⊂ Z we have

(g◦ f )∗[V ] = [(g◦ f )−1(V )] = [ f−1(g−1(V ))] = f ∗[g−1(V )] = f ∗g∗[V ]

by repeated application of lemma 6.5. ⊓⊔

We next want to show that the flat pullback preserves rational equivalence of
cycles. For this we will need the following compatibility of flat pullback and proper
pushforward. Suppose that we are given a Cartesian square

X ′ X

Y ′ Y

g′

f ′ f

g

Recall that if f is proper, then f ′ is proper. Similarly, if f is proper, then f ′ is proper.

Lemma 6.7. For any Cartesian square as above where f is proper and g is flat, we
have

f ′∗g
′∗(α) = g∗ f∗(α) for all α ∈ Zd(X).

Proof. If f is a closed immersion, this follows directly from the definitions. To deal
with the general case, note that for any subvariety Z ⊂ X the cycle [Z]∈ Zd(X) is the
pushforward of [Z] ∈ Zd(Z) under the closed immersion of the subvariety. Hence by
the case of closed immersions we may replace X by Z. By the same argument we
can replace Y by the closure of f (X) with its reduced subscheme structure. So we
may assume that f : X → Y is a dominant morphism between varieties and α = [X ]
is the fundamental class of the variety X . Now

g∗[Y ] = [Y ′], f∗[X ] = deg(X/Y ) · [Y ],

g′∗[X ] = [X ′], f ′∗[X
′] = deg(X ′/Y ′) · [Y ′],
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so everything boils down to showing the equality deg(X/Y ) = deg(X ′/Y ′). Note that
by flatness g : Y ′ → Y is dominant. So if f is not generically finite, then the claim
is trivial since both sides in the equality are zero. But f is generically finite. then
replacing Y by an open dense subset we can assume f is finite and g is surjective, in
which case clearly deg(X/Y ) = deg(X ′/Y ′). ⊓⊔

Theorem 6.8. Let f : X → Y be a flat morphism of relative dimension n. Then we
have

f ∗(Ratd(Y )) ⊂ Ratd+n(X),

hence we obtain an induced homomorphism of Chow groups f ∗ : Ad(Y )→Ad+n(X).

Proof. By proposition 5.8 the subgroup Ratd(Y )⊂ Zd(Y ) is generated by cycles of
the form α = [V0]− [V∞] where V ⊂ Y ×P1 is a subvariety which dominates P1 via
the projection on the second factor. For any such cycle we consider the diagram
below, where

W = ( f × id)−1(V ) ⊂ X×P1

and where p,q,g,h are the restriction of the projections to the two factors:

X W P1

Y V P1

f

p

f×id

g

q h

We have

f ∗α = f ∗q∗([h−1(0)]− [h−1(∞)]) since α = [V0]− [V∞]

= p∗( f × id)∗([h−1(0)]− [h−1(∞)]) by lemma 6.7

= p∗([g−1(0)]− [g−1(∞)]) by lemma 6.5
= [W0]− [W∞].

At this point we would like to say that [W0]− [W∞] ∈ Ratd+n(X) by proposition 5.8,
but we have to be slightly more careful because in general the subscheme W may be
reducible and non-reduced. We do the bookkeeping of multiplicities as follows:

Since by assumption the morphism f × id : X×P1→Y ×P1 is equidimensional,
the scheme W =( f × id)−1(V ) is equidimensional as well. Let W1, . . . ,Wr ⊂W be its
irreducible components, endowed with the reduced subscheme structure, and denote
by gi = g|Wi : Wi→ P1 the restriction of g. The fundamental cycle of the scheme W
has the form

[W ] =
r

∑
i=1

mi · [Wi] with certain mi ∈ N0,

and we will be done if we can show that

[W0]− [W∞] =
r

∑
i=1

mi · cyc(gi) for the rational functions gi ∈ k(Wi)
×
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Since by definition cyc(gi) = [g−1
i (0)]− [g−1

i (∞)], everything then boils down to the
identity

[h−1(p)] =
r

∑
i=1

mi · [h−1
i (p)] for all p ∈ P1

which is a special case of lemma 6.9 below. ⊓⊔

To explain the last step in the above proof, recall that an effective Cartier divisor
on a scheme W is a closed subscheme D ⊂W of codimension one defined locally
by a single function that is not a zero divisor. By this we mean that each p ∈W has
an affine open neighborhood U = SpecA⊂W such that

D∩U = Spec(A/( f )) for some f ∈ A which is not a zero divisor.

If Wi ⊂W is an irreducible component meeting U , then Ui :=U ∩Wi = Spec(A/pi)
for some minimal prime ideal pi⊴A. Now the set of zero divisors of any Noetherian
ring is the union of its associated prime ideals, and for reduced rings these are just
the minimal prime ideals. Hence f /∈ pi, so the image fi := ( f modpi) ∈ Ai := A/pi
is not zero and thus not a zero divisor. So we get on the chosen chart an effective
Cartier divisor D∩Ui = Spec(Ai/( fi)) ⊂Ui, and these glue to an effective Cartier
divisor

D∩Wi ⊂ Wi.

Suppose dimWi = d for all i. There are two sources for multiplicities in [D]:

• Vanishing orders on the irreducible components: The cycle [D∩Wi] ∈ Zd−1(Wi)
on the integral scheme Wi has multiplicities given by the order of zeroes of a local
defining function for the Cartier divisor D∩Wi,

• Multiplicities of the components: If W is non-reduced, the cycle [W ] ∈ Zd(W )
contains the component Wi by definition with multiplicity given by the length of
the local ring along that component.

Lemma 6.9. Let W be an equidimensional scheme of dimension n. Let W1, . . . ,Wr
be its irreducible components and [W ] = ∑

r
i=1 mi · [Wi] its fundamental cycle, with

multiplicities mi ∈ N. Then for any effective Cartier divisor D⊂W we have

[D] =
r

∑
i=1

mi · [D∩Wi] in Zn−1(X).

Proof. Let V ⊂W be a subvariety of codimension one. We must show that it enters
with the same multiplicity in the cycles [D] and ∑i mi[D∩Wi]. Working locally, we
may assume that

D = V ( f ) ⊂ W for some non-zero-divisor f ∈ Γ (W,OW ).

The irreducible components Wi ⊂W which contain V correspond bijectively to the
minimal prime ideals

pi ⊴ A = OW,V ,
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and by definition the multiplicities of the components in the fundamental cycle [W ]
are given by mi = ℓApi

(Api). By definition

• [V ] enters in [D] with multiplicity ℓA(A/( f )),
• [V ] enters in [D∩Wi] with multiplicity ℓA/pi(A/(pi + f A)).

The claim now follows from the identity

ℓA(A/( f )) = ∑
i
ℓApi

(Api) · ℓA/pi(A/(pi + f A))

which is shown in corollary 8.9. ⊓⊔

Remark 6.10. The equidimensionality of W is important: Let W = V (xz,yz) ⊂ A3

be the scheme with irreducible components W1 = V (z), W2 = V (x,y). Clearly the
function f = z− x ∈ Γ (W,OW ) is not a zero divisor. The subscheme cut out by f is
a line with a fat point

D = Speck[x,y,z]/(xz,yz,z− x) ≃ Speck[x,y]/(x2,xy).

Hence one computes

[D] = [V (x,z)] but
2

∑
i=1

[D∩Wi] = [V (x,z)]+ [V (x,y,z)]

The problem arises from the cycle [D∩W2] = [V (x,y,z)] ∈ Z0(W ) which has too
high codimension in W . In fact one can show in general that for any effective Cartier
divisor D on a not necessarily equidimensional scheme W with [W ] = ∑

r
i=1 mi[Wi]

one has
[D] = ∑

i∈I
mi · [D∩Wi]

where I = {1 ≤ i ≤ r | dimWi = dimW}, i.e. we sum only over top-dimensional
irreducible components. The proof is similar to the above.

7 More examples: Cellular varieties

In general, computing the Chow groups of a variety is not an easy task, but there are
some cases where it can be reduced to our earlier computation for affine space via
the localization sequence. The simplest example is projective space:

Proposition 7.1. Let n ∈ N. Then

Ad(Pn) ≃

{
Z for 0≤ d ≤ n,
0 otherwise.
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Proof. We first claim that A∗(Pn) = Z · [L0]+ · · ·+Z · [Ln] where Ld ⊂ Pn denotes
a linear subspace of dimension d. This follows by induction on n, since looking at
the hyperplane H = Ln−1 with complement U = Pn \H we have the localization
sequence

A∗(H)
i∗−→ A∗(Pn) −→ A∗(U)

j∗−→ 0.

We may assume L0 ⊂ L1 ⊂ ·· · ⊂ Ln−1 = H ≃ Pn−1. By induction on n then

A∗(H) ≃ A∗(Pn−1) ≃ Z · [L0]+ · · ·+Z · [Ln−1],

where by abuse of notation we apply the same notation for classes in A∗(H) and
their images in A∗(Pn). Moreover A∗(U) = Z · [U ] is generated by [U ] = j∗[Ln],
being the Chow group of an affine space. Hence the claim follows.

It remains to be shown that there exist no nontrivial relations between the given
generators. Since the generators are cycles of different dimension, we only need to
show that for each d the map

Z −→ Ad(Pn), m 7→ m · [Ld ] is injective.

For d = n this is clear, and for d = n−1 it holds since An−1(Pn) = Pic(Pn) = Z. So
in what follows we may assume d < n−1. Suppose that

m · [Ld ] =
r

∑
i=1

cyc( fi)

for suitable fi ∈ k(Wi)
× and subvarieties Wi ⊂ Pn of dimension d +1. The union

W = W1∪·· ·∪Wr ⊂ Pn

is a closed subscheme of dimension d+1. By taking an intersection of d+2 general
hyperplanes, we find a linear subspace

L ⊂ Pn of dimension dimL = n−d−2 with L∩W = ∅.

The projection from L is a rational map π : Pn 99K Pd+1 that restricts on W to a
proper morphism

π : W −→ Pd+1

with finite fibers, and L′d := π(Ld)⊂ Pd+1 is a hyperplane. Since by theorem 5.4 the
proper pushforward preserves rational equivalence, we have

m · [L′d ] = π∗(m · [Ld ]) ∼ 0 in Zd(Pd+1),

and hence m = 0 because Ad(Pd+1) = Z · [L′d ] is freely generated by [L′d ]. ⊓⊔

A similar description exists more generally for varieties which can be stratified
by affine spaces in the following sense:
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Example 7.2. A scheme X is called cellular if it admits a finite filtration by closed
subschemes ∅= X−1 ⊂ X0 ⊂ X1 ⊂ ·· · ⊂ Xn = X such that the complement of each
in the next is a disjoint union

Xi \Xi−1 = Ui1⊔·· ·⊔Uiri with Ui j ≃ Ani j for suitable ni j ∈ N0.

The same localization argument as in the first step of the above proof then shows
that the total Chow group is generated by the classes of the closure Zi j = U i j ⊂ X ,
i.e. that

n⊕
i=1

Zri ↠ A∗(X), (ai j) 7→ ∑
i, j

ai j · [Zi j]

is surjective. In fact one can again show that this map is an isomorphism, but this is
harder — it is a special case of a result by Totaro (2014) that relies on higher Chow
groups. Challenge: Can you come up with an elementary proof?

The notion of a cellular scheme is motivated by CW complexes in algebraic
topology, but it is much more restrictive: In particular, any cellular variety is rational,
i.e. birational to an affine space. However, the class of cellular varieties includes very
important examples such as Grassmann varieties:

Example 7.3. The projective space P(V ) = Proj(Sym∗(V∨)) on a vector space V
parametrizes lines in the vector space. We will see later that more generally, for
any d ∈ {1, . . . ,dimV − 1} the d-dimensional subspaces of V are parametrized by
a smooth projective variety called the Grassmann variety Gr(d,V ). Let us look at
the case d = 2, dimV = 4: To describe it set-theoretically on the level of points,
consider the map

ι : Gr(2,V ) := {subspaces W ⊂V with dimW = 2} ↪→ P(∧2V ), W 7→ [∧2W ].

This map is injective since

W = {w ∈V | u∧w = 0} for any u ∈ ∧2W \{0}.

We call ι the Plücker embedding. Its image consists of the points [u] ∈ P(∧2V )
represented by decomposable vectors, i.e. vectors that can be written as a wedge
product u = v1∧v2 of two vectors v1,v2 ∈V . It is a simple exercise in linear algebra
that

u ∈ ∧2(V ) is decomposable iff u∧u = 0 ∈ ∧4V

Hence set-theoretically the Plücker embedding gives a bijection from Gr(2,V ) onto
the subset

G := {[u] ∈ P(∧2V ) | u∧u = 0} ⊂ P(∧2V ).
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One easily sees that this subset is Zariski closed. To give explicit equations, pick a
basis e1, . . . ,e4 of V . The vectors ei j = ei∧e j with i < j form a basis of ∧2(V ). Take
its dual basis consisting of the vectors

pi j ∈ ∧2(V∨) = H0(P(∧2V ),O(1)) with pi j(vi′ j′) =

{
1 if i = i′ and j = j′,
0 otherwise.

The pi j are called Plücker coordinates. By construction any vector u ∈ ∧2V has the
decomposition

u = ∑
i< j

pi j(u) · ei j

and in these terms we have:

u∧u = 0 ⇐⇒ (p12 p34− p13 p24 + p14 p23)(u) = 0.

Thus we can define the Grassmannian by a quadratic equation in the homogenous
coordinates:

G = V+(p12 p34− p13 p24 + p14 p23) ⊂ P(∧2V ) = Projk[p12, . . . , p34].

This Grassmannian is a cellular variety. To see this, consider the following chain of
closed subsets:

• Let X4 = G be the full Grassmannian.
• Let X3 = G∩V+(p12) be the set of planes W ⊂V with W ∩⟨e3,e4⟩ ̸= 0.
• Let X2 = G∩V+(p12, p13) = X ′2∪X ′′2 be the union of the following two sets:

X ′2 = G∩V+(p12, p13, p23) = {planes W ⊂V with W ∋ e4},
X ′′2 = G∩V+(p12, p13, p14) = {planes W ⊂ ⟨e2,e3,e4⟩}.

• Let X1 = X ′2∩X ′′2 be the set of planes W ⊂ ⟨e2,e3,e4⟩ with W ∋ e4.
• Let X0 = {W} be the subvariety consisting of the single point W = ⟨e3,e4⟩.
Then we have isomorphisms

• X4 \X3 ≃ Speck[s13,s14,s23,s24]≃ A4 where si j = pi j/p12.
• X3 \X2 ≃ Speck[t14, t23, t34]≃ A3 where ti j = pi j/p13.
• X ′2 = P⟨e14,e24,e34⟩ ⊃ X1 = P⟨e24,e34⟩, hence X ′2 \X1 ≃ A2.
• X ′′2 = P⟨e23,e24,e34⟩ ⊃ X1 = P⟨e24,e34⟩, hence X ′′2 \X1 ≃ A2.
• X1 = P⟨e24,e34⟩ \X0 = P⟨e34⟩, hence X1 \X0 ≃ A1 and X0 ≃ A0.

Thus the Grassmann variety G = Gr(2,V ) is cellular, and its Chow groups are given
by

Ad(G) =


Z · [Xd ] for d = 0,1,3,4,
Z · [X ′2]+Z · [X ′′2 ] for d = 2,
0 otherwise.
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With more work, one may check that there are no relations between the given
classes, so we have

Ad(G) ≃


Z for d = 0,1,3,4,
Z2 for d = 2,
0 otherwise.

However, the Z-linear independence of classes in Chow groups is much easier to
check using the intersection product; we will later give a complete description of
the intersection product on the Chow ring of arbitrary Grassmann varieties.

The Chow groups of cellular varieties behave very nicely, for instance they satisfy
the following analog of the Künneth decomposition in cohomology:

Exercise 7.4. Let X ,Y be schemes.

a) Show that for any d,e ∈ N0 we have a well-defined product

× : Ad(X)⊗Ae(Y ) −→ Ad+e(X×Y ), [Z]× [W ] := [Z×W ].

b) Show that if X and Y are cellular varieties, then for any m ∈ N0 the resulting
homomorphism

× :
⊕

d+e=m

Ad(X)⊗Ae(Y ) −→ Am(X×Y )

is surjective. Is it also injective? What happens if X and Y are not cellular?

8 Appendix: Length and determinant

In this appendix we recall the relation between the length and determinant that we
have used in the proof of theorem 5.4. We fix a Noetherian local domain A with
dimA = 1 and a finite-dimensional vector space V over K = Quot(A).

Definition 8.1. A lattice in V is a finitely generated A-submodule M ⊂ V with the
property that

V = M⊗A K.

Remark 8.2. Lattices always exist: For any basis of V over K, the A-submodule
generated by it is a lattice. From this observation one easily verifies that for any
given lattice M0 ⊂ V and any A-submodule M ⊂ M0 the following conditions are
equivalent:

a) M ⊂V is a lattice.
b) M0/M has finite length as an A-module.



8 Appendix: Length and determinant 39

Moreover, for any two lattices M1,M2 ⊂ V their intersection M1∩M2 ⊂ V is again
a lattice. We can therefore define a measure for how different two lattices are by
comparing both to their intersection:

Definition 8.3. The distance between two lattices M1,M2 ⊂ V is defined to be the
integer

d(M1,M2) = ℓA(M1/M12)− ℓA(M2/M12) for M12 = M1∩M2

= ℓA(M1/N)− ℓA(M2/N) for any sublattice N ⊂M12

The last formula implies that the distance between lattices is additive:

Lemma 8.4. We have d(M1,M3) = d(M1,M2)+d(M2,M3) for lattices M1,M2,M3.

Proof. Put N = M1∩M2∩M3. Then

d(M1,M3) = ℓA(M1/N)− ℓA(M3/N)

= ℓA(M1/N)− ℓA(M2/N)+ ℓA(M2/N)− ℓA(M3/N)

= d(M1,M2)+d(M2,M3)

because N is a sublattice of Mi∩M j for all i, j ∈ {1,2,3}. ⊓⊔

After these preliminaries we can formulate the main result of this section. For any
automorphism ϕ ∈AutK(V ), consider its determinant det(ϕ) ∈ K× and consider its
order

ord(det(ϕ)) := ℓA(A/(a))− ℓA(A/(b)) for det(ϕ) =
a
b

with a,b ∈ A,

i.e. the order of zeroes or poles at the closed point of SpecA.

Proposition 8.5. Let M ⊂V be a lattice. For ϕ ∈ AutK(V ) the image ϕ(M)⊂V is
again a lattice and

d(M,ϕ(M)) = ord(det(ϕ)).

Proof. We first claim that both sides of the equation are additive with respect to the
composition of automorphisms: For all ϕ,η ∈AutK(V ) the order of the determinant
satisfies

ord(det(ϕ ◦η)) = ord(det(ϕ) ·det(η)) by multiplicativity of det
= ord(det(ϕ))+ord(det(η)) by additivity of ord

and the distance of lattices satisfies

d(M,ϕ(η(M)) = d(M,ϕ(M))+d(ϕ(M),ϕ(η(M))) by lemma 8.4
= d(M,ϕ(M))+d(M,η(M)) since d ◦ (ϕ,ϕ) = d.
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It therefore suffices to verify the claim of the proposition when ϕ runs over a set
of generators of the group AutK(V ). By choosing a basis we may assume V = Kn

and hence AutK(V ) = GLn(K). Then our set of generators can be chosen to be the
elementary matrices

Ei j(λ ) = id+λ ·δi j with i ̸= j and λ ∈ K×

Ei(λ ) = id+(λ −1) ·δii with any i and λ ∈ K.

For the lattice M = Rn ⊂V = Kn the claim now follows by a direct computation. It
then only remains to observe that the function d(M,ϕ(M)) is independent of the
chosen lattice M ⊂V (as it should be if the proposition is supposed to be true), since
we have

d(M,ϕ(M)) = d(M,M′)+d(M′,ϕ(M′))+d(ϕ(M′),ϕ(M))

= d(M,M′)+d(M′,ϕ(M′))+d(M′,M)

= d(M′,ϕ(M′)

by repeated application of lemma 8.4 and because d ◦ (ϕ,ϕ) = d. ⊓⊔

Corollary 8.6. Let A⊂ B be a finite extension of domains, where A is a Noetherian
local ring of dimension one as above. Then for any nonzero element r ∈ B\{0} we
have

ℓA(B/rB) = ord(NL/K(r)),

where NL/K : L = Quot(B)→ K = Quot(A) is the norm of the field extension.

Proof. Take V = L and ϕ = (x 7→ bx) ∈ AutK(V ) in proposition 8.5. ⊓⊔

In the above result we have only been dealing with domains. In particular, for the
A-module M =B the multiplication M→M,m 7→ rm was injective. This is no longer
the case for more general A-modules M, and as a consequence the length ℓ(M/rM)
is less well-behaved; for instance, the function M 7→ ℓ(M/rM) is in general not
additive in short exact sequences of modules. This leads to the following notion:

Definition 8.7. Let A be a commutative Noetherian ring and a ∈ A. Let M be a
finitely generated module over A. We say e(a,M) is defined if

aM := ker(M a·−→M) and Ma := cok(M a·−→M) = M/aM

both have finite length over A, and we then put e(a,M) := ℓA(Ma)− ℓA(aM).

Lemma 8.8. Let A be a commutative Noetherian ring and a ∈ A,

a) Let 0→M′→M→M′′→ 0 be an exact sequence of finitely generated modules
over A. If two of the three numbers e(a,M),e(a,M′),e(a,′′ ) are defined, then so
is the third, and then

e(a,M) = e(a,M′)+ e(a,M′′).
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b) For any finite length A-module M we have e(a,M) = 0.

Proof. For a), the snake lemma for the diagram

0 M′ M M′′ 0

0 M′ M M′′ 0

a a a

gives an exact sequence 0→a M′→a M→a M′′→M′a→Ma→M′′a → 0. For b) use
the exact sequence

0→a M→M→M→Ma→ 0

and the additivity of the length in short exact sequences. ⊓⊔

Corollary 8.9. Let A be a one-dimensional Noetherian local ring, p1, . . .pr⊴A its
minimal prime ideals, and a ∈ A\

⋃r
i=1 pi. Then any finitely generated A-module M

satisfies

e(a,M) =
r

∑
i=1

ℓApi
(Mpi) · e(a,A/pi) where e(a,A/pi) = ℓA(A/(pi +aA)).

Proof. The second equality follows from our assumption that a /∈
⋃r

i=1 pi. For the
first equality, note that both sides of the equality are additive with respect to short
exact sequences, hence we may assume M = A/p for some prime ideal p⊴A. There
are then only two cases:

a) If p is a maximal ideal, then M/p has finite length over A, hence by the previous
lemma we get e(a,M) = 0. So the left hand side of the desired equality is zero. But
the right hand side is also zero, since p ̸⊂ pi implies that Mpi = 0 for all i.

b) If p= pi for some i, then ker(M a−→M) = 0 by our assumption a /∈ pi. Hence
we get

e(a,M) = ℓA(M/(a)) = ℓA(A/(pi +aA))

and the claim follows because ℓAp j
(Mp j) = ℓAp j

((A/pi)p j) = δi j. ⊓⊔





Chapter II
Vector bundles and Chern classes

1 Intersection with Cartier divisors

In this section we study the intersection of arbitrary cycles with codimension one
cycles attached to Cartier divisors. Recall that for integral schemes X of dimension n
we have defined the first Chern class c1 : Pic(X)→ An−1(X) by the commutative
diagram

Div(X) Zn−1(X)

Pic(X) An−1(X)
∃!c1

where Div(X) is the group of Cartier divisors on X and the top row maps a Cartier
divisor to the associated Weil divisor. We will define the intersection of a subvariety
and a Cartier divisor as the pullback of the divisor to the subvariety, but this has
to be understood in the correct sense since the pullback of Cartier divisors is not
always well-defined as a Cartier divisor:

Definition 1.1. Let D∈Div(X) be a Cartier divisor, represented by a family ( fα)α∈I
of functions

fα ∈ k(Uα)
× = k(X)× for an open cover X =

⋃
α∈I

Uα

such that fα/ fβ ∈ OX (Uα ∩Uβ )
× for all α,β . The cycles cyc(Dα) ∈ Zn−1(Uα)

then agree on the overlap of charts, and by gluing them we obtain the associated
Weil divisor

[D] ∈ Zn−1(X)

The support |D| := Supp(D)⊂ X is defined as the union of all subvarieties Z ⊂ X of
codimension one that enter in the divisor with a nonzero coefficient. The pullback
of the divisor under a morphism f : Y → X of varieties is defined as follows:

43
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a) If f (Y ) ̸⊂ |D|, we define f ∗(D) ∈ Div(Y ) to be the Cartier divisor given by the
functions

gα = fα ◦ f ∈ k(Vα)
× for the open cover Y =

⋃
α∈I

Vα with Vα := f−1(Uα).

b) If f (Y )⊂ |D|, we cannot define the pullback as a Cartier divisor like this, but we
can still consider the line bundle OX (D) ∈ Pic(X) and define the pullback of D
as the cycle class

f ∗(D) := c1( f ∗OX (D)) ∈ Ad−1(Y ) where d = dimY.

In both cases we get a cycle class

f ∗(D) ∈ Ad−1( f−1(|D|)).

In case a) this class determines the underlying Weil divisor on the variety Y and
hence also the corresponding Cartier divisor, while in case b) it only remembers its
rational equivalence class. Even worse, by abuse of notation we will sometimes also
write

f ∗(α) := c1( f ∗OX (D)) ∈ Ad−1(Y ) for the class α = [D] ∈ An−1(X)

of a Cartier divisor D∈Div(X) even when f (Y ) ̸⊂ |D|. All three cases can be unified
formally via the notion of a pseudodivisor as in Fulton’s book, but we here take a
more casual view, assuming that it will be clear from the context whether a notation
refers to a Cartier divisor or to its rational equivalence class.

Definition 1.2. Let D be a Cartier divisor on a scheme X , and let i : Z ↪→ X be a
subvariety of dimension dimZ = d. We define the intersection product of the divisor
with the subvariety by

D · [Z] := [i∗(D)] ∈ Ad−1(Z∩|D|).

More generally, for a cycle

α = ∑
Z⊂X

nZ · [Z] ∈ Zd(X)

we define its support |α| := Supp(α)⊂ X to be the union of all Z with nZ ̸= 0 and
put

D ·α := ∑
Z⊂X

nZ · iZ∗(D · [Z]) ∈ Ad−1(|α|∩ |D|)

for the inclusion iZ : Z∩|D| ↪→ |α|∩ |D| (usually omitted from the notation).

We emphasize that in the above definition α is a cycle, not a cycle class, and D
is a Cartier divisor, not a linear equivalence class of Cartier divisors. The following
proposition summarizes some basic properties of the intersection product:
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Proposition 1.3. The intersection product has the following properties:

a) Additivity in the cycle: Let D ∈ Div(X), α1,α2 ∈ Zd(X), then

D · (α1 +α2) = D ·α1 +D ·α2 in Ad−1
(
∪i=1,2|D|∩ |αi|

)
.

b) Additivity in the divisor: Let D1,D2 ∈ Div(X), α ∈ Zd(X), then

(D1 +D2) ·α = D1 ·α +D2 ·α in Ad−1
(
∪i=1,2|Di|∩ |α|

)
.

c) Projection formula: Let f : X → Y be proper and D ∈ Div(Y ), α ∈ Zd(X), then

f∗( f ∗(D) ·α) = D · f∗(α) in Ad−1
(
|D|∩ f (|α|)

)
.

d) Pullback: Let f : Y → X be flat with dim(Y/X) = n and D ∈Div(X), α ∈ Zd(X),
then

f ∗(D) · f ∗(α) = f ∗(D ·α) in Ad+n−1( f−1(|D|∩ |α|)).
e) Linear equivalence: If D ∈ Div(X) is a principal Cartier divisor, then

D ·α = 0 in Ad−1
(
|α|
)

for all α ∈ Zd(X).

f) Rational equivalence: If α ∈ Zd(X) is rationally equivalent to zero, then

D ·α = 0 in Ad−1
(
|D|
)

for all D ∈ Div(X).

Proof. The parts a), b) and e) follow directly from our definition of the intersection
product between cycles and Cartier divisors. For c) and d) we can assume α = [Z]
for a subvariety Z ⊂ X . For the projection formula we can then by functoriality of
pushforward and pullback even assume Z = X and Y = f (Z), in which case the
claim boils down to the identity

f∗([ f ∗D]) = deg(X/Y ) · [D] in Zd−1(Y ).

This can be checked locally, so we may assume D = cyc(r) for some r ∈ k(Y )× and
in this case we know

f∗([ f ∗cyc(r)]) = f∗(cyc( f ∗(r))) = cyc(N( f ∗(r))) = cyc( f n) = n · cyc(r)

for n = deg(Y/X) and the norm N : k(X)→ k(Y ). For d) we can assume Z = X and
must show

[ f ∗D] = f ∗([D]) in Ad+n−1(Y ).

This can be checked locally, so we may assume D is the difference of two effective
Cartier divisors. As both sides are additive, we may assume D is an effective Cartier
divisor. Then the required identity is a special case of the fact that the pullback of
cycles is compatible with fundamental cycles of schemes, see lemma 6.5. For f) we
may assume α = cyc(r) for a rational function r ∈ k(W )× on a subvariety W ⊂ X of
dimension d +1. Using the pushforward under closed immersions we may assume
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that W = X . Then α = [E]∈ Ad(X) is the Weil divisor attached to a principal Cartier
divisor E ∈ Div(X). Now the intersection product is commutative in the sense that
for any two Cartier divisors D,E ∈ Div(X) we have

D · [E] = E · [D] in Ad−1(|D|∩ |E|).

We will verify this property in the next section. Assuming it for the moment, it
follows from e) that if E is principal, then D · [E] = 0. ⊓⊔

Corollary 1.4. For any d ∈ N0 the intersection product · descends to a bilinear
pairing

Pic(X)×Ad(X) −→ Ad−1(X).

Proof. By pushforward to the ambient variety, we may view the intersection product
as a pairing with values in A∗(X). By proposition 1.3 we then have a commutative
diagram

Div(X)×Zd(X) Ad−1(X)

Pic(X)×Ad(X)

(D,α) 7→ D·α

∃!

where the top row is bilinear by a), b) and the dashed arrow exists by e), f). ⊓⊔

Definition 1.5. For line bundles L = OX (D) ∈ Pic(X) and a cycle α ∈ Ad(X) we
write

c1(L )∩α := D ·α ∈ Ad−1(X).

to emphasize the analogy with the cup product in topology. Thus we obtain a group
homomorphism

c1(L )∩− : Ad(X) −→ Ad−1(X).

From proposition 1.3 we immediately obtain:

a) Additivity: For L ,L ′ ∈ Pic(X), the dual L ∨ = H omOX (L ,OX ) and α ∈
Ad(X) we have

c1(L ⊗L ′)∩α = c1(L )∩α + c1(L
′)∩α,

c1(L
∨)∩α = −c1(L )∩α.

b) Projection formula: Let f : X → Y be proper and L ∈ Pic(Y ),α ∈ Zd(X), then

f∗(c1( f ∗L )∩α) = c1(L )∩ f∗(α).

c) Pullback: Let f : Y → X be flat with dim(Y/X) = n and L ∈ Pic(X),α ∈ Zd(X),
then

c1( f ∗L )∩ f ∗(α) = f ∗(c1(L )∩α).
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Example 1.6. For each d, let Ld ⊂ Pn be a linear subspace of dimension d. Then for
the cup product with the tautological line bundle we have

c1(O(1))∩ [Ld ] = [Ld−1].

This gives a much easier proof that Ad(Pn) ≃ Z (without linear projections). More
generally, we can define the degree homomorphism on cycles of arbitrary dimension
by

deg: Ad(Pn) −→ Z, α 7→
∫

α

c1(L )n∩α

where c1(L )n∩− : Ad(Pn)→ A0(Pn) denotes the n-fold iterate of c1(L )∩ (−).

Instead of only fixing a line bundle L ∈ Pic(X), we can also fix an effective
Cartier divisor D⊂ X and take the intersection product with values in A∗(D). In this
case there is again another notation:

Definition 1.7. Let i : D ↪→ X be the embedding of an effective Cartier divisor. Then
the homomorphism

i∗ : Ad(X) −→ Ad−1(D), i∗(α) := D ·α

is called the Gysin homomorphism attached to the Cartier divisor.

Remark 1.8. The definitions easily imply:

a) For α ∈ Ad(X) we have i∗i∗(α) = c1(OX (D)∩α).
b) For α ∈ Ad(D) we have i∗i∗(α) = c1(N)∩α where N = i∗(OX (D)).
c) If X is equidimensional of dimension d, then i∗[X ] = [D] in Ad−1(D).

The equidimensionality in part c) is needed: For instance, let X =V (xz,yz)⊂A3

be the union of the xy-plane and the z-axis, and consider the effective Cartier divisor
given by D =V (z− x). Let 0 ∈ A3 be the origin. Then one has

i∗[X ] = D · [X ] = [D]+ [{0}] ̸= [D] ∈ A∗(D).

2 Commutativity of the intersection product

We defined the intersection D ·α ∈ Ad−1(|D|∪ |α|) of a Cartier divisor D ∈ Div(X)
and a cycle α ∈ Zd(X) by restricting the divisor in a suitable sense to the support of
the cycle. Here the divisor and the cycle take a completely different role. The goal
of this section is to see that if α = [E] also underlies a Cartier divisor E ∈ Div(X),
then the intersection product does not change if the roles of the two divisors are
interchanged. Let us start with the simplest case:
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Proposition 2.1. Let X be a variety of dimension n. Let D,E ⊂ X two effective
Cartier divisors that intersect properly, i.e. do not have any common irreducible
component. Then

D · [E] = E · [D] in An−2(|D|∩ |E|).

Proof. Let W ⊂ X be any subvariety with codimX (W ) = 2. We want to compare
the multiplicity with which the subvariety enters in both sides of the equation. To do
this, let f ,g∈A=OX ,W be local equations that cut the Cartier divisors D,E on some
affine chart. Let us now look at the irreducible components of the two divisors. The
irreducible components Z ⊂ |E| with Z ⊃W correspond bijectively to the minimal
primes p⊴B = A/(g). For any such component we have:

• [Z] enters in [E] with multiplicity ℓBp(Bp),
• [W ] enters in D · [Z] with multiplicity ℓB/p(B/(p+ f B)),

Taking the sum over all such components Z ⊂ |E|, we see that [W ] enters in D · [E]
with multiplicity

∑
p

ℓBp(Bp/(g)) · ℓB/p(B/(p+ f B)) = eB( f ,B) = eA( f ,A/(g))

where the first equality holds by corollary 8.9 applied to the one-dimensional local
Noetherian ring B. Similarly [W ] enters in E · [D] with multiplicity eA(g,A/( f )), so
the claim boils down to the identity eA( f ,A/(g)) = eA(g,A/( f )) which is easily
checked from the definitions. ⊓⊔

One way to generalize the above to divisors that do not intersect properly would
be to deform divisors in their linear equivalence class. But this would only give
an identity in An−2(X); we want to get a class in An−2(|D| ∩ |E|) to keep as much
information about supports as possible. One situation where this is easy is if D and E
are linear combinations of effective Cartier divisors whose supports are irreducible
and contained in |D| ∪ |E|: Then the identity D · [E] = E · [D] reduces by bilinearity
to the two basic cases where

• either D and E intersect properly as discussed above,
• or D = E, in which case the desired identity is trivial.

On singular varieties we cannot always reduce to these two basic cases directly:

Example 2.2. Take a quadric cone X =V (z2−x2−y2)⊂A3 and let D,D′ ∈Div(X)
be the principal Cartier divisors cut out by linear forms such that the underlying Weil
divisors are

[D] = [ℓ1]+ [ℓ2] and [D′] = 2[ℓ1] for two distinct lines ℓ1, ℓ2 ⊂ X .

The only Cartier divisors with irreducible support contained in |D| ∪ |D′| are even
multiples of the two lines, and D cannot be written as a linear combination of such
even multiples. The problem is that the scheme theoretic intersection D∩D′ ⊂ X
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has the fundamental cycle [D∩D′] = [ℓ1] which is not a Cartier divisor. Now there
is a universal way to turn a closed subscheme into an effective Cartier divisor, the
blowup along that subscheme:

We will see that in general such blowups reduce us to the two basic cases above.

To describe this strategy in more detail, let D,D′ ⊂ X be any effective Cartier
divisors on a variety X . As a measure for the failure of proper intersection, define
the excess intersection by

ε(D,D′) := max{ordZ(D) ·ordZ(D′) | Z ⊂ X subvariety with codimX Z = 1}.

Then ε(D,D′)≥ 0, with equality iff D and D′ intersect properly. We want to reduce
the excess intersection by blowing up the scheme-theoretic intersection of the two
divisors, i.e. the closed subscheme

D∩D′ := V (I ) ↪→ X

which is cut out by the sum I := ID +ID′ of the ideal sheaves ID,ID′ ⊴OX of
the subschemes D,D′ ⊂ X . Let

π : X̃ = BlD∩D′(X) −→ X

be the blowup and E = π−1(D∩D′)⊂ X̃ the exceptional divisor.

Lemma 2.3. We have π∗(D) = C +E and π∗(D′) = C′+E, where C,C′ ⊂ X̃ are
effective Cartier divisors such that

a) |C|∩ |C′|=∅,

b) If ε(D,D′)> 0, then max{ε(C,E),ε(C′,E)}< ε(D,D′).

For instance, in the above example ε(D,D′) = 2 but ε(C′,E) = 1,ε(C,E) = 0 as
illustrated in the following picture:
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Proof. Working locally we may assume that X = Spec(A) is an affine scheme and
that D,D′ ⊂ X are principal divisors cut out by functions f , f ′ ∈ A. The blowup is
defined by

X̃ = ProjA
⊕
n≥0

In for the ideal I = ( f , f ′) ⊴ A.

It is the closed subscheme X̃ =V+(kerϕ)⊂ P1
A = ProjA A[s, t] cut out by the kernel

of the graded A-algebra epimorphism

ϕ : A[s, t] ↠
⊕
n≥0

In with

{
ϕ(s) = f
ϕ(t) = f ′

By the universal property of the blowup, the preimage E = π−1(D∩D′) ⊂ X̃ is an
effective Cartier divisor. Since its underlying closed subscheme is contained in the
scheme-theoretic preimages π−1(D),π−1(D′) ⊂ X̃ , the local defining equation for
the Cartier divisor E divides those for the Cartier divisors π∗(D),π∗(D′) ∈ Div(X̃),
hence

π
∗(D) = E +C and π

∗(D′) = E +C′

for certain effective Cartier divisors C,C′ ∈ Div(X̃). To control the latter, note that
we have inclusions1

X̃ ⊂ V+( f ′s− f t) ⊂ P1
A.

It follows that

• on U0 = {s ̸= 0} ⊂ X̃ the pullback of f divides f ′ and hence E ∩U0 =V ( f|U0),

• on U∞ = {t ̸= 0} ⊂ X̃ the pullback of f ′ divides f and hence E ∩U∞ =V ( f ′|U∞
).

1 The inclusion X̃ ⊂V+( f ′s− f t) may be strict: For example, consider the affine cone X = SpecA
for A = k[x,y,z,w]/(xw− yz), and take f = x, f ′ = y. Then the subscheme V+( f ′s− f t)⊂ X ×P1

A
is reducible, hence it must be different from the blowup X̃ as the latter is irreducible.
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On the other hand, the Cartier divisors π∗(D),π∗(D′) ∈ Div(X̃) are given in the
charts by

• π∗(D)∩U0 =V ( f|U0) and π∗(D′)∩U∞ =V ( f ′||U∞
),

• π∗(D)∩U∞ =V ( f|U∞
) =V ( f ′|U∞

)+V (s/t) since f|U∞
= f ′|U∞

· s/t,

• π∗(D′)∩U0 =V ( f ′|U0
) =V ( f|U0)+V (t/s) since f ′|U0

= f|U0 · t/s.

A direct comparison therefore shows

C = V+(s) and C′ = V+(t) for the two sections s, t ∈ H0(X̃ ,O(1))

where O(1) ∈ Pic(X̃) is the restriction of the tautological bundle to X̃ ⊂ P1
A. Hence

we have
C ⊂ X×{0} and C′ ⊂ X×{∞},

which implies that C and C′ are disjoint and map isomorphically onto D and D′ via
the projection. This last statement shows in particular that for any codimension one
subvariety Z̃ ⊂ X̃ with Z̃ ⊂ E ∩C, its image under π : X̃ → X will be a codimension
one subvariety

Z = π(Z̃) with Z̃ ⊂ D∩D′.

The corresponding multiplicities then satisfy

ordZ(D) ≥ ordZ̃(E)+ordZ̃(C),

because we have [D] = π∗[E +C] by the projection formula.

To prove claim b), we now argue by contradiction. If the claim is not true, then
up to interchanging the two divisors we may assume ε(C,E)≥ ε(D,D′)> 0. Pick a
subvariety Z̃ ⊂ X̃ of codimension one with

ordZ̃(C) ·ordZ̃(E) = ε(C,E),

and let Z = π(Z̃)⊂ X be its image. From the above we then obtain

ordZ̃(C) ·ordZ̃(E) ≥ ε(D,D′) ≥ ordZ(D) ·ordZ(D′)

≥ (ordZ̃(E)+ordZ̃(C)) · (ordZ̃(E)+ordZ̃(C
′))

≥ (ordZ̃(E))
2 +ordZ̃(C) ·ordZ̃(E)

which is a contradiction since ordZ̃(E)> 0. ⊓⊔

We can now finally prove the main result of this section, the commutativity of
the intersection product for arbitrary Cartier divisors:

Theorem 2.4. Let X be a variety of dimension n, and let D,D′ ∈Div(X) be arbitrary
Cartier divisors. Then

D · [D′] = D′ · [D] in An−2(|D|∩ |D′|).
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Proof. Let us first assume that D,D′ ∈Div(X) are both effective. In this case we will
prove the theorem by induction on the excess intersection ε(D,D′). For ε(D,D′) = 0
the two divisors intersect properly, and in this case the claim has been shown in
proposition 2.1. For ε(D,D′)> 0, we consider the blowup

π : X̃ = BlD∩D′(X) −→ X

with exceptional divisor E = π−1(D∩D′) ⊂ X̃ as above. By lemma 2.3 we know
that

π
∗(D) = E +C ε(E,C)< ε(D,D′),

π
∗(D′) = E +C′ ε(E,C′)< ε(D,D′),

where C,C′ ∈ Div(X̃) are effective Cartier divisors with C∩C′ =∅. Now

• E · [C] =C · [E] by induction since ε(E,C)< ε(D,D′),
• E · [C′] =C′ · [E] by induction since ε(E,C′)< ε(D,D′),
• C · [C′] =C′ · [C] by proposition 2.1 since C and C′ intersect properly,

Using the projection formula and the compatibility with pullback in proposition 1.3
we therefore obtain that

D · [D′] = π∗(π
∗(D · [D′]))

= π∗(π
∗(D) ·π∗[D′])

= π∗((E +C) · [E +C′])

= π∗(E · [E]+E · [C′]+C · [E]+C · [C′])
= · · ·
= D′ · [D].

This proves the claim if D,D′ ∈ Div(X) are both effective. By bilinearity one then
immediately deduces the claim also for differences D = A−B and D′ = A′−B′ of
effective Cartier divisors A,B,A′,B′ ∈ Div(X). At this point we are not completely
finished yet, since there are examples of varieties with Cartier divisors D ∈ Div(X)
that cannot be written as a difference of two effective divisors; the reason is that the
ideal sheaf

I := { f ∈ OX | f ·OX (D)⊂ OX}

of denominators in the local equations for the divisor need not be locally free. But
passing to the blowup p : BlZ(X)→ X of Z =V (I )⊂ X , the Cartier divisor p∗(D)
will become a difference of effective Cartier divisors, so a similar book-keeping
as above gives the theorem also when D is arbitrary and only D′ is assumed to be
effective. Repeating the same blowup argument also for the ideal of denominators
of D′ we finally obtain the result when D,D′ are both arbitrary Cartier divisors. ⊓⊔
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3 More about intersection products

The commutativity of the intersection product between two Cartier divisors leads to
the following result:

Corollary 3.1. For any D,D′ ∈ Div(X) and α ∈ Zd(X), we have

D · (D′ ·α) = D′ · (D ·α) in Ad−2(|D|∩ |D′|∩ |α|).

Proof. By definition both sides are additive in α , so we may assume α = i∗[Z] for a
subvariety i : Z ↪→ X . By definition

D′ ·α = [D′Z ] ∈ Ad−1(|D′|∩Z).

where by our conventions D′Z = i∗(D) is an actual Cartier divisor on Z if Z ̸⊂ |D′|,
and a linear equivalence class of such divisors otherwise. In both cases we get from
the definitions

D · (D′ ·α) = DZ · [D′Z ] ∈ Ad−1(|D|∩ |D′|∩Z),

where DZ = i∗(D) again denotes an actual Cartier divisor on Z if Z ̸⊂ |D| and a
linear equivalence class of such divisors otherwise. The claim now follows from the
fact that DZ · [D′Z ] = D′Z · [DZ ] by theorem 2.4. ⊓⊔

Definition 3.2. For D1, . . . ,Dr ∈ Div(X) and α ∈ Zd(X), the corollary says that the
interated intersection product

D1 ·D2 · · ·Dr ·α := D1 · (D2 · · ·Dr ·α) ∈ Ad−r(|D1|∩ · · ·∩ |Dr|∩ |α|)

is invariant under permutation of the divisors D1, . . . ,Dr. Hence for any homogenous
polynomial P∈Z[x1, . . . ,xr] of degree e, inserting the divisors we get a well-defined
class

P(D1, . . . ,Dr) ·α ∈ Ad−e(Z) on Z :=
⋃

1≤i≤r

|Di|∩ |α|.

In the special case where Z is proper and d = e, we may in particular consider the
intersection number

(P(D1, . . . ,Dr) ·α)X :=
∫

Z
P(D1, . . . ,Dr) ·α ∈ Z.

Depending on the context, the above notation will often be shortened: For instance,
if X is an equidimensional scheme of dimension d, then for D1, . . . ,Dr ∈Div(X) and
any homogenous polynomial P∈Z[x1, . . . ,xr] of degree e, we will use the shorthand
notation

P(D1, . . . ,Dr) := P(D1, . . . ,Dr) · [X ] ∈ Zd−e(|D1|∪ · · ·∪ |Dr|).
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If moreover X is proper and d = e, we denote by

(P(D1, . . . ,Dr))X := (P(D1, . . . ,Dr) · [X ])X ∈ Z

the corresponding intersection number. For divisors that intersect in finitely many
points, these intersection numbers count the points with certain multiplicities; but
for divisors whose intersection is not finite one has to be more careful:

Example 3.3. Let X be a smooth surface.

a) If D1,D2⊂X are effective Cartier divisors that intersect properly, let Z =D1∩D2
be their scheme-theoretic intersection. Then the counting argument in the proof
of proposition 2.1 shows that

(D1 ·D2)X = ∑
p∈Z

ℓOZ,p(OZ,p) ≥ 0.

b) This may fail if the divisors do not intersect properly: Let π : X = Blp(S)→ S be
the blowup of a smooth surface S in a point p. Then E = π−1(p) is an effective
Cartier divisor on X . By definition of the intersection product its self-intersection
is the class

E · [E] = [OX (E)|E ] ∈ A0(E).

Now E ≃ P1 and via this isomorphism we have OX (E)|E ≃ OP1(−1), hence we
find that

(E ·E)X = deg(OP1(−1)) = −1.

In fact the Chow groups of a blowup of a smooth surface can be described as follows:

Lemma 3.4. Let S be a smooth projective surface. Let π : X = Blp(S)→ S be its
blowup in a point p ∈ S(k), and E = π−1(p) ⊂ X the exceptional divisor. Then we
have isomorphisms

Ad(S)
∼−→ Ad(X) for d ̸= 1,

A1(S)⊕Z ∼−→ A1(X) with ([Z],m) 7→ [π−1(Z)]+m · [E],

and via this the intersection product on the middle Chow group A1(X) = Pic(X) is
given by

((α,m) · (β ,n))X = (α,β )S−mn for α,β ∈ A1(S), m,n ∈ Z.

Proof. The localization sequence for V = X \E ⊂ X and U = S \ {p} ⊂ S gives a
commutative diagram

Ad(E) Ad(X) Ad(V ) 0

Ad({p}) Ad(S) Ad(U) 0

i∗

πE∗

j∗

π∗ πV∗
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with exact rows. Here πV∗ is an isomorphism since πV : V ∼−→U is so. Moreover,
since E ≃ P1 we know that for d ̸= 1 the homomorphism πE∗ : Ad(E)→ Ad({p})
is an isomorphism, which gives

Ad(S)
∼−→ Ad(X) for d ̸= 1.

For the middle Chow group, it suffices by the same diagram to observe that the
proper pushforward i∗ : Z= A1(E)→ A1(X) is split by A1(X)→ A1(E),γ 7→ γ · [E]
since (E ·E)X = −1. This splitting of the top row of the diagram gives rise to a
decomposition

A1(X) ≃ A1(V )⊕Z ≃ A1(U)⊕Z ≃ A1(S)⊕Z.

Let π∗ : A1(S)→ A1(X) be the inclusion obtained from this decomposition. Then
by construction of the splitting we have (π∗(α) ·π∗(β ))X = (α,β )S and it follows
that

((π∗(α)+m · [E]) · (π∗(β )+n · [E]))X = (α,β )S−mn

as desired. Note that by construction π∗([Z]) = [π−1(Z)] for any curve Z ⊂ S. ⊓⊔

Example 3.5. We have only defined an intersection product with Cartier divisors,
not with Weil divisors. In fact, on singular varieties X there is no good way to define
an intersection product of Weil divisors:

a) Let H ⊂ P3 be a hyperplane and C ⊂ H a smooth conic. For p ∈ P3 \H consider
the cone

X = pC ⊂ P3

with vertex p. Let ℓ1, ℓ2 ⊂ X be two lines, and let D ∈ Div(X) be the effective
Cartier divisor cut out by a hyperplane so that [D] = 2[ℓ1]. By restricting D to ℓ2
one finds that

D · [ℓ2] = [p].

But [D] = 2[ℓ1], hence an intersection product for Weil divisors compatible with
the one for Cartier divisors would necessarily take values in A∗(X)⊗ZQ since it
would satisfy

[ℓ1] · [ℓ2] =
1
2 · [p].

On normal surfaces such an intersection product of Weil divisors can indeed by
defined [Fulton, ex. 8.3.11]. But in higher dimension things are worse:

b) Let H ⊂P4 be a hyperplane and Q⊂H a smooth quadric. For p∈P4\H consider
the cone

X = pQ ⊂ P4

with vertex p. Now Q has two different rulings given by 1-parameter families of
lines

{ℓt ⊂ Q}t∈P1 and {ℓ′t ⊂ Q}t∈P1
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with ℓs∩ ℓt = ℓ′s∩ ℓ′t =∅ for all s ̸= t, and each ℓs intersects each ℓ′t transversely
in a single point. Taking the cone through the lines in the first ruling we obtain a
family of planes

Ht := pℓt ⊂ X

that sweep out X as illustrated in the following picture (though the true picture
would have to be drawn in a four-dimensional ambient space):

If there is an intersection product of Weil divisors on X that for finite transverse
intersections counts the number of intersection points, then for general s, t ∈ P1

we have
([ℓs] · [Ht ])X = 0 and ([ℓ′s] · [Ht ])X = 1.

But any two lines in a plane are rationally equivalent. Applying this first to the
plane Hs from the first ruling and then to the plane H ′t = pℓ′t from the second
ruling, we see that

[ℓs] ∼ [Hs∩H ′t ] in A1(Hs),

[ℓ′t ] ∼ [Hs∩H ′t ] in A1(H ′t ).

By pushforward to X we obtain

[ℓs] ∼ [Hs∩H ′t ] ∼ [ℓ′t ] in A1(X),

so the above hypothetical intersection numbers between Weil divisors cannot be
invariant under rational equivalence. The moral is that intersections with Cartier
divisors behave much better than those with Weil divisors; this is one of the
reasons why Chern classes play an important role in intersection theory.
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4 Segre classes of vector bundles

We will define Chern classes of vector bundles as the inverse of Segre classes. To
motivate the latter, let us begin with a simple geometric example:

Example 4.1. Let A be a smooth variety with trivial tangent bundle TA, for instance
an affine space or an abelian variety. Let i : X ↪→ A be the embedding of a smooth
hypersurface. Its normal bundle is a quotient of the trivial bundle i∗(TA) sits in the
exact sequence

0 −→ TX −→ i∗(TA) −→ NX/A −→ 0.

By dualizing this sequence, we see that the conormal bundle to the hypersurface is
a line subbundle

E := N ∨
X/A ⊂ i∗(T ∨

A ) ≃ On+1
X where dim(A) = n+1.

Fixing a trivialization i∗(T ∨
A ) ≃ On+1

X as above, we obtain for each point p ∈ X a
line

E ⊗κ(p) ⊂ i∗(T ∨
A )⊗κ(p) ≃ An+1

in a fixed affine space. As in differential geometry we define the Gauss map to be
the morphism

γ : X −→ Pn, p 7→ [E ⊗κ(p)]

that sends a point of the hypersurface to the conormal direction at that point:

Such Gauss maps have been studied in algebraic geometry for instance in relation
with projective duality and with Torelli’s theorem. In particular, we can consider the
preimages

γ
−1(H) ⊂ X of linear subspaces H ⊂ Pn

Their fundamental classes are simple examples of more general Segre classes to
be defined soon. Conceptually one may view the Gauss map in terms of projective
bundles as the composite

X ∼←− P(E ) ⊂ P(i∗(T ∨
A )) ≃ X×Pn ↠ Pn

so before proceeding we need to recall some general notions for projective bundles.
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Let X be a scheme. For a locally free sheaf E ∈ Coh(X), consider the associated
vector bundle

E = SpecX (Sym∗X E ∨) −→ X where E ∨ = H omOX (E ,OX ).

Here the symmetric algebra and the spectrum are taken in the relative sense. We
denote by

p : P(E) = ProjX (Sym∗X E ∨) −→ X

the projective bundle of lines in the vector bundle E and by OP(E)(1) ∈ Pic(P(E))
the natural relatively ample line bundle on it. The latter is the dual of the tautological
subbundle

OP(E)(−1) ⊂ p∗(E )

whose fiber over any point is the line corresponding to that point; it fits in the relative
Euler sequence

0 −→ Ω
1
P(E)/E(1) −→ p∗(E ∨) −→ OP(E)(1) −→ 0.

Remark 4.2. The tautological bundle from above depends on the vector bundle E,
not just on the associated projective bundle: Indeed, let L ∈ Pic(X) be a line bundle
and L→ X the associated vector bundle of rank one. Then we have a canonical
isomorphism

ϕ : P(E) ∼−→ P(E⊗L)

of schemes over X , but in these terms ϕ∗(OP(E⊗L)(1))≃OP(E)(1)⊗ p∗(L ∨).

In the last section we have seen that the first Chern class of a line bundle can be
viewed as an endomorphism of Chow groups via the cap product. We now take a
similar approach for the definition of Segre classes:

Definition 4.3. With notations as above, the projection p : P(E)→ X is a proper flat
morphism of relative dimension r = rk(E)−1, so we have pullback and pushforward
functors

A∗(X)
p∗−→ A∗+r(P(E)) and A∗(P(E))

p∗−→ A∗(X).

For i ∈ N we define the cap product with the i-th Segre class of the vector bundle E
to be the homomorphism

A∗(X) −→ A∗−i(X),

α 7→ si(E)∩α := p∗
(
c1(OP(E)(1))

r+i∩ p∗(α)
)
.

The geometric meaning of this is illustrated by the following example, generalizing
the case of Gauss maps that we considered above:
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Example 4.4. Suppose we have an embedding E ⊂ On+1
X in a trivial bundle, and

consider the diagram

P(E) X×Pn Pn

X

ι

p

p2

p1

Then OP(E)(1)≃ f ∗(OPn(1)) for the morphism f := p2 ◦ ι . If H1, . . . ,Hr+i ⊂ Pn are
hyperplanes whose preimages intersect the projective bundle properly in the sense
that

γ
−1(H1∩·· ·∩H j+1) is an effective Cartier divisor on γ

−1(H1∩·· ·∩H j)

for all j < r+ i, then by definition of the intersection product with Cartier divisors
we have

c1(OP(E)(1))
r+i∩ p∗[X ] = [γ−1(H1∩·· ·∩Hr+i)] in Zd−i(P(E))

where d = dimX . In this case

si(E)∩ [X ] = p∗[γ−1(H1∩·· ·∩Hr+i)] in Zd−i(X).

For i < 0 the pushforward cycle on the right is zero for dimension reasons. For i≥ 0
its support is

|si(E)∩ [X ]| = {x ∈ X | p−1(x)∩H1∩·· ·∩Hr+i ̸=∅},

where the intersection on the right hand side uses the embedding p−1(x)⊂ Pn given
by ι . Thus Segre classes are classes of loci defined by incidence conditions which
generalize the preimages of linear spaces under Gauss maps of hypersurfaces.

In fact the above incidence locus can be endowed with a natural scheme structure
as follows: Let F be the quotient vector bundle defined by the exact sequence

0 −→ E −→ On+1
X −→ F −→ 0.

Pick a generic basis σ0, . . . ,σn of W := H0(X ,On+1
X ). Then F is generated by the

global sections
τν = image(σν) ∈ H0(X ,F ).

Suppose that the above hyperplanes H1, . . . ,Hr+i ⊂ Pn have been chosen in such a
way that

H1∩·· ·∩Hr+i = P(U) for the subspace Ui := ⟨σ0, . . . ,σn−r−i⟩ ⊂ W.

Consider the fibers E (x) := E ⊗κ(x) and F (x) :=F ⊗κ(x) at a point x ∈ X . Then
set-theoretically the condition that describes the support of the Segre class can be
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reformulated as follows:

p−1(x)∩H1∩·· ·∩Hr+i ̸=∅ ⇐⇒ E (x)∩⟨σ0, . . . ,σn−r−i⟩ ̸= 0

⇐⇒ τ0(x), . . . ,τn−r−i(x) ∈F (x)

are linearly dependent over k

⇐⇒ τ(x) = 0 for the section
τ := τ0∧·· ·∧ τn−r−i ∈ H0(X ,Altn−r−i+1F ),

and the locus V (τ) = {x ∈ X | τ(x) = 0} ⊂ X has a natural scheme structure as the
vanishing locus of a section of a vector bundle. If the base field k is algebraically
closed of characteristic zero, then a transversality result by Kleiman says that for
generically chosen hyperplanes and sections as above, the above loci are generically
reduced of the expected dimension and

si(E )∩ [X ] = [V (τ)].

Thus Segre classes for subbundles of trivial bundles are represented as degeneraci
loci where sections of the quotient bundle become linearly dependent.

After this somewhat heuristic discussion where transversality issues have been
glossed over, let us now develop the general properties of Segre classes starting
from the definition given above. We begin with the trivial case of Segre classes for
line bundles (as in the above example of Gauss maps for smooth hypersurfaces):

Lemma 4.5. Let L be a line bundle on a scheme X. Then

si(L)∩ (−) = (−1)i · c1(L)i∩ (−) for all i ∈ N0.

Proof. For line bundles L one has P(L) ≃ X and OP(E)(1) ≃ L ∨ by remark 4.2.
Hence we get

si(L)∩α = c1(OP(L)(1))
i∩α = c1(L∨)i∩α = (−1)i · c1(L)i∩α

by taking r = 0 in the definition of Segre classes and using c1(L
∨) =−c1(L ). ⊓⊔

In particular, this shows that the Segre classes of a line bundle can be nonzero
in all degrees i ∈ {0,1, . . . ,dimX}. For vector bundles of arbitrary rank we have the
following properties:

Proposition 4.6. For any vector bundle E on X we have:

a) Pullback: If f : Y → X is flat, then

si( f ∗E)∩ f ∗(−) = f ∗(si(E)∩ (−)).

b) Projection formula: If f : Y → X is proper, then

f∗(si( f ∗E)∩ (−)) = si(E)∩ f∗(−).
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c) Commutativity: If F is another vector bundle on X, then

si(E)∩ (s j(F)∩ (−)) = s j(F)∩ (si(E)∩ (−)).

d) Vanishing and normalization: We have

si(E)∩ (−) =

{
0 for i /∈ {0,1, . . . ,dimX},
id for i = 0.

Proof. Let LE = OP(E)(1). For a), b) we note that OP( f ∗(E)(1)≃ g∗LE where g is
defined by the Cartesian square

P( f ∗E) P(E)

Y X

g

q p

f

So if f is proper, then for α ∈ A∗(X) and r = rk(E) we obtain

f∗ (si( f ∗E)∩α) = f∗q∗
(
c1(OP( f ∗(E)(1))

r+i∩q∗α
)

by definition

= p∗g∗
(
c1(g∗(LE))

r+i∩q∗α
)

since f∗q∗ = p∗g∗

= p∗
(
c1(LE)

r+i∩g∗q∗α
)

proj. formula for c1∩ (−)
= p∗

(
c1(LE)

r+i∩ p∗ f∗α
)

by base change
= si(E)∩ f∗α by definition

This proves b), and a similar computation shows a). For c) we reset notations and
consider the Cartesian square

P(E)×X P(F) P(F)

P(E) X

p′

q′ q

p

Let s = rk(F) and LF = OP(F)(1). Then for α ∈ A∗(X) we obtain

si(E)∩ (s j(F)∩α) = p∗
[
c1(LE)

r+i∩ p∗q∗
(
c1(LF)

s+ j ∩q∗α
)]

(1)
= p∗

[
c1(LE)

r+i∩q′∗p
′∗ (c1(LF)

s+ j ∩q∗α
)]

(2)
= p∗q′∗

[
q′∗c1(LE)

r+i∩ p′∗
(
c1(LF)

s+ j ∩q∗α
)]

(3)
= p∗q′∗

[
c1(q′∗LE)

r+i∩
(
c1(p′∗LF)

s+ j ∩ p′∗q∗α
)]

(4)
= q∗p′∗

[
c1(p′∗LF)

s+ j ∩
(
c1(q′∗LE)

r+i∩q′∗p∗α
)]
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where we have used

(1) p∗q∗ = q′∗p
′∗ by the base change lemma 6.7,

(2) the projection formula for q′ : P(E)×X P(F)→ P(E),
(3) the compatibility of flat pullback with c1 and with the cap product,
(4) commutativity of the intersection with Cartier divisors and functoriality.

The claim now follows by reversing the role of E and F in the computation. For d)
trivially si(E)∩ (−) = 0 for all i > dimX , indeed

Hom(A∗(X),A∗−i(X)) = 0 for i > dimX

since Ad(X) = 0 for all d /∈ {0,1, . . . ,dimX}. To show si(E)∩ (−) = 0 for i < 0, it
will be enough to check that

si(E)∩ [Z] = 0 for any subvariety Z ⊂ X and all i < 0.

Applying the already proven projection formula to the inclusion of the subvariety,
we may assume that X = Z. In this case, the claimed vanishing follows from the fact
that AdimX−i(X) = 0 for all i < 0. To prove the remaining claim for i = 0, we can
as before assume that X = Z is irreducible. Then AdimX (X) = Z · [X ] and hence we
know that

s0(E)∩ [X ] = m · [X ] for some m ∈ Z.

To check that m = 1, we may replace X by an open subset and therefore assume
that E is a trivial vector bundle. In this case the claim is clear from the description
in example 4.4. ⊓⊔

We have seen in theorem 4.2 that for affine bundles the flat pullback from the
base to the total space is surjective. Using Segre classes we can now easily show
that for projective bundles it is injective. We will soon compute the Chow groups of
all such bundles, but the following partial result is needed on the way:

Corollary 4.7. Let E be a vector bundle of rank r+ 1 on X. Then the flat pullback
gives a split monomorphism

p∗ : Ad(X) ↪→ Ad+r(P(E)) for each d ∈ Z.

Proof. By part d) of the above proposition, the map γ 7→ p∗(c1(OP(E)(1))r ∩ γ)
provides a left inverse of p∗ : Ad(X)→ Ad+r(P(E)). ⊓⊔

5 Chern classes of vector bundles

In the previous section we have defined Segre classes of a vector bundle E on X as
endomorphisms

si(E) := si(E)∩ (−) ∈ End(A∗(X))
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of the group A∗(X), and we have seen that these endomorphisms commute with each
other. Thus they generate a commutative subring of End(A∗(X)). It is convenient to
put them together in a single generating series:

Definition 5.1. The Segre polynomial of a vector bundle E on a scheme X is the
power series

st(E) := 1+ s1(E)t + s2(E)t2 + · · · ∈ End(A∗(X))[[t]].

This is in fact a polynomial of degree ≤ dimX by the properties of Segre classes.

Example 5.2. Let L be a line bundle on X . Then we have

st(L) =
∞

∑
i=0

(−1)i · c1(L)i · t i since si(L) = (−1)ic1(L)i by lemma 4.5,

= (1+ c1(L) · t)−1 as a formal power series in End(A∗(X))[[t]].

This suggests that in general we should look at the inverse of the Segre polynomial:

Definition 5.3. As a power series over a ring with pairwise commuting coefficients
and with constant term one, the Segre polynomial has a formal inverse. We can
therefore define the Chern classes ci = ci(E) ∈ End(A∗(X)) to be the coefficients in
this formal inverse:

(1+ s1t + s2t2 + · · ·)−1 = 1+ c1t + c2t2 + · · · in End(A∗(X))[[t]].

Explicitly
c1 = −s1,

c2 = s2
1− s2,

c3 = −s3
1 +2s1s2− s3, etc.

In particular ci ∈ Hom(A∗(X),A∗−i(X)) and hence ci = 0 for all i > dimX . So the
power series

ct(E) := 1+ c1t + c2t2 + · · · ∈ End(A∗(X))[[t]]

is again a polynomial of degree≤ dimX which is called the Chern polynomial of E.

The variable t is introduced only for notational convenience: The ring End(A∗(X))
is graded via

End(A∗(X)) =
⊕
i∈Z

Hom(A∗(X),A∗−i(X)),

hence the same information as in the Segre and Chern polynomials is also captured
by the total Segre resp. Chern class

s(E) := 1+ s1 + s2 + · · · ∈ End(A∗(X)),

c(E) := 1+ c1 + c2 + · · · ∈ End(A∗(X)).



64 II Vector bundles and Chern classes

Proposition 5.4. For any vector bundle E on X we have:

a) Pullback: If f : Y → X is flat, then

ci( f ∗E)∩ f ∗(−) = f ∗(ci(E)∩ (−)).

b) Projection formula: If f : Y → X is proper, then

f∗(ci( f ∗E)∩ (−)) = ci(E)∩ f∗(−).

c) Commutativity: If F is another vector bundle on X, then

ci(E)∩ (c j(F)∩ (−)) = c j(F)∩ (ci(E)∩ (−)).

d) Vanishing and normalization: We have

ci(E)∩ (−) =

{
0 for i /∈ {0,1, . . . ,dimX},
id for i = 0.

Proof. Follows from the same statements for Segre classes, see proposition 5.4. ⊓⊔

In fact the vanishing statement in d) holds also for all i > rk(E). To show this and
many other properties of Chern classes, we will use the following important tool
that allows to reduce the proof of Chern class identities for arbitrary vector bundles
to the case of line bundles:

Proposition 5.5 (Splitting principle). Let S be a finite set of vector bundles on a
scheme X. Then there exists a proper flat morphism f : Y → X such that

a) the pullback f ∗ : A∗(X)→ A∗+d(Y ) is injective, where d = dim(Y/X), and

b) for every E ∈ S, the pullback f ∗(E) is an iterated extension of line bundles, i.e. it
has a finite filtration

f ∗(E) = Er ⊃ Er−1 ⊃ ·· · ⊃ E0 = 0

by vector subbundles such that all the quotients Li = Ei/Ei−1 are line bundles.

Proof. It is enough to prove the claim for a single vector bundle E, since we can
then repeat the construction to cover any finite set S of vector bundles. The proof
for a single vector bundle E goes by induction on the rank r = rk(E): The case r = 1
is trivial. For the induction step, consider the projective bundle p : P(E)→ X and
the exact sequence

0 −→ OP(E)(−1) −→ p∗(E) −→ Q −→ 0

where Q := p∗(E)/OP(E)(−1) is a vector bundle of rank r−1. By corollary 4.7 the
map

p∗ : A∗(X) −→ A∗+r−1(P(E))
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is injective. Moreover, by induction on the rank there is a proper flat g : Y → P(E)
such that

a) g∗ : A∗(P(E))→ A∗+d(Y ) for d = dim(Y/P(E)) is injective, and
b) g∗(Q) is an iterated extension of line bundles.

The claim now follows by taking the composite morphism f = p◦g. ⊓⊔

This essentially reduces us to vector bundles which are iterated extensions of line
bundles. For such vector bundles the Chern classes are easy to compute:

Theorem 5.6. Let E be a vector bundle with a filtration E = Er ⊃ ·· · ⊃ E0 = 0 by
vector subbundles such that the quotients Li = Ei/Ei−1 are line bundles. Then we
have

ct(E) =
r

∏
i=1

(1+ c1(Li) · t).

Proof. We first claim that if there exists a nowhere vanishing section s ∈ H0(X ,E),
then c1(L1) · · ·c1(Lr) = 0. Indeed, for any s ∈ H0(X ,E) with zero locus V (s) ⊂ X
we claim that

c1(L1)∩·· ·∩ c1(Lr)∩α ∈ image(Ad−r(V (s))→ Ad−r(X)) for all α ∈ Ad(X).

To see this, consider the section s ∈ H0(X ,Lr) which is the image of s under the
map E↠ Lr. Let i : V (s) ↪→ X be the inclusion of the zero locus of this section, and
put

An−1(V (s)) ∋ Dr :=

{
[V (s)] if V (s)⊂ X is a Cartier divisor,

c1(i∗Lr) otherwise.

Then c1(Lr)∩α = i∗(Dr ·α). By the projection formula it follows that

c1(L1)∩·· ·∩ c1(Lr)∩α = i∗
(
c1(i∗L1)∩·· ·∩ c1(i∗Lr−1)∩ (Dr ·α)

)
By induction the term in parenthesis on the right hand side is represented by a cycle
on V (s), since i∗Er−1 has a section with zero locus V (s). This proves our claim.

Now consider p : P(E)→ X . The tautological subbundle OP(E)(−1) ⊂ p∗(E)
gives rise to a trivial line subbundle OP(E) ⊂ p∗(E)⊗OP(E)(1). Hence we have a
nowhere vanishing section

s ∈ H0(P(E), p∗(E)⊗OP(E)(1)).

Applying the claim from the previous step to the vector bundle p∗(E)⊗OP(E)(1),
we find that

r

∏
j=1

c1(p∗L j⊗OP(E)(1)) = 0.
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Since c1(p∗L j⊗OP(E)(1)) = c1(p∗L j)+ ζ for the class ζ = c1(OP(E)(1)), we can
rewrite the previous displayed equation by expanding the product on the left hand
side as

ζ
r + ε1ζ

r−1 + · · ·+ εr = 0

where ε j is the j-th elementary symmetric function of c1(p∗L1), . . . ,c1(p∗Lr). It
follows that

ζ
r+i−1 + ε1ζ

r+i−2 + · · ·+ εrζ
i−1 = 0,

so for all α ∈ A∗(X) we get

p∗(ζ r−1+i∩ p∗α + ε1ζ
r−1+2∩ p∗α + · · ·+ εrζ

i−1∩ p∗α) = 0.

The projection formula and the definition of Segre classes then imply

(si(E)+ e1si−1(E)+ · · ·+ ersi−r(E))∩α = 0

where e j are the j-the elementary symmetric functions of c1(L1), . . . ,c1(Lr). In other
words

(1+ e1t + · · ·+ ertr) · st(E) = 1,

hence we have ci(E) = ei and the desired formula follows. ⊓⊔

We can now see easily that the Chern classes vanish in all degrees above the
rank of the bundle, which is one reason why Chern classes are computationally
often easier to handle than Segre classes, although the definition of the latter is more
natural from a geometric viewpoint. We also record a few other functorial properties
of Chern classes:

Corollary 5.7. Let E be a vector bundle of rank r on X.

a) We have ci(E) = 0 for all i > rk(E).
Moreover, if E has a nowhere vanishing section, then cr(E) = 0.

b) For an extension 0→ E ′→ E→ E ′′→ 0 of vector bundles, we have the Whitney
formula

ct(E) = ct(E ′) · ct(E ′′) and st(E) = st(E ′) · st(E ′′).

In particular, these classes not depend on the extension [E] ∈ Ext1(E ′′,E ′).

c) For the dual bundle we have ci(E∨) = (−1)ici(E) and si(E∨) = (−1)isi(E).

d) We have c1(E) = c1(det(E)) for the determinant line bundle det(E) = Altr(E).

e) For the tensor product with a line bundle L we have

ci(E⊗L) =
i

∑
j=0

(r− j
i− j

)
c1(L)i− jc j(E).
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Proof. By the splitting principle we may assume that E = Er ⊃ Er−1 ⊃ ·· · ⊃ E0 = 0
where each Li = Ei/Ei−1 is a line bundle, and the previous theorem then says that
we have

ct(E) =
r

∏
i=1

(1+αi · t) for the classes αi := c1(Li).

The first claim in a) is then obvious from theorem 5.6, and the second claim follows
from its proof. For claim b) we may choose our filtration to be compatible with the
given subbundle in the sense that E ′ = Es and E ′′ = E/Es for s = rk(E ′). In that case
we have

ct(E ′) =
s

∏
i=1

(1+αi · t) and ct(E ′′) =
r

∏
i=s+1

(1+αi · t)

by another application of the theorem, hence we obtain ct(E) = ct(E ′)ct(E ′′) and
then also st(E) = st(E ′)st(E ′′) by taking the inverse power series. This in particular
shows that the Chern and Segre classes of an extension of vector bundles do not
depend on the extension class of the bundle, so in what follows we may assume that

E = L1⊕·· ·⊕Lr

splits as a direct sum of line bundles. Part c) then follows because E∨= L∨1 ⊕·· ·⊕L∨r
so that

ct(E∨) =
r

∏
i=1

(1+ ct(L∨i ) · t) =
r

∏
i=1

(1− ct(Li) · t) = c−t(E).

Part d) similarly follows from

c1(E) = c1(L1)+ · · ·+ c1(Lr) the first elem. symm. pol. in c1(L1), . . . ,c1(Lr),

= c1(L1⊗·· ·⊗Lr) since c1 : Pic(X)→ A∗(X) is a homomorphism,

= c1(det(E)) since det(E) = L1⊗·· ·⊗Lr.

For part e) put αν = c1(Lν) and β = c1(L), then c1(Lν ⊗L) = αν +β and one finds

ct(E⊗L) =
r

∏
ν=1

(1+ c1(Lν ⊗L) · t) =
r

∏
ν=1

(1+(αν +β ) · t)

=
r

∏
ν=1

((1+β · t)+αν · t)

=
r

∑
j=0

(1+β · t)r− j
∑

1≤ν1<···<ν j≤r
αν1 · · ·αν j · t

j

=
r

∑
i=0

i

∑
j=0

(r− j
i− j

)
· c1(L)i− j · c j(E) · t i
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where in the last step we have expanded the first factor, rewritten the second factor
as the elementary symmetric polynomial c j(E) = ∑1≤ν1<···<ν j≤r αν1 · · ·αν j and put
together the powers of t. ⊓⊔

Definition 5.8. For a vector bundle E on X and a flat proper morphism f : Y → X
such that

• f ∗ : A∗(X)→ A∗+d(Y ) with d = dim(Y/X) is injective,
• f ∗(E) is a successive extension of line bundles L1, . . . ,Lr,

the classes αi = c1(Li) in A∗(Y ) (or in End(A∗(Y ))) are called Chern roots of the
vector bundle. By the previous theorem the Chern classes of E are mapped to the
elementary symmetric polynomials in the Chern roots via f ∗ : A∗(X) ↪→ A∗+d(Y ),
and by abuse of notation we write

ct(E) =
r

∏
i=1

(1+αi · t), i.e. ci(E) = ∑
1≤ν1<···<νi≤r

αν1 · · ·ανi .

Notice however:

a) The Chern roots αν are classes on Y and usually will not descend to X .
b) The proper flat morphism f : Y → X in the splitting principle is not unique.
c) Even when f is given, the individual Chern roots are not well-defined:

Example 5.9. The trivial vector bundle E = O⊕2
X on X = P1 can also be written as

the extension

0 −→ OX (−1)
(x

y)−→ E
(−y x)−→ OX (1) −→ 0.

The assumptions of the splitting principle hold for f = id : Y = X → X , hence E
could be said to have Chern roots

α1 = α2 = 0 or α
′
1 = −α

′
2 = c1(OX (1)).

This is no contradiction, the elementary symmetric polynomials in the Chern roots
are well-defined:

c1(E ) = α1 +α2 = α
′
1 +α

′
2 = 0 and c2(E ) = α1 ·α2 = α

′
1 ·α ′2 = 0.

Example 5.10. Let E be a vector bundle of rank r with Chern roots α1, . . . ,αr, then
we have

ct(Symd(E)) = ∏
1≤i1≤···≤id≤r

(1+(αi1 + · · ·+αid ) · t),

ct(Altd(E)) = ∏
1≤i1<···<id≤r

(1+(αi1 + · · ·+αid ) · t).

The interpretation of Chern classes as the descent of the elementary symmetric
polynomials in the Chern roots has a useful consequence:



5 Chern classes of vector bundles 69

Definition 5.11. Let R be a commutative ring and Λr = R[x1, . . . ,xr]
Sr the ring of

symmetric polynomials in r variables. By the fundamental theorem of symmetric
functions we know this ring is a polynomial ring Λr =R[e1, . . . ,er] in the elementary
symmetric functions

ei := ∑
1≤ν1<···<νi≤r

xν1 · · ·xνi ∈ Λr

Hence for any P ∈Λr and any vector bundle E of rank r with Chern roots α1, . . . ,αr
the element

P(α1, . . . ,αr) ∈ End(A∗(X))⊗R

is well-defined as a polynomial in the Chern classes ei(α1, . . . ,αr) = ci(E).

Example 5.12. By the Whitney formula, the total Chern class of a vector bundle
is multiplicative with respect to direct sums; its behaviour with respect to tensor
products is somewhat complicated. Using the above definition, we can find instead
an expression in Chern classes which is additive for direct sums and multiplicative
for tensor products: For a vector bundle E on X of rank r with Chern roots α1, . . . ,αr
we define its Chern character by

ch(E) :=
r

∑
i=1

exp(αi) where exp(αi) :=
∞

∑
n=0

1
n!

α
n
i ∈ End(A∗(X))⊗Q.

Note that the exponential series on the right is in fact finite because the summands
are zero for all n > dim(X). Writing r = rk(E) and ci = ci(E), one computes the
first terms

ch(E) = r+ c1 +
1
2 (c

2
1−2c2)+

1
6 (c

3
1−3c1c2 + c3)+ · · ·

It is clear from the definition in terms of Chern roots that the Chern character is
additive in the sense that

ch(E) = ch(E ′)+ ch(E ′′) for extensions 0 → E ′ → E → E ′′ → 0

of vector bundles. It is also multiplicative in the sense ch(E ′⊗E ′′)= ch(E ′) ·ch(E ′′),
so the Chern character defines a ring homomorphism

ch: K(X) −→ A∗(X)⊗Q.

Here K(X) denotes the Grothendieck ring which is defined as follows:

• Its additive group is the free abelian group on isomorphism classes [E] of vector
bundles E on X modulo the relations

[E] = [E ′]+ [E ′′] for any extension 0 → E ′ → E → E ′′ → 0.

• Its product is defined by the tensor product of vector bundles [E] · [F ] := [E⊗F ].

This ring will later become important in the Grothendieck-Riemann-Roch theorem.
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Remark 5.13. The above discussion of the splitting principle shows that the Chern
classes can be characterized axiomatically as follows: There exists a unique way to
assign to each vector bundle E on a scheme X a polynomial ct(E) ∈ End(A∗(X))[t]
such that the following properties hold.

a) Functoriality: For any morphism f : Y → X we have f ∗(ct(E)) = ct( f ∗(E)).

b) Whitney formula: For any extension 0→ E ′ → E → E ′′ → 0 of vector bundles
we have

ct(E) = ct(E ′) · ct(E ′′).

c) Normalization: For line bundles L we have ct(L) = 1+ c1(L) · t.

6 Example: Chern classes of varieties

One of the most frequent applications of Chern classes in algebraic geometry is the
case of tangent bundles:

Definition 6.1. The Chern classes of a smooth variety X with tangent bundle TX
are defined by

ci(X) := ci(TX ) ∈ Ai(X).

We call c(X) := 1+ c1(X)+ c2(X)+ · · · ∈ A∗(X) the total Chern class of X .

Example 6.2. The tangent bundle of the projective space Pn = Projk[x0, . . . ,xn] is
given by the Euler sequence

0 −→ OPn
i−→ OPn(1)n+1 p−→ TPn −→ 0

where

i(1) := (x0, . . . ,xn) and p( f0, . . . , fn) :=
n

∑
i=0

fi · ∂

∂xi
.

Applying the Whitney formula to the Euler sequence, we obtain the total Chern
class

c(Pn) = c(OPn(1))n+1 = (1+ζ )n+1 for the class ζ = c1(OPn(1)).

This gives an algebraic version of the hairy ball theorem:

Corollary 6.3. Every vector field ξ ∈ H0(Pn,TPn) has a zero.

Proof. By the above we have cn(TPn) = (n+ 1)ζ n ̸= 0, so the result follows from
the fact that a vector bundle with a nowhere vanishing global section has trivial top
Chern class by corollary 5.7(a). ⊓⊔
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The following cartoon by Susan D’Agostino illustrates the situation:

The Chern classes of smooth hypersurfaces, and more generally of smooth complete
intersection in projective space, are easily deduced from this:

Lemma 6.4. Consider a smooth complete intersection X = H1 ∩ ·· · ∩Hr ⊂ Pn of
hypersurfaces Hi ⊂ Pn of degree di = deg(Hi). Then its total Chern class is given by
the formula

c(X) =
(1+ζ )n+1

∏
r
i=1(1+diζ )

for the class ζ = c1(OPn(1)|X ).

Proof. Consider the exact sequence

0 −→ TX −→ TPn |X −→ NX/Pn −→ 0

where NX/Pn = (IX/I 2
X )
∨ denotes the normal bundle. Since by assumption X is

a complete intersection of hypersurfaces Hi =V+( fi) with fi ∈ H0(Pn,OPn(di)), its
ideal sheaf has the presentation

r⊕
i, j=1

OPn(−di−d j)
β−→

r⊕
i=1

OPn(−di)
α−→ IX −→ 0

where α,β are given on the standard basis vectors ei and ei j of the respective direct
sums by

α(ei) = fi and β (ei j) = f jei− fie j.

Since β |X = 0, it follows that IX/I 2
X = (IX )|X ≃

⊕r
i=1 OPn(−di)|X . Hence the

normal bundle is

NX/Pn ≃
r⊕

i=1

OPn(di)|X

with total Chern class c(NX/Pn) = ∏
r
i=1(1+ diζ ). Applying the Whitney formula

we get

c(X) =
c(Pn)

c(NX/Pn)
=

(1+ζ )n+1

∏
r
i=1(1+diζ )

as claimed. ⊓⊔
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For any smooth projective variety X we can attach a set of numerical invariants,
the Chern numbers ∫

X
P(c1(X), . . . ,cn(X)) ∈ Z

for P ∈ Z[x1, . . . ,xn] weighted homogenous of degree n where deg(xi) := i. These
Chern numbers and various inequalities between them play an important role in the
classification of varieties. The most interesting one is the top Chern class:

Example 6.5. For a smooth projective curve C of genus g, the top Chern class has
degree ∫

X
c1(C) = deg(TC) = −deg(ωC) = 2−2g.

Note that over the complex numbers the right hand side is equal to the topological
Euler characteristic of the associated compact Riemann surface. This observation
can be generalized to varieties of arbitrary dimension:

Theorem 6.6 (Gauss-Bonnet). Let X be a smooth projective variety of dimension n
over the complex numbers. Then we have

∫
X

cn(X) =
2n

∑
i=0

(−1)i dimQ H i(X(C),Q).

We might see a proof of this later using the Hirzebruch-Riemann-Roch theorem
and the Hodge decomposition. The right hand side in the above formula is usually
denoted χtop(X(C)), the topological Euler characteristic of the associated complex
manifold. For instance we obtain:

Example 6.7. Let X ⊂ Pn be a smooth hypersurface of degree d over the complex
numbers. By lemma 6.4 its top Chern class is the part of dimension dim(X) = n−1
in the class

c(X) =
(1+ζ )n+1

(1+diζ )
= (1+ζ )n+1 · (1−dζ +d2

ζ
2−·· ·) ∈ A∗(X).

Explicitly we have

cn−1(X) =
n−1

∑
i=0

(−1)i ( n+1
n−1−i

)
di

ζ
n−1 ∈ An−1(X).

Since
∫

X ζ n−1 = d, it follows that the topological Euler characteristic of a smooth
projective hypersurface is

χtop(X(C)) =
n−1

∑
i=0

(−1)i ( n+1
n−1−i

)
di+1.

As a sanity check, for smooth quadrics X ⊂ P3 we get χtop(X(C)) = 4, which agrees
with the value expected from the Künneth formula applied to X ≃ P1×P1.
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7 Chow groups of affine and projective bundles

Let E be a vector bundle of rank r+ 1 on a scheme X , and denote the projections
from its total space and from the associated projective bundle by

qE : E −→ X and pE : P(E) −→ X .

Some time ago we have seen that

• q∗E : Ad(X)↠ Ad+r+1(E) is surjective,
• p∗E : Ad(X) ↪→ Ad+r(P(E)) is injective.

Using Chern classes, we can now upgrade this to a complete description of the Chow
groups of affine and projective bundles:

Theorem 7.1. For any d ∈ Z we have:

a) The morphism q∗E : Ad(X)
∼−→ Ad+r+1(E) is an isomorphism.

b) The morphism p∗E induces an isomorphism

θE :
r⊕

ν=0

Ad−r+ν(X)
∼−→ Ad(P(E)),

(αd−r, . . . ,αd) 7→
r

∑
ν=0

ζ
ν
E ∩ p∗E(αd−r+ν) for ζE = c1(OP(E)(1)).

Proof. Step 0. We first introduce some notation that will allow us to change the rank
of the vector bundle: Suppose E ≃ F⊕OX for some vector bundle F on X . We then
have a commutative diagram

P(F) P(E) F

X X X

i

pF pE

j

qF

where P(F)⊂ P(E) is viewed as the ‘hyperplane at infinity’ and F = P(E)\P(F) is
identified with its complement. Passing to Chow groups we get the exact localization
sequence

Ad(P(F))
i∗−→ Ad(P(E))

j∗−→ Ad(F) −→ 0.

Note that i∗ cannot be compatible in the naive way with the pullbacks p∗F and p∗E
since these two pullbacks involve different dimension shifts. However, we claim
that it is compatible with the pullbacks in the sense that we have the following
commutative diagram:
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Ad−1(P(F)) Ad−1(P(E)) Ad(P(E)) Ad(F)

Ad−r(X) Ad−r(X) Ad−r(X)

i∗ ζE∩(−) j∗

p∗F p∗E q∗F

In other words, we claim that

ζE ∩ p∗E(α) = i∗p∗F(α) for all α ∈ A∗(X).

Indeed, we may assume α = [Z] for a subvariety Z⊂X . The definition of the product
with Cartier divisors implies

c1(OP(E)(1))∩ [p−1
E (Z)] = [p−1

F (Z)]

since OP(E)(1) has a section with zero locus P(F)⊂ P(E), so the claim follows.

Step 1. We now show that θE is surjective. By Noetherian induction and the
localization sequence, it will be enough to do this when the vector bundle is trivial
and therefore E ≃ F ⊕OX for some vector bundle F on X . Let β ∈ Ad(P(E)). By
the known result for affine bundles the pullback map q∗F is surjective, hence we may
write

j∗(β ) = q∗F(αd−r) = j∗p∗E(αd−r) for some αd−r ∈ Ad−r(X).

Then β − p∗E(αd−r) ∈ ker( j∗) = im(i∗), so by induction on the rank r we may write

β − p∗E(αd−r) = i∗

(
r

∑
ν=1

ζ
ν−1
F ∩ p∗F(αd−r−ν)

)

for certain αd−r+1, . . . ,αd ∈ A∗(X). Since ζF = i∗(ζE), the projection formula and
the claim from the previous step allow to rewrite this as

β − p∗E(αd−r) =
r

∑
ν=1

ζ
ν
E ∩ p∗E(αd−r−ν)

which implies β = θE(αd−r, . . . ,αd). Hence θE is surjective.

Step 2. Next we show that θE is injective: Let a = (αd−r, . . . ,αd) ∈ ker(θE) be
an element in the kernel. If a ̸= 0, we can take e ∈ {d− r, . . . ,d} to be the maximal
index with αe ̸= 0. Then

0 = pE∗
(

ζ
d−e
E ∩θ(a)

)
since θE(a) = 0

= ∑
ν≥0

pE∗
(

ζ
d−e+ν

E ∩ p∗E(αd−r+ν)
)

by definition of θE

= ∑
ν≥0

sd−e+ν−r(E)∩αd−r+ν by definition of si(E)∩ (−)
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We claim that only a single summand survives: Indeed, put iν = d− e+ν− r, then
the summands are

siν (E)∩αiν+e =


0 for iν > 0 since then αiν+e = 0,
0 for iν < 0 since then siν (E) = 0,
αe for iν = 0 since we have s0(E) = id.

Hence the previous equality shows αe = 0, which contradicts our choice of e.

Step 3. Finally we show that q∗E is injective: Let G = E⊕OX , and consider the
inclusion j : E ↪→ P(G) as the complement of the hyperplane at infinity. Then for
any class α ∈ Ad(X) with q∗E(α) = 0 we have

j∗p∗G(α) = 0.

Let i : P(E) ↪→ P(G). It follows that

p∗G(α) = i∗(β ) for some β ∈ A∗(P(E)).

The surjectivity of θE implies β = θE(αd−r, . . . ,αd) and hence

p∗E(α) = i∗

(
r

∑
ν=0

ζ
ν
E ∩ p∗E(αd−r+ν)

)
=

r

∑
ν=0

ζ
ν+1
G ∩ p∗G(αd−r+ν),

where in the last equality we have again used the projection formula and the com-
mutative diagram from step 0 (with (E,G) in place of (F,E)). But this means that

θG(−α,αd−r, . . . ,αd) = 0,

hence α = 0 by the injectivity of θG. ⊓⊔

The fact that the pullback homomorphism in the first part of the above theorem
is an isomorphism has an important consequence:

Definition 7.2. Let q : E → X be a vector bundle of rank r on X , and let s : X → E
be its zero section. Then we define the Gysin homomorphism to be the inverse of the
pullback:

s∗ := (q∗)−1 : Ad(E)
∼−→ Ad−r(X).

For α ∈ Ad(E) we call s∗(α) ∈ Ad−r(X) the intersection of α with the zero section.

Example 7.3. Let L be a line bundle on X . The zero section s : X ↪→ L embeds X as
an effective Cartier divisor on the total space of the line bundle, and in these terms
the homomorphism

s∗ : Ad(L) −→ Ad−1(X)

coincides with the Gysin morphism given by the intersection with a Cartier divisor
as defined earlier: This follows from the fact that s∗ is determined uniquely by the
property that s∗[q−1(Z)] = [Z] for every subvariety Z ⊂ X .
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Thus the intersection with the zero section on a vector bundle generalizes the
intersection product with Cartier divisors that we introduced earlier. Note that for
vector bundles of higher rank the zero section is not a divisor, so we have really
moved a step forward; in fact this will be the basis for the general definition of the
intersection product in the next chapter. The following gives an alternative formula
for the Gysin homomorphism:

Proposition 7.4 (Gysin formula). Let E be a vector bundle of rank r on X, and
let G = E⊕1 be its direct sum with a trivial bundle of rank one. Let p : P(G)→ X
be the projection, and let Q be the tautological quotient vector bundle in the exact
sequence

0 −→ OP(G)(−1) −→ p∗(G) −→ Q −→ 0.

Then s∗ : Ad(E)→ Ad−r(X) is given by

s∗(β ) = p∗(cr(Q)∩β ) for β ∈ A∗(E),

where β ∈ A∗(P(G)) is any class with j∗(β ) = β for the inclusion j : E ↪→ P(G).

Proof. Consider again the diagram

P(E) P(G) E

X X X

i

pE pG qE

j

We want to show that

q∗E
(

pG∗(cr(Q)∩β )
)

= j∗(β ) for all β ∈ A∗(P(G)).

From the diagram

A∗(P(E)) A∗(P(G)) A∗(E) 0

A∗−r(X)

i∗ j∗

p∗G
q∗E

where the top row is exact and q∗E is surjective, we can write

β = p∗G(γ)+ i∗(δ ) for some γ ∈ A∗−r(X), δ ∈ A∗(P(E)).

Since j∗(β ) = q∗E(γ), it will then be enough to show the following two statements:

a) cr(Q)∩ i∗(δ ) = 0, and

b) pG∗(cr(Q)∩ p∗G(γ)) = γ .

The first statement follows from the projection formula and from the observation
that cr(i∗(Q)) = 0 since i∗(Q) is a vector bundle of rank r which has a nowhere
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vanishing section. For the second statement notice that by the Whitney formula we
have

c(Q) =
c(p∗G(G))

c(OP(G)(−1))
= c(p∗G(G)) ·

r

∑
i=0

ζ
i
G for ζG = c1(OP(G)(1)).

For the top Chern class then

cr(Q) =
r

∑
i=0

ζ
i
Gcr−i(pP(G))

and it follows that

pG∗(cr(Q)∩ p∗G(γ)) =
r

∑
i=0

pG∗(ζ
i
G∩ p∗G(cr−i(G)∩ γ))

=
r

∑
i=0

si−r(G)∩ cr−i(G)∩ γ

= γ

because si−r(G) = 0 for i < r and s0(G) = id. ⊓⊔





Chapter III
The intersection product

1 Motivation: Why normal cones?

In the last chapter we have seen how on the total space of a vector bundle one can
intersect arbitrary cycles with the zero section via the Gysin pullback. The main task
of this chapter will be to generalize this to closed subschemes which locally look
like the zero section in a vector bundle.

Definition 1.1. Let Y be a closed subscheme of a scheme X . The embedding Y ↪→ X
is called a regular embedding of codimension d if the ideal sheaf IY ⊴OX is locally
generated by a regular sequence of length d: We can cover X by open subsets U ⊂ X
such that

IY (U) = ( f1, . . . , fd) for certain f1, . . . , fd ∈IY (U)

with the property that each fi maps to a nonzerodivisor in OX (U)/( f1, . . . , fi−1).

Remark 1.2. A regular embedding of codimension one is the same notion as the
embedding of an effective Cartier divisor. For any regular embedding Y ↪→ X of
codimension d, the properties of regular sequences in commutative algebra show
that

• the conormal sheaf N∨Y/X := IY/I 2
Y is locally free of rank d,

• the natural map Symn(IY/I 2
Y )→I n

Y /I
n+1

Y is an isomorphism for all n.

Regular embeddings can by definition be written locally as complete intersections
of effective Cartier divisors, but usually not globally, even for smooth varieties:

Example 1.3. If X is a smooth variety, then for any smooth subvariety Y ⊂ X , its
embedding is a regular embedding of codimension d = dimX−dimY . But usually Y
cannot be written globally as the scheme-theoretic intersection of d Cartier divisors
on X : Take the embedding

P1 ↪→ P3, [1 : t] 7→ [1 : t : t2 : t3]

79
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whose image is the twisted cubic:

https://enriqueacosta.github.io/blog/en/posts/tikz-twisted-cubic/

This twisted cubic is the intersection of three quadrics

Y = V+(xz− y2)∩V+(yw− z2)∩V+(xw− yz) ⊂ P3

but it cannot be the scheme-theoretic intersection of two surfaces, as one may see
by looking at the space of homogenous polynomials of degree two in its ideal.

Thus we cannot directly invoke the intersection product with Cartier divisors to
define an intersection product with all regularly embedded subschemes. We will
overcome this problem via an algebraic analog of tubular neighborhoods: For any
regular embedding Y ↪→ X we will construct a deformation1 from that embedding
to the one of the zero section in the normal bundle NY X . Any subvariety Z ⊂ X will
deform to the normal cone CY∩ZZ, a certain subcone of the normal bundle NY/X :

Note that both Z and Y ∩Z can be very singular and the normal cone CY∩ZZ will
usually not be a vector bundle; this explains why a careful study of cones and their
Segre classes is crucial for the development of intersection theory. Once we have
done this, we will use the Gysin pullback for the zero section i : Y ↪→ NY X to get a
well-defined class

Y ·Z := i∗[CY∩ZZ] ∈ A∗(Y ∩Z).

1 Usually NY/X does not embed into X (unlike tubular neighborhoods in differential geometry)!

https://enriqueacosta.github.io/blog/en/posts/tikz-twisted-cubic/
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If X is smooth, we can then easily define the intersection product of arbitrary, not
necessarily regularly embedded subvarieties Y,Z ⊂ X by considering the Cartesian
diagram

Y ∩Z Y ×Z

∆ X×X

where ∆ ↪→ X ×X is the embedding of the diagonal. For smooth X this is a regular
embedding and we will get a well-defined intersection

Y ·Z := ∆ · (Y ×Z) ∈ A∗(Y ∩Z).

Carrying out this programme will occupy us for the rest of this chapter.

2 Cones and their Segre classes

The following definition generalizes our description of the total space of a vector
bundle on a scheme:

Definition 2.1. Let X be a scheme. A cone over it is a scheme over X that can be
written in the form

C = SpecX (S
•) → X ,

where S • is a sheaf of graded OX -algebras. We also consider the projective cone
defined by

P(C) = ProjX (S
•) → X .

Note the abuse of notation here: When talking about cones we will always assume
that we are given the sheaf of graded OX -algebras S • and not just the abstract
scheme morphism C→ X , since the latter does not determine the action of Gm on
the fibers. That being said, any cone C embeds as an open dense subscheme in
its projective completion which is defined as P(C⊕1) := ProjX (S

•[z]).

Example 2.2. To any closed subscheme Y =V (I ) ↪→ X with ideal sheaf I ⊴OX ,
we can attach various cones:

a) The blowup of Y in X is the projective cone

BlY (X) := ProjX
⊕
n≥0

I n −→ X .

b) The normal cone to Y in X is the cone

CY X := SpecX

⊕
n≥0

I n/I n+1 −→ Y.
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The projectivization of the normal cone can be identified with the exceptional fiber
of the blowup via the Cartesian diagram

P(CY X) BlY (X)

Y X

whose top row is induced by the surjections I n↠I n/I n+1.

Remark 2.3. If X is equidimensional, then for any subscheme Y ⊂ X the normal
cone C = CY X is also equidimensional with dimC = dimX . Indeed, this follows
from the fact that

• we have an open embedding C ⊂ P(C⊕1),
• P(C⊕1) is the exceptional divisor on B = BlY×0(X×A1),
• B is birational to X×A1 (since Y ×0 is nowhere dense in X×A1).

Remark 2.4. We also have surjections Symn(I /I 2)↠ I n/I n+1 and hence an
embedding of cones

CY X ↪→ NY/X := SpecX

⊕
n≥0

Symn(I /I 2).

If Y ↪→ X is a regular embedding, then this is an isomorphism CY X ∼−→ NY/X and
these cones are a vector bundle, called the normal bundle to the subvariety. Apart
from that case the normal cone is the more interesting notion:

Example 2.5. Let m,n > 0, and let X = V ( f ) ⊂ An be a hypersurface cut out by a
polynomial

f = ∑
d≥m

fd with each fd homogenous of degree d.

For Y = {0} ↪→ X one computes

CY X = {0}×V ( fm) ⊂ NY/X = {0}×T0X .

For m ≥ 2 the scheme X has a singularity at the origin; then the first cone is the
tangent cone to X at the singularity which keeps information about the leading term
of the polynomial, while the second cone is just the tangent space T0X = T0An as
shown in the following picture for a nodal cubic:

X
CY X

Y NY/X
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At this point we could directly start the construction of the intersection product
via the deformation to the normal cone, but for later purposes it will be convenient
to gather a few remarks about Segre classes here. The definition of Segre classes
generalizes easily from vector bundles to arbitrary cones, with two caveats:

• The projection p : P(C)→ X is usually not flat, so we cannot define Segre classes
as operations on Chow groups like for vector bundles. But we could still define
them as classes by taking p∗(c1(OP(C)(1)i∩ [P(C)]) ∈ A∗(X).

• While we only considered vector bundles of positive rank, we want to allow
the zero cone C = SpecX (OX ) for instance in talking about the zero section in
a vector bundle. But then P(C) = ∅ is the empty scheme! One way to keep
information about the zero section is to work on P(C⊕1) rather than on P(C).

Definition 2.6. The total Segre class of a cone C = SpecX (S
•)→ X is defined as

the class

s(C) := ∑
i≥0

p∗(c1(OP(C⊕1)(1))
i∩ [P(C⊕1)]) ∈ A∗(X),

where p : P(C⊕ 1)→ X is the structure morphism. The component in dimension i
of the total Segre class is called the i-th Segre class si(C) ∈ Ai(X).

The total Segre class as defined above is compatible with the one we defined
earlier for vector bundles, and it is compatible with the decomposition of cones into
irreducible components:

Lemma 2.7. Let C = Spec(S •) be a cone on X.

a) If C = E is a vector bundle, then s(C) = c(E)−1∩ [X ].
b) In general, if C has irreducible components Ci with multiplicities mi = ℓ(OC,Ci),

then
s(C) = ∑

i
mi · s(Ci).

Proof. If C = E is a vector bundle, then we have s(C) = c(E ⊕ 1)−1 ∩ [X ] by the
definitions. Here c(E⊕1) = c(E) by the Whitney formula for Chern classes, so a)
follows. For b) note that

[P(C⊕1)] = ∑
i

mi · [P(Ci⊕1)]

since C ⊂ P(C⊕1) is an open dense subset. ⊓⊔

One consequence of adding the trivial bundle in the definition of Segre classes
for cones is the following:

Exercise 2.8. The Segre classes as defined above are a stable invariant of the cone C
in the sense that

s(C) = s(C⊕1) = s(C⊕1⊕1) = · · ·
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The most interesting cones for the purpose of intersection theory are normal
cones to subschemes:

Definition 2.9. The Segre class of a subscheme Y ⊂ X is s(Y,X) = s(CY X)∈ A∗(Y ).

Example 2.10. If Y ↪→X is a regular embedding, then the normal cone CY/X =NY/X
is a vector bundle and then lemma 2.7 a) gives

s(Y,X) = c(NY/X )
−1∩ [Y ].

For subschemes of equidimensional schemes the Segre classes are compatible
with the decomposition into irreducible components:

Lemma 2.11. Let X be an equidimensional scheme with irreducible components Xi
and denote the multiplicities of the components by mi = ℓ(OX ,Xi). Then for any
subscheme Y ⊂ X we have

s(Y,X) = ∑
i

mi · s(Yi,Xi) ∈ A∗(Y ) where Yi = Y ∩Xi.

Proof. We have CY X ⊕1 =CY×{0}(X ×A1), so E = P(CY X ⊕1) is the exceptional
divisor of the blowup

B = BlY×{0}(X×A1) −→ X×A1.

Likewise Ei = P(CYiXi⊕1) is the exceptional divisor of Bi = BlYi×{0}(Xi×A1). We
also know

[B] = ∑
i

mi · [Bi].

The equidimensionality of X implies that the blowup B is equidimensional. Since
the restriction of Cartier divisors to equidimensional schemes is compatible with the
decomposition in irreducible components in the sense of chapter II, remark 1.8, it
follows that

[E] = ∑
i

mi · [Bi∩E] = ∑
i

mi · [Ei]

and we are done by applying p∗(∑ j c1(O(1)) j ∩ (−)). ⊓⊔

Remark 2.12. The equidimensionality is needed in the above: For instance, take
the union X = V (xz,yz) = X1 ∪X2 ⊂ A3 of X1 = V (x,y) and X2 = V (z). Then the
subscheme

Y = V ( f ) ⊂ X cut out by f = (z− x)|X ∈ Γ (X ,OX )

is an effective Cartier divisor (since f is a nonzerodivisor). In particular Y ⊂ X is
regularly embedded of codimension one, so its normal cone is a vector bundle of
rank one. It then follows easily that

CY X = NY/X = CY2X2 and s(Y,X) = s(Y2,X2) ̸= s(Y1,X1)+ s(Y2,X2).
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The reason why CY1X1 does not enter CY X is that the subscheme Y ⊂ X has an
embedded point at the origin, so that the subscheme is ‘tangent’ to the z-axis at the
origin:

Note that this problem disappears if instead we took X ′ =V (xz) = X ′1∪X ′2 to be the
union of two planes: Then Y ′ = V ( f ) ⊂ X ′ for f as above is still a Cartier divisor,
but now it is a double line rather than a line with an embedded point. So CY ′X ′ is a
vector bundle of rank one, but over a double line. For the underlying reduced closed
subscheme Y ′red ⊂ Y ′ then

[CY ′X
′] = 2 · [CY ′red

X ] and s(Y ′,X ′) = 2s(Y ′red,X
′) = s(Y ′1,X

′
1)+ s(Y ′2,X

′
2).

So equidimensionality avoids problems with embedded points on Cartier divisors.

Indeed, on equidimensional schemes Segre classes of closed subschemes have
remarkable functorial properties — note that in the following statement the fiber
product Y ′ may be very nasty and codimX ′(Y ′) may differ from codimX (Y )!

Proposition 2.13. Let f : X ′→ X be a morphism of equidimensional schemes, and
consider a Cartesian square

Y ′ X ′

Y X

g f

where Y ⊂ X is a closed subscheme with preimage Y ′ = f−1(Y ), and g = f |Y ′ .

a) If f is proper and every irreducible component of X ′ dominates X, then the Segre
classes satisfy

g∗(s(Y ′,X ′)) = deg(X ′/X) · s(Y,X).

b) If f is flat, then
g∗(s(Y,X)) = s(Y ′,X ′).
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Proof. In a) in particular X is irreducible, and the degree in the statement is defined
by

deg(X ′/X) = ∑
i

mi ·deg(X ′i /X)

where X ′ has irreducible components X ′i with multiplicities mi. Then by lemma 2.11
and by equidimensionality, we can argue for each of these irreducible components
separately, hence we will assume for a) and b) that X ′ is irreducible. The universal
property of blowups shows that there is a morphism F that restricts to a morphism G
between the exceptional divisors as shown in the following commutative diagram:

X ′ P(CY ′X ′⊕1) BlY ′×{0}(X ′×A1) X ′×A1

X P(CY X⊕1) BlY×{0}(X×A1) X×A1

g G

p′

F f×id

p

By construction the morphism G is compatible with the tautological line bundles in
the sense that

G∗(OP(CY X⊕1)(1)) ≃ OP(CY ′X
′⊕1)(1).

Let d = deg(X ′/X). This is also the degree of the morphism F because it can be
computed on an open dense subset where the blowup is an isomorphism. So by
definition of the pushforward of cycles we have

F∗[BlY ′×{0}(X
′×A1)] = d · [BlY×{0}(X×A1)].

Hence the projection formula for the intersection with Cartier divisors, applied to
the exceptional divisors, implies

G∗[Proj(CY ′X
′⊕1)] = d · [Proj(CY X⊕1)].

Now a) follows from

g∗(s(Y ′,X ′)) = g∗q′∗

(
∑

i
c1(G∗(O(1))i∩

[
P(CY ′X

′⊕1)
])

= q∗G∗

(
∑

i
c1(G∗(O(1))i∩

[
P(CY ′X

′⊕1)
])

= q∗

(
∑

i
c1((O(1))i∩d · [P(CY X⊕1)]

)

= d · s(Y,X),

where the third step uses the projection formula for c1(O(1))∩ (−).
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For b) notice that

g∗(s(Y,X)) = g∗q∗

(
∑

i
c1((O(1))i∩ [P(CY X⊕1)]

)

= q′∗G
∗

(
∑

i
c1((O(1))i∩ [P(CY X⊕1)]

)

= q′∗

(
∑

i
c1((G∗O(1))i∩G∗ [P(CY X⊕1)]

)

= s(Y,X),

where in the second step we have used base change. ⊓⊔

Corollary 2.14. Assume that f (and hence g) is proper. If the base change Y ′ ↪→ X ′

is a regular embedding, then

g∗(c(NY ′/X ′)
−1∩ [Y ′]) = deg(X ′/X) · s(Y,X).

Proof. Immediate from part a) of the proposition. ⊓⊔

This in particular means that we can compute Segre classes of arbitrarily nasty
subschemes Y ⊂ X by blowing up:

Corollary 2.15. Let X be an equidimensional scheme, and Y ⊂ X a subscheme of
positive codimension. Let p : X ′=BlY (X)→X be the blowup and E = p−1(Y )⊂X ′

the exceptional divisor. Then

s(Y,X) = ∑
i≥1

(−1)i−1 p∗(E i),

where E i = E ∩·· ·∩E is taken in the sense of intersections with Cartier divisors.

Proof. The exceptional divisor of a blowup is a Cartier divisor and hence regularly
embedded. Now apply corollary 2.14 with deg(X ′/X) = 1 and Y ′ = E, using that
here NY ′/X ′ = OX ′(E)|E by the adjunction formula for Cartier divisors. ⊓⊔

3 Two applications of Segre classes

Before we continue the development of intersection theory, let us briefly illustrate
the use of Segre classes with two simple geometric applications. The first is the
notion of the multiplicity of a scheme along a subvariety:
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Definition 3.1. The multiplicity of a scheme X along a closed subvariety Y ⊂ X is
the coefficient e = eY X ∈ N with which the fundamental class [Y ] enters the top
Segre class

sd(Y,X) = e · [Y ] ∈ Ad(Y ) = Z · [Y ] for d = dimY.

Example 3.2. Let X be an equidimensional scheme, and let Y ⊂X be a subvariety of
codimension n > 0. The multiplicity e = eY X can be read off from p : BlY (X)→ X
via corollary 2.15:

e · [Y ] = (−1)n−1 p∗(En) for the exceptional divisor E ⊂ BlY (X).

We can also work directly from the definition of Segre classes: Let C =CY X be the
normal cone, then

e · [Y ] = p∗(c1(O(1))n∩ [P(C⊕1)]) for the projection p : P(C⊕1)→ Y

= q∗(c1(O(1))n−1∩ [P(C)]) for the projection q : P(C)→ Y

where the second step uses our assumption n > 1. If Y = {P} is a single closed
point, then C = CPX is the tangent cone to X at that point, and the last displayed
equation shows that

ePX =
∫
P(C)

c(O(1))n−1∩ [P(C)] = deg[P(C)]

is the degree of the projective tangent cone to X at the point P ∈ X . For instance, for
a hypersurface

X = V ( f ) ⊂ An with f = f0 + f1 + f2 + · · · ∈ k[x1, . . . ,xn]

where fd is homogenous of degree d, the multiplicity at P = (0, . . . ,0) is the degree
of the initial term:

eP = min{d | fd ̸= 0}

Indeed, the initial term cuts out the tangent cone C =CPX as in example 2.5.
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The second application of Segre classes that we want to discuss is a formula for
the degree of rational maps. Given a line bundle L ∈ Pic(X) on a variety X and a
subspace W ⊂ H0(X ,L ) of sections, we have a rational map

ϕW : X 99K P(W∨)

which is defined away from the base locus B =
⋂

s∈W V (s)⊂ X . We are interested in
the following type of questions:

• If ϕW is dominant, what is its generic degree?
• If ϕW is birational onto a subvariety Z ⊂ P(W∨), what is the degree of Z?

More generally, let Z ⊂ P(W∨) be the closure of the image of the rational map ϕW
and consider the generic degree deg(X/Z) = [k(X) : k(Z)] of this rational map over
its image, then both questions above ask for the number deg(X/Z) · deg(Z). To
compute this number, we first observe that the rational map ϕW is resolved via the
blowup

p : X ′ = BlB(X) −→ X .

Indeed, let IB⊴OX be the ideal sheaf of B⊂ X . The surjection W ⊗OX ↠I ⊗L
induces a surjection Sym•(W ⊗L ∨)↠

⊕
m≥0 I m and hence we obtain a closed

immersion

i : X ′ = ProjX
⊕
m≥0

I m ↪→ X×P(W∨) = ProjX Sym•(W ⊗L ∨).

So we get a commutative diagram

E X ′

B X P(W∨)

∃! f
p

ϕW

where f = pr2 ◦ i and where E = p−1(B)⊂ X ′ denotes the exceptional divisor. The
number we want to compute can then be written as the degree

deg f∗[X ′] = deg(X ′/ f (X ′)) ·
∫
P(W )

c1(O(1))n∩ [ f (X ′)] where n = dimX .

This degree can be computed in terms of Segre classes as follows:

Proposition 3.3. With notation as above we have

deg f∗[X ′] =
∫

X
c1(L )n −

∫
B

c1(L )n∩ s(B,X).
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Proof. By construction f ∗(O(1)) = p∗(L )(−E), hence

deg f∗[X ′] =
∫

X ′
c1( f ∗(O(1)))n

=
∫

X ′
(c1(p∗(L ))− c1(OX ′(E)))

n

=
n

∑
i=0

(−1)i(n
i

)∫
X

c1(L )n−i p∗(c1(OX ′(E)
i∩ [X ′])

=
∫

X
c1(L )n −

∫
X

n

∑
i=1

(n
i

)
c1(L )n−i∩ (−1)i−1 p∗(E i)

=
∫

X
c1(L )n −

∫
X

n

∑
i=0

(n
i

)
c1(L )n−i∩∑

j≥1
(−1) j−1 p∗(E j)

=
∫

X
c1(L )n −

∫
B
(1+ c1(L ))n∩ s(B,X),

where in the last step we used corollary 2.15. ⊓⊔

Example 3.4. Let X = P2 and L = O(2).

a) For W = H0(X ,L ) the base locus is empty. The morphism f = ϕW : P2→ P5 is
the Veronese embedding, and the above proposition shows that the degree of its
image is

deg( f (P2)) =
∫

X
(c1(L ))2 =

∫
X
(c1(O(2)))2 = 4

∫
X
(c1(O(1))2 = 4.

b) For W = ⟨x2,xy,xz,y2,yz⟩ ⊂ H0(X ,L ) the base locus is the point [0 : 0 : 1]. We
get a birational map

ϕW : P2 99K S ⊂ P4

to a projective surface S. As the Segre class of a point has degree
∫

X s(B,W ) = 1,
we see that the surface has degree deg(S) = 4−1 = 3.

c) For W = ⟨x2,y2,z2⟩ the base locus is again empty. However, f : X → P2 is now
a dominant morphism, so our formula computes its generic degree. As expected
we get

deg( f ) =
∫

X
(c1(L ))2 = 4.

d) For W = ⟨x2,xy,y2⟩ the base locus B⊂W is a fat point. The rational map ϕW has
positive generic fiber dimension, hence

0 = deg f∗[X ′] = 4−
∫

X
s(B,X).

This gives a way to compute the multiplicity eBX =
∫

X s(B,X) = 4.
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4 Deformation to the normal cone

In this section we want to construct for any subscheme Y ⊂X a natural specialization
homomorphism

σ : A∗(X) −→ A∗(CY X),

which will be an algebraic replacement for the restriction to tubular neighborhoods
in analysis. The key ingredient is the following construction:

Proposition 4.1 (Deformation to the normal cone). There is a scheme M◦ = M◦Y X
and a commutative diagram

Y ×P1 M◦

P1

i

pr2
ρ

where i is a closed immersion and ρ is a flat morphism with the following properties:

a) over U = P1 \{0} ⊂ P1 we have

ρ
−1(U) = X×U

i|Y×U = ιY × idU for the inclusion ιY : Y ↪→ X .

b) over 0 ∈ P1 we have

ρ
−1(0) = CY X

i|Y×{0} : Y = Y ×{0} ↪→CY X is the zero section.

Proof. The blowup M = BlY×0(X×P1) has the exceptional divisor P(C⊕1) for the
cone C =CY X . From the closed embeddings Y =Y ×0 ↪→Y ×P1 ↪→ X×P1 we get
a closed embedding

Y ×P1 = BlY×0(Y ×P1) ↪→ M = BlY×0(X×P1).

Likewise, from the closed embeddings Y =Y ×0 ↪→ X = X×0 ↪→ X×P1 we get a
closed embedding

X̃ := BlY (X) ↪→ M = BlY×0(X×P1)

whose image is contained in the fiber π−1(0) of the projection π : M → P1. Note
that this projection is flat, because the projection X×P1→ P1 is flat. Hence also its
restriction

ρ : M◦ := M \ X̃ −→ P1

is flat, and claim a) is clear from the construction.
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For the proof of b) it will be enough to show the following two statements which
are illustrated in the picture below:

• The special fiber of the morphism π : M→ P1 is given as a Cartier divisor on M
by the sum

π
−1(0) = E + X̃

of X̃ and the exceptional divisor E =P(C⊕1) of the blowup M =BlY×0(X×P1).
• The intersection of these two divisors is E ∩ X̃ = P(C), which can be regarded

alternatively as the hyperplane at infinity in the projective completion P(C⊕ 1)
or as the exceptional divisor of the blowup X̃ = BlY (X)→ X .

Since all relevant embeddings are globally defined, both properties can be verified
locally. Hence in what follows we we may assume that X = Spec(A) and Y =V (I)
for an ideal J⊴A. It will be enough to work over A1 = P1 \{∞} = Speck[t]. Over
this neighborhood of the origin we have

M|A1 = Proj(⊕n≥0 (J, t)n) for the ideal (J, t) ⊴ A[t].

The fiber of this scheme over the origin is given by

π
−1(0) = Proj(⊕n≥0 (J, t)n / t ·⊕n≥0 (J, t)n) .

One easily verifies that this is the union of the closed subschemes

X̃ = Proj(⊕n≥0 Jn) and E = Proj
(
⊕n≥0 (J, t)n / ⊕n≥0 (J, t)n+1)

and their scheme-theoretic intersection is X̃ ∩E = Proj(⊕n≥0Jn/Jn+1) =CY X . ⊓⊔
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In what follows we fix a subscheme Y ⊂ X . For any other subscheme Z ⊂ X , the
inclusions Y ∩Z ⊂Y ⊂ X induce a closed immersion CY∩Z Z ↪→CY X . Moreover, if Z
is equidimensional of dimension d, then by remark 2.3 the same also holds for the
normal cone CY∩ZZ, so we can define a specialization homomorphism on the level
of cycles by

σ : Zd(X) −→ Zd(CY X), [Z] 7→ [CY∩Z Z].

The deformation to the normal cone implies that this homomorphism descends to
rational equivalence classes:

Corollary 4.2 (Specialization to the normal cone). The above homomorphism σ

descends to a homomorphism

σ : Ad(X) −→ Ad(CY X), [Z] 7→ [CY∩ZZ].

Proof. Let M◦ = M◦Y X be the deformation to the normal cone C = CY X . Then the
inclusions

i : C ↪→M◦ and j : X×A1 ↪→M◦ for A1 = P1 \{0}

fit in the following diagram whose row is the exact localization sequence:

Ad+1(C) Ad+1(M◦) Ad+1(X×A1) 0

Ad(C) Ad(X)

i∗

i∗i∗

j∗

i∗ pr∗

∃!σ

Here pr∗ is an isomorphism since it is the flat pullback for the structure morphism of
a vector bundle. The morphism i∗ is the Gysin map for the inclusion of the effective
Cartier divisor C ∈Div(M◦); since the latter has trivial normal bundle in M◦, its first
Chern class vanishes, hence we have i∗i∗ = 0. It follows that there exists a uniqe
homomorphism σ : Ad(X)→ Ad(C) making the diagram commute. It only remains
to check that this homomorphism is given on fundamental classes of subvarieties by
the assignment [Z] 7→ [CY∩Z Z]. Indeed, we have

• pr∗[Z] = [Z×A1] = j∗[M◦Y∩Z Z] for the subscheme M◦Y∩ZZ ⊂M◦Y X ,
• i∗[M◦Y∩Z Z] = [CY∩ZZ] by construction of the deformation M◦Y∩Z Z.

Hence the claim follows. ⊓⊔

5 The intersection product

Note that our construction of the specialization to the normal cone works for any
closed immersion. However, in the case of a regular embedding we can do more:
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Definition 5.1. Let i : Y ↪→ X be a regular embedding of codimension d. We then
define the Gysin homomorphism to be the composite i∗ = s∗ ◦σ in the following
diagram:

A∗(X) A∗−d(Y )

A∗(NY/X )

i∗

σ s∗

Here σ is the specialization to the normal cone CY X = NY/X , which in this case is a
vector bundle, and s∗ is the intersection with the zero section s : Y → NY/X .

Remark 5.2. If i : Y ↪→ X is the embedding of the zero section in a vector bundle,
then the above Gysin map coincides with the Gysin map that we defined earlier
as the intersection with the zero section: Indeed, in this case we have a natural
identification X = NY/X via which σ : A∗(X)→ A∗(NY/X ) becomes the identity.

We could now define the intersection product of Y with a subvariety Z ⊂ X as the
class i∗[Z] ∈ AdimZ−d(Y ), but we can do better: We want the intersection product to
be a class in the Chow group of the scheme-theoretic intersection Y ∩Z rather than
just on Y or on X! In fact we can do this much more generally:

Definition 5.3. Let i : Y ↪→ X be a regular embedding of codimension d. Let Z be
any equidimensional scheme endowed with a morphism f : Z → X , and consider
the Cartesian diagram

W Z

Y X

g f

i

where W = Y ×X Z denotes the fiber product. Note that in general W ↪→ Z need not
be a regular embedding of codimension d. But N := g∗(NY/X ) is still a vector bundle
of rank d, and we have a closed immersion of cones

CW Z ↪→ N induced by
⊕

n
f ∗(I n

Y /I
n+1

Y )↠
⊕

n
I n

W/I n+1
W

where IY ⊴OX resp. IW⊴OZ are the ideal sheaves of Y ↪→X resp. W ↪→ Z. Since Z
is assumed equidimensional, we know from remark 2.3 that CW Z is equidimensional
and dimCW Z = dimZ. We can therefore define the intersection product of Y with Z
by

Y ·Z := s∗[CW Z] ∈ AdimZ−d(W ) for the zero section s : W ↪→ g∗(NY/X ).

Remark 5.4. We will see soon that this generalizes our earlier intersection product
with Cartier divisors. Moreover, it is linear in the second variable: If the scheme Z
has irreducible components Zi with multiplicities mi = ℓ(OZ,Zi), then lemma 2.11
implies

Y ·Z = ∑
i

Y ·Zi ∈ AdimW−d(W ).
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In nice cases the intersection product can be computed as the fundamental class
of the fiber product: In the above setup, let us say that Y and Z intersect properly if
the scheme W = Y ×X Z is equidimensional of the expected dimension in the sense
that

codimZ W ′ = codimX Y for every irreducible component W ′ ⊂ W.

If this is the case and if moreover Z is smooth or more generally Cohen-Macaulay,
then W ↪→ X is a regular embedding of codimension d whenever Y ↪→ X is. In such
cases we can compute the intersection product naively:

Lemma 5.5. Let Y ↪→ X be a regular embedding of codimension d, and let Z→ X
be a morphism from an equidimensional scheme. If W = Y ×X Z ↪→ Z is again a
regular embedding of the same codimension d, then

Y ·Z = [W ].

Proof. Here CW Z = g∗(NY/X ) = N, hence Y ·Z = s∗[CW Z] = s∗[N] = [W ]. ⊓⊔

Note that the above includes cases of non-transverse intersections, as long as the
intersection is regularly embedded of the expected codimension:

Example 5.6. Let C,D ⊂ P2 be two reduced curves with no common irreducible
component over an algebraically closed field. Then W = C∩D ⊂ D is an effective
Cartier divisor, i.e. a regularly embedded subscheme of codimension one. So the
lemma gives

C ·D = [C∩D] = ∑
p∈W (k)

ip(C,D) · [p] ∈ A0(W ),

where ip(C,D) ∈N denotes the intersection multiplicity defined in the introduction.

Returning to the general case, we can always compute the intersection product
in terms of Chern and Segre classes as follows, where for a class α ∈ A∗(W ) we
denote by {α}i ∈ Ai(W ) its component of dimension i.

Proposition 5.7 (Basic intersection formula). Suppose as above that we are given
a Cartesian diagram

W Z

Y X

g f

i

with i a regular embedding of codim d and Z equidimensional. Put N = g∗(NY/X )
and consider the projection p : P= P(N⊕1)→W. Let Q be the universal quotient
bundle in the exact sequence

0 → OP(−1) → p∗(N⊕1) → Q → 0.
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Then we have

Y ·Z = p∗(cd(Q)∩ [P(CWV ⊕1)])

= {c(N)∩ s(W,Z)}dimZ−d

Proof. The first equality is the Gysin formula from chapter II, proposition 7.4,
which expresses the intersection with the zero section as the pushforward of the
cap product of cd(Q) with the extension β = [P(CW Z⊕1)] of β = [CW Z].

For the second equality note that c(p∗N) = c(Q) · c(O(−1)) by the Whitney
formula, which implies that

c(Q) = c(p∗N) ·∑
i≥0

ζ
i for the class ζ = c1(O(1)).

Hence we get

p∗(cd(Q)∩ [P(CW Z⊕1)]) =

{
p∗

(
c(p∗N)∩∑

i≥0
ζ

i∩ [P(CW Z⊕1)]

)}
dimZ−d

=

{
c(N)∩ p∗

(
∑
i≥0

ζ
i∩ [P(CW Z⊕1)]

)}
dimZ−d

= {c(N)∩ s(CW Z)}dimZ−d

and the claim follows. ⊓⊔

Note that in the proposition we allow codimZW < codimXY . The following result
shows how to deal with such excess intersections as long as they are still regularly
embedded:

Corollary 5.8 (Excess intersection formula). If in the above situation W ⊂ Z is
also a regular embedding, say of codimension e with normal bundle N′, then we
have

Y ·Z = cd−e(N/N′)∩ [W ] ∈ An(W ), n = dimW − (d− e) = dimZ−d.

Proof. If W ↪→ Z is a regular embedding, the subcone N′ = CW Z ⊂ N = g∗(NY/X )
is a vector subbundle. By the Whitney formula then

c(N)∩ s(W,Z) = c(N)∩ c(N′)−1∩ [W ] = c(N/N′)∩ [W ]

and hence the claim follows from the second formula in proposition 5.7. ⊓⊔

For e = d we recover the formula for proper intersections in lemma 5.5, with the
convention that the zero vector bundle has total Chern class 1 as imposed by the
Whitney formula. The other extreme is the case e = 0 which happens for instance
for self-intersections:
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Example 5.9. Let Y be an equidimensional scheme, and let Y ↪→ X be a regular
embedding of codimension d with normal bundle N = NY/X . Then we obtain the
self-intersection formula

Y ·Y = cd(N)∩ [Y ] ∈ An(Y ), where n = dim Y −d.

If Y is a smooth variety, then the diagonal Y =∆ ⊂X =Y×Y is a regular embedding
of codimension d = dim Y and we obtain that the top Chern class is the degree of
the self-intersection of the diagonal:∫

Y
cd(Y ) = deg(∆ ·∆).

Over the complex numbers this gives another way of computing χtop(Y (C)).

Example 5.10. If Y ⊂X is an effective Cartier divisor, then for any subvariety Z⊂X
there are two cases:

• If Z ̸⊂Y , then Y ∩Z is an effective Cartier divisor on Z, hence regularly embedded
of the expected codimension. Then lemma 5.5 gives Y ·Z = [Y ∩Z].

• If Z ⊂ Y , then the embedding Y ∩ Z ↪→ Z is the identity, a regular embedding
of codimension e = 0. Then the excess intersection formula with N = OX (Y )|Z
shows that the class of the intersection is Y ·Z = c1(O(Y )|Z).

In both cases the above definition of the intersection product Y ·Z ∈A∗(Y ∩Z) agrees
with our earlier notion of the intersection product with Cartier divisors.

6 Refined Gysin maps and compatibilities

We now want to establish some functorial properties of the intersection product. It
will be convenient to do so in a more general setting of Gysin maps. Recall that for
a regular embedding i : Y ↪→ X of codimension d we have only defined the Gysin
map as a homomorphism

i∗ : A∗(X) −→ A∗−d(Y ).

For the intersection product we wanted more:

• We defined Y ·Z for any morphism Z→ X from an equidimensional scheme Z.

• We defined Y ·Z as a class on the fiber product W = Y ×X Z. Even if Z ⊂ X is a
closed subscheme, this gives us more refined information than the previous Gysin
pullback in the sense that we get a class in A∗−d(Y ∩Z), not just in A∗−d(Y ).

If we similarly try to put as much information as possible in the Gysin map, we
arrive at the following refined notion:
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Definition 6.1. Let i : Y ↪→ X be a regular embedding of codimension d. For any
morphism f : Z→ X , consider the Cartesian diagram

W Z

Y X

g f

i

where W =Y×X Z is the fiber product. We define the refined Gysin map as the group
homomorphism

i! : A∗(Z) −→ A∗−d(W ), [V ] 7→ X ·V

where X ·V denotes the intersection product defined in the previous section. Note
that this only depends on the rational equivalence class [V ] ∈ A∗(Z): Specialization
to the normal cone gives a commutative diagram

Z∗(Z) A∗−d(W )

Z∗(CW Z) Z∗(N)

i!

σ s∗

for the vector bundle N = g∗(NY/X ) and its zero section s : W → N, and σ descends
by corollary 4.2 to the Chow group of cycles modulo rational equivalence.

The refined Gysin pullback exists not only for regular embeddings, but for any
embedding W ↪→ Z which arises from a regular embedding via base change as
above. In the special case of the identity morphism f = id : Z = X → X the refined
Gysin morphism coincides with the naive Gysin morphism from above, i.e. i∗ = i!

in this case. However, in more general cases

i! : A∗(Z) −→ A∗−d(W )

is not determined by the embedding W ↪→ Z but usually depends on the regular
embedding i : Y ↪→ X , in fact already the dimension shift does so since in general
the two embeddings can have different codimension. The next theorem gathers some
basic properties of Gysin maps:

Theorem 6.2. Consider a diagram of two Cartesian squares

W ′ Z′

W Z

Y X

g f

iZ

h

i
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where i is a regular embedding of codimension d. Let α ∈ An(Z),α ′ ∈ An(Z′).

a) Compatibility: If iZ is also a regular embedding of the same codimension d, then
we have

i!α ′ = i!Zα
′ ∈ An−d(W ′).

b) Pushforward: If f is proper, then

i! f∗α ′ = g∗i!α ′ ∈ An−d(W ).

c) Pullback: If f is flat of relative dimension r, then

i! f ∗α = g∗i!α ∈ An+r−d(W ′).

d) Excess intersection: If iZ is a regular embedding of any codimension e, then the
normal bundle N′ = NW/Z embeds in the vector bundle N = h∗NY/X and we have
the formula

i!α ′ = cd−e(g∗(N/N′))∩ i!Zα
′ ∈ An−d−e(W ′).

Proof. For a) note that for the vanishing ideals IY ⊴OX and IW ⊴OZ we have an
epimorphism h∗(IY/I 2

Y )↠IW/I 2
W of vector bundles. By assumption these two

vector bundles have the same rank, hence the epimorphism is an isomorphism. So
we have NW/Z = h∗NY/X and the claim follows.

For b) consider the vector bundle N = h∗(NY/X ). We may assume that α ′ = [V ′]
for a subvariety V ′ ⊂ Z′. From the basic intersection formula in proposition 5.7 we
get

i![V ′] =
{

c(g∗N)∩ s(W ′∩V ′,V ′)
}

n−d .

The pushforward under g then gives

g∗i![V ′] = g∗
{

c(g∗N)∩ s(W ′∩V ′,V ′)
}

n−d

=
{

c(N)∩g∗(s(W ′∩V ′,V ′)
}

n−d by the projection formula

= deg(V ′/V ) · {c(N)∩ s(W ∩V,V )}n−d by prop. 2.13 for V = f (V ′)

= deg(V ′/V ) · i![V ] by definition of i!

= i!g∗[V ′]. by definition of g∗

The proof of c) follows by the same type of computations.

For part d) we consider the embedding g∗N′ ↪→ g∗N and the induced commutative
diagram

P′ := P(g∗N′⊕1) P := P(g∗N⊕1)

W ′
p
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where p denote the projection. Then the tautological sections of the pullback vector
bundles fit in a commutative diagram with exact rows

0 OP′ p∗(g∗N′⊕1) Q′ 0

0 OP′ p∗(g∗N⊕1) Q 0

where Q′ and Q denote the quotient bundles. It follows that we have a short exact
sequence

0 −→ Q′ −→ Q −→ p∗(g∗(N/N′)) −→ 0

and hence
cd(Q) = cd−e(p∗g∗(N/N′))∩ ce(Q′)

by the Whitney formula. Then for a class α = [V ′] and the cone C = CW ′∩V ′V ′ we
get

i![V ′] = Y ·V ′ by definition of i!

= p∗(cd(Q)∩ [P(C⊕1)] by the basic formula prop. 5.7

= p∗(cd−e(p∗g∗(N/N′))∩ ce(Q′)∩ [P(C⊕1)]) by inserting cd(Q)

= cd−e(g∗(N/N′)∩ p∗(ce(Q′)∩ [P(C⊕1)]) by the projection formula

= cd−e(g∗(N/N′))∩ i!Z [V
′] by the basic formula for i!Z

and the claim d) follows. ⊓⊔

Corollary 6.3 (Compatibility with Chern classes). Assume as above that we have
a Cartesian square

W Z

Y X

iZ

i

where i is a regular embedding of codimension d. Let E be a vector bundle on Z,
then for all α ∈ An(Z), m ∈ N we have

i!(cm(E)∩α) = cm(E|W )∩ i!α ∈ An−d−m(W ).

Proof. We proceed in three steps:

1) It is enough to find a proper morphism π : Z̃→ Z and α̃ ∈ An(Z̃) with π∗(α̃) = α

such that
i!(cm(Ẽ)∩ α̃) = cm(Ẽ|W̃ )∩ i!α̃
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for Ẽ = π∗(E) and W̃ = W ×Z Z̃. Indeed, this follows from the compatibility of
the refined Gysin maps with pushforward in theorem 6.2 and from the projection
formula for the cap product with Chern classes.

2) The claim holds if E = L is a line bundle and m = 1. Indeed, it is enough to
verify this when α = [V ] for some subvariety V ⊂ Z. By the previous step we
may replace Z by the blowup BlV∩WV . After this replacement Z will be a variety
and one of the following two cases occurs: Either W = Z, in which case the claim
follows easily from the excess intersection formula in theorem 6.2. Or W ⊂ Z is
a Cartier divisor. In the latter case put N = NW/Z ⊃ N′ = h∗NY/X as before, then
we have

i!(c1(L)∩α) = cd−1(N/N′)∩ i!Z(c1(L)∩α) by excess intersection formula

= cd−1(N/N′)∩ c1(L|W )∩ i!Zα) by Gysin for Cartier divisor

= c1(L|W )∩ cd−1(N/N′)∩ i!Zα by commutativity of ∩
= c1(L|W )∩ i!α by excess intersection formula

Note that in the second step we have used the compatibility of Chern classes with
the Gysin pullback to Cartier divisors, which we already know from the previous
chapter. This is why step 2) only works for the case of divisors.

3) The claim holds for arbitrary E and m. To see this, put F = E|W . Since the total
Chern class of a vector bundle is the inverse of the total Segre class, it will be
enough to show that i!(s j(E)∩α) = s j(F)∩ i!α for all j ∈ N0. For this we look
at the diagram

P(F) P(E)

W Z

q p

iZ

Then one computes

i!(s j(E)∩α) = i! p∗((c1(OPE(1))e+ j ∩ p∗α) by definition

= q∗i!
(
c1(OPE(1))e+ j ∩ p∗α

)
by theorem 6.2b)

= q∗
(
c1(OPF(1))e+ j ∩ i! p∗α

)
by step 2

= q∗
(
c1(OPF(1))e+ j ∩q∗i!α

)
by theorem 6.2c)

= q∗
(
c1(OPF(1))e+ j)∩ i!α by the proj. formula

= s j(F)∩ i!α by definition

and the claim follows. ⊓⊔
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The intersection product is also commutative. Since we are writing everything in
terms of refined Gysin maps, the statement requires three Cartesian squares:

Theorem 6.4 (Commutativity). Consider a diagram of Cartesian squares

W W2 Y2

W1 Z X2

Y1 X1

i2

i1

where iν are regular embeddings of codimension dν for ν = 1,2. Then for α ∈An(Z)
we have

i!1i!2α = i!2i!1α ∈ An−d1−d2(W ).

Proof. The proof goes by reduction to the case of Cartier divisors in a way similar
to the previous proof. For details we refer to Fulton, th. 6.4. ⊓⊔

Theorem 6.5 (Functoriality). Consider a diagram of Cartesian squares

W1 W2 Z

Y1 Y2 X
i1 i2

where iν are regular embeddings of codimension dν for ν = 1,2. Then for α ∈An(Z)
we have

(i2 ◦ i1)!
α = i!1i!2α ∈ An−d1−d2(W1).

Proof. We omit the proof for the sake of time; it can be found in Fulton, th. 6.5. ⊓⊔

7 The Chow ring of a smooth variety

From now on let us assume that X is a smooth variety. Then the diagonal

δ : X ↪→ X×X , p 7→ (p, p)

is a regular embedding of codimension n = dim(X): Indeed, its composite with
the projection pr : X × X → X is the identity, and since the identity is a smooth
morphism, it follows that the conormal sequence for the diagonal embedding is a
split exact sequence 0→N∨X/X×X → δ ∗Ω 1

X×X/X →Ω 1
X/k→ 0. The smoothness of X

implies that the two rightmost terms are locally free of rank 2n resp. n, hence the
conormal sheaf N∨X/X×X = I /I 2 is locally free of rank n.



7 The Chow ring of a smooth variety 103

Definition 7.1. The intersection product on the Chow groups of a smooth variety X
is defined as the composite of the Künneth map

× : A∗(X)⊗A∗(X) −→ A∗(X×X), [Y ]⊗ [Z] 7→ [Y ×Z]

with the Gysin pullback δ ∗ under the regular embedding δ as shown in the following
diagram:

A∗(X)⊗A∗(X) A∗(X)

A∗(X×X)

·

× δ ∗

Note that this uses only the ordinary Gysin pullback, not the refined one from the
previous section. If we want to intersect ‘physical’ cycles α ∈ Zn−d(X), β ∈ Zn−e(X)
with support Y = |α| and Z = |β |, we can define the intersection product in the
refined sense by

α ·β := δ
!(α×β ) ∈ An−d−e(Y ∩Z).

Note that the dimension of this cycle is by our construction of the Gysin pullback
equal to

dim(Y ×Z)− codimX×X (X) = (n−d)+(n− e)−n = n−d− e.

In particular, if we view the intersection in the refined sense, then to any irreducible
component W of Y ∩Z of the expected dimension dimW = n−d−e we may attach
a unique multiplicity

iW (α,β ) ∈ Z

as follows: Let W ′ ⊂ Y ∩Z be the union of all other irreducible components, then
since W is an irreducible component of dimension dimW = n− d− e, we have a
natural isomorphism

An−d−e(Y ∩Z) ≃ An−d−e(W ′)⊕Z · [W ],

and we define iW (α,β ) ∈ Z to be the coefficient of [W ] in α ·β . If α = [Y ], β = [Z]
are fundamental classes of subvarieties, we also denote this intersection multiplicity
by iW (Y,Z). In nice cases these multiplicities can be computed naively:

Remark 7.2. The compatibility of the refined Gysin map with flat pullback shows
that intersection multiplicities can be computed locally: In the above situation we
have

iW (Y,Z) = iW∩U (Y ∩U,Z∩U) for any open U ⊂ X with W ∩U ̸=∅.

Hence if W ⊂ Z is cut out on some open subset by a regular sequence of length d,
for instance if the local ring OZ,W is regular or more generally Cohen-Macaulay,
then by lemma 5.5 the intersection multiplicity is the length ℓ(OY∩Z,W ).
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We have defined the intersection product via the pullback under the diagonal
morphism. This construction has an important generalization that allows to define
pullbacks under arbitrary morphisms:

Definition 7.3. Let f : Y → X be a morphism from an arbitrary scheme Y to a
smooth scheme X . The graph morphism γ f : Y → X ×Y, p 7→ ( f (p), p) is a regular
embedding of codimension n = dim(X) by the same argument as for the diagonal,
and we define the cap product

Ad(X)⊗Ae(Y ) −→ Ad+e−n(Y ), x⊗ y 7→ f ∗(x)∩ y := γ
∗
f (x× y).

Again there is also a refined version of this cap product using γ !
f instead.

We have already seen above that in dealing with intersection products it is more
convenient to index cycles by their codimension rather than their dimension, hence
in what follows we write

A∗(X) :=
n⊕

d=0

Ad(X) with Ad(X) := An−d(X)

for n = dimX . The intersection product preserves the grading by codimension, i.e. it
can be written as

Ad(X)⊗Ae(X) −→ Ad+e(X), α⊗β 7→ α ·β ,

Thus A∗(X) becomes a commutative graded ring called the Chow ring of X :

Theorem 7.4. Let X be a smooth variety.

a) The group A∗(X) is a commutative graded ring with respect to the intersection
product; the unit of this ring is the fundamental class 1 = [X ] ∈ A0(X).

b) For any scheme Y with a morphism f : Y → X we have:

• The group A∗(Y ) is a module under the ring A∗(X) via

Am(X)⊗Ae(Y ) −→ Ae−m(Y ), x⊗ y 7→ f ∗(x)∩ y.

• If Y is also smooth, then for all x ∈ A∗(X) and all y1,y2 ∈ A∗(Y ) we have the
formula

( f ∗(x)∩ y1) · y2 = f ∗(x)∩ (y1 · y2),

and we get a ring homomorphism

f ∗ : A∗(X) −→ A∗(Y ), x 7→ f ∗(x)∩ [Y ].

• If f : Y → X is a proper morphism between smooth varieties, then we have the
projection formula

f∗( f ∗(x)∩ y) = x · f∗(y).
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Proof. We know from theorem 6.4 that the intersection product is commutative,
and it is clear from the definitions that intersection with the fundamental class [X ]
acts as the identity on A∗(X). The associativity of the intersection product is best
checked together with the associativity of the scalar multiplication for the module
structure in b), so let f : Y → X be any morphism to a smooth variety X . From the
commutative diagram

Y X×Y

X×Y X×X×Y

γ f

γ f id×γ f

δ×id

so by functoriality of the Gysin pullback we compute for x1,x2 ∈ A∗(X),y ∈ A∗(Y ):

f ∗(x1)∩ ( f ∗(x2)∩ y) = γ
!
f (x1× γ

!
f (x2× y))

= γ
!
f (id× γ f )

!(x1× x2× y)

= γ
!
f (δ × id)!(x1× x2× y)

= γ
!
f (δ

!(x1× x2)× y)

= f ∗(x1 · x2)∩ y

Taking Y =X and f = id gives the associativity of the intersection product on A∗(X),
which finishes the proof of a). Taking Y and f arbitrary, we get the associativity of
the scalar multiplication in the first item of b), which shows that A∗(Y ) is a module
over A∗(X). If Y is also smooth, then we also know that the horizontal arrows in the
commutative square

Y Y ×Y

X×Y X×Y ×Y

δ

γ f γ f×id

id×δ

are regular embeddings, hence

( f ∗(x)∩ y1) · y2 = δ
!(γ f × id)!(x× y1× y2) = γ

!
f (id×δ )!(x× y1× y2)

= f ∗(x)∩ (y1 · y2).

In particular f ∗(x)∩ (−) ∈ End(A∗(Y )) is determined by f ∗(x)∩ [Y ] ∈ A∗(Y ) in this
case, since the last formula shows f ∗(x) · y = ( f ∗(x)∩ [Y ]) · y. Altogether we then
obtain

( f ∗(x1)∩ [Y ]) · ( f ∗(x2)∩ [Y ]) = f ∗(x1)∩ ([Y ] · ( f ∗(x2)∩ [Y ])

= f ∗(x1)∩ ( f ∗(x2)∩ [Y ])

= f ∗(x1 · x2)∩ [Y ],
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so f ∗ : A∗(X)→ A∗(Y ) is a ring homomorphism. For the projection formula take
the Cartesian square

Y X×Y

X X×X

γ f

f id×γ f

δ

If f is proper, then the compatibility of Gysin pullbacks with proper pushforward
in theorem 6.2 shows that

f∗( f ∗(x)∩ y) = f∗γ !
f (x× y) = δ

!(id× f )∗(x× y) = δ
!(x× f∗(y)) = x · f∗(y)

for all x ∈ A∗(X),y ∈ A∗(Y ) as claimed. ⊓⊔

As we observed in the proof, for smooth varieties Y the operation f ∗(x)∩ (−) is
determined uniquely by the class f ∗(x)∩ [Y ]; in this case we also abuse notation and
write

f ∗(x) := f ∗(x)∩ [Y ] ∈ A∗(Y ).

A similar result holds for the Chern class operations:

Lemma 7.5. Let f : Y → X be a morphism of smooth varieties, and E a vector
bundle on X. Then

(c(E)∩ x) · y = c(E)∩ ( f ∗(x) · y) for all x ∈ A∗(X), y ∈ A∗(Y ).

Proof. Let p : X ×Y → Y be the projection. Then the definitions easily imply the
formula

(c(E)∩ x)× y = c(p∗(E))∩ (x× y) ∈ A∗(X×Y ).

From this we compute

(c(E)∩ x) · y = δ
!((c(E)∩ x)× y)

= δ
!(c(p∗(E))∩ (x× y))

= c(δ ∗(p∗(E)))∩δ
!(x× y)

= c(E)∩ (x · y),

where the third step uses the compatibility of Chern classes with Gysin pullack. ⊓⊔

Applying the above to the identity f = id : Y = X → X and the fundamental
class x = [X ], we see that on any smooth varieties the Chern class operations are
determined by their values on the fundamental class. Again by abuse of notation we
simply write

c(E) := c(E)∩ [X ] ∈ A∗(X)

in this case. One can summarize the above by saying that on smooth varieties, all
notions of intersection product and pullback that we defined are compatible with
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each other, and all intersection operations that we defined are determined by their
values on the fundamental class. Now finally all the foundations are settled, and in
the next chapters we will consider some applications.

Before doing so, let us look at a few simple examples. The following computation
gives another characterization of Chern classes:

Lemma 7.6 (Projective bundles). Let E be a vector bundle of rank r + 1 on a
smooth variety. Then the Chow ring of the associated projective bundle is given
as an A∗(X)-algebra by

A∗(P(E)) ≃ A∗(X)[t]/( f (t))

where f (t) = tr+1 + c1tr + · · ·+ cr+1 for the Chern classes ci = ci(E).

Proof. Let ζ = c1(OP(E)(1)). The ring homomorphism f ∗ : A∗(X) → A∗(P(E))
gives rise to a homomorphism of A∗(X)-algebras

ϕ : A∗(X)[t] ↠ A∗(P(E)), t 7→ ζ .

In the discussion of Chow groups of projective bundles in the previous chapter we
have seen that as an additive group

A∗(P(E)) ≃
r⊕

i=0

A∗(X) ·ζ i

On the other hand, for the pullback of the vector bundle under p : P(E)→ X we
have the tautological sequence 0→ OP(E)(−1)→ p∗(E)→ Q→ 0, hence by the
Whitney formula

c(Q) = c(p∗(E))/(1−ζ ) = c(p∗(E)) · (1+ζ +ζ
2 + · · ·).

Since Q has rank r, it follows that

0 = cr+1(Q) = ζ
r+1 + c1(p∗(E))ζ r + · · ·+ cr+1(E).

Hence f (t) = tr+1 + c1tr + · · ·+ cr+1 ∈ ker(ϕ). Given the above decomposition of
the total Chow group as a direct sum, there can be no further relations, hence the
algebra homomorphism ϕ induces an isomorphism A∗(P(E))≃ A∗(X)[t]/ f (t). ⊓⊔

Example 7.7 (Hirzebruch surfaces). For n ∈ Z, let f : Σn→ P1 denote the fibered
surface obtained by the following glueing with respect to the standard open affine
cover P1 =U0∪U∞:

f−1(U0) := U0×P1 ⊃ Gm×P1 ∼−→ Gm×P1 ⊂ U∞×P1 =: f−1(U∞)

(t, [x : y]) 7→ (t−1, [x : tny])
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Such surfaces are known as Hirzebruch surfaces. They can be written as projective
bundles

Σn ≃ P(En) −→ P1 for the vector bundle En := OP1 ⊕OP1(n).

By the Whitney formula c2(En) = 0 and c1(En) = n ·η for the class η = c1(OP1(1)),
so from the previous example we get an explicit presentation of the Chow ring as
the quotient

A∗(Σn) ≃ A∗(X)[t]/(t2 +nηt) ≃ Z[s, t]/(s2, t2 +nst)

where the second isomorphism comes from A∗(P1)≃Z[s]/s2. Note that the additive
groups

A0(Σn) ≃ Z
A1(Σn) ≃ Z⊕Z
A2(Σn) ≃ Z

do not depend on n, but the intersection pairing on A1(Σn) = Zη⊕Zζ does:

· η ζ

η 0 1
ζ 1 −n

Proposition 7.8 (Chow ring of a blowup). Let Y ↪→ X be a regular embedding of
codimension d between smooth varieties. Consider the blowup f : X̃ = BlY (X)→ X
with exceptional divisor E = f−1(Y ) as shown below:

E X̃

Y X

iE

fE f

i

Then X̃ is again a smooth variety. Moreover, every element of the Chow ring A∗(X̃)
has the form

f ∗(x)+ iE∗(e) for some x ∈ A∗(X) and e ∈ A∗(E),

and the intersection product is given as follows for x,x′ ∈ A∗(X), e,e′ ∈ A∗(E):

f ∗(x) · f ∗(x′) = f ∗(x · x′),

f ∗(x) · iE∗(e) = iE∗(e · p∗i∗x),

iE∗(e) · iE∗(e′) = −i∗(e · e′ ·ζ ),

where we have put ζ = c1(OP(NY/X )
(1)) using the identification E = P(NY/X ).
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Proof. To see that every element of A∗(X̃) has the given form, we consider the
localization sequence

A∗(E) A∗(X̃) A∗(X̃ \E) 0

A∗(X) A∗(X \Y )

iE∗ j∗E

f ∗

j∗

The diagram shows that for any x̃∈A∗(X̃) we have x̃− f ∗ f∗(x̃)∈ ker( j∗E) = im(iE∗),
hence x̃ = f ∗ f∗(x̃)+ iE∗(e) for some e ∈ A∗(E) as claimed.

The first formula f ∗(x) · f ∗(x′) = f ∗(x · x′) is clear since f ∗ : A∗(X)→ A∗(X̃) is
a ring homomorphism. For the second formula one computes

f ∗(x) · iE∗(e) = iE∗(e · i∗E f ∗(x)) = iE∗(e · p∗i∗(x))

by the projection formula and functoriality of pullback. For the last formula note
that c1(NE/X̃ ) =−ζ and hence i∗E iE∗(e) =−e ·ζ , which gives

iE∗(e) · iE∗(e′) = iE∗(i∗E iE∗(e) · e′) = −iE∗(e · e′ ·ζ )

again by the projection formula. ⊓⊔

One can also describe all relations between f ∗(A∗(X)) and iE∗(A∗(E)) in the
above presentation of the Chow ring of the blowup, they all arise from the Chow
ring A∗(Y ); see Fulton, sect. 6.7. In favorable cases it is easier to check for relations
by hand, using the intersection pairing:

Example 7.9. Let S be a smooth surface and Y = {p1, . . . , pr} ⊂ S a finite set of
closed points. Then for the blowup f : S̃ =BlY (S)→ S and the divisors Ei = f−1(pi)
we get

A1(S̃) = A1(S)⊕
r⊕

i=1

Z[Ei]

where the directness of the sum on the right hand side follows from the explicit form
of the intersection pairing:

• [Ei] · [E j] = 0 for i ̸= j,

• [Ei] · [Ei] =−[qi] for any point qi ∈ Ei,

• f ∗[D] · [Ei] = 0 for all D ∈ A1(S),

• f ∗[D] · f ∗[D′] = f ∗[D ·D′] for all D,D′ ∈ A1(S).





Chapter IV
The Grothendieck-Riemann-Roch theorem

1 Motivation: Why the Todd class?

The Riemann-Roch theorem says that for any line bundle L ∈ Pic(C) on a smooth
projective curve C of genus g, we have

dimH0(C,L )−dimH1(C,L ) = deg(L )+1−g.

Note that the right hand side can be written in terms of Chern classes. It easily
generalizes to vector bundles of higher rank:

Lemma 1.1. For any vector bundle E on a smooth projective curve C we have the
formula

dimH0(C,E )−dimH1(C,E ) =
∫

C

(
c1(E )+ rk(E ) · c1(TC)

2

)
.

Proof. Both sides are additive for extensions of vector bundles. Since for n≫ 0 the
vector bundle E (n) has a global section, the vector bundle E has a line subbundle of
the form OC(−n). Let L ⊂ E be the saturation of this subbundle, i.e. the preimage
of the maximal torsion subsheaf of the quotient E /OC(−n). Then F = E /L is a
torsion-free sheaf on a smooth curve, hence locally free. So we have a short exact
sequence of vector bundles 0 → L → E → F → 0 and the claim follows by
induction on the rank. ⊓⊔

More generally, we will see that for any smooth projective variety X one can
express the Euler characteristic

χ(X ,E ) = ∑
i≥0

(−1)i dimH i(X ,E )

of a locally free sheaf E by a universal formula in terms of the Chern classes of E
and of the tangent bundle to the variety. Let us see how to guess the shape of such

111
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a formula. First, we know that the Euler characteristic of coherent sheaves has the
following properties:

a) Additivity: For any E ,F ∈Coh(X) we have χ(X ,E ⊕F )= χ(X ,E )+χ(X ,F ).

b) Multiplicativity: For any E ∈ Coh(X),F ∈ Coh(Y ) we have

χ(X×Y,E ⊠F ) = χ(X ,E ) ·χ(Y,F ) for E ⊠F := pr∗1(E )⊗pr∗2(F ).

We have already seen one expression in Chern classes of vector bundles E that has
these two properties: The Chern character, which is given in terms of the Chern
roots α1, . . . ,αr by

ch(E ) =
r

∑
i=1

exp(αi) ∈ A∗(X).

However, this is not quite what we want. Looking at the case of curves, we make
the ansatz

χ(X ,E )
?
=
∫

X
ch(E ) · td(TX )

where td(TX ) should be some universal power series in the Chern classes of the
tangent bundle. With this ansatz the additivity property follows directly from the
additivity of the Chern character. For the multiplicativity, notice that the tangent
bundle of a product is given by a direct sum

TX×Y = pr∗1(TX )⊕pr∗1(TY ),

not a tensor product. Hence if we assume that the Todd class is defined as a power
series on the Chern classes of arbitrary vector bundles, the desired multiplicativity
would hold if

td(E ⊕F )
?
= td(E ) · td(F ).

Finally, we need some normalization: The trivial bundle has no higher Chern classes,
so in this case the Todd class should be a scalar. Looking at the Riemann-Roch
theorem in the case of elliptic curves where the tangent bundle is trivial, we want to
take td(OX ) = 1. If we moreover want that the Riemann-Roch formula holds for the
tautological sheaf on projective space, we have no more choice:

Proposition 1.2. There exists a unique power series F ∈Q[[x1,x2, . . . ]] in infinitely
many variables such that for all vector bundles E on smooth projective varieties X
the classes td(E ) = F(c1(E ),c2(E ), . . .) ∈ A∗(X)⊗Q satisfy

a) td(E ⊕F ) = td(E ) · td(F ),
b) td(OX ) = 1, and
c) χ(Pn,OPn) =

∫
Pn ch(OPn) · td(TPn) for all n ∈ N.

Explicitly we have

td(E ) =
r

∏
i=1

αi

1− exp(−αi)
for the Chern roots α1, . . . ,αr of E .
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Proof. If there exists a power series F with the above properties, then by the splitting
principle and by a) we have

td(E ) =
r

∏
i=1

f (αi) for the power series f (t) = F(t,0,0, . . .) ∈ Q[[t]].

Hence for the uniqueness we only need to determine the power series f (t). From
the decomposition TPn ⊕OPn ≃ (OPn(1))⊕n+1 together with the properties a), b)
we get that

td(TPn) = td(OPn(1))n+1 = ( f (ζ ))n+1 for the class ζ = c1(OPn(1)).

Now by c) for a = 0, with ch(OPn) = 1, we have

1 = χ(Pn,OPn) =
∫
Pn

ch(OPn) · td(TPn) =
∫

X
( f (ζ ))n+1.

Thus we see that the power series f (t) ∈ Q[[t]] must satisfy the condition that the
coefficient of tn in ( f (t))n+1 is equal to one for all natural numbers n ∈N. We write
this as

{ f (t)n+1}n = 1 for all n.

Now there is a convenient way to recover a power series f (t) ∈Q[[t]] with f (0) ̸= 0
from the coefficients of tn−1 in f (t)n which is known as Lagrange inversion. It goes
as follows:

• Consider the power series g(t) = t/ f (t) ∈Q[[t]].

• Since g′(0) ̸= 0, there exists a power series h(s) ∈Q[[s]] with t = h(g(t)).

• Write this inverse as a power series h(s) = a1s+a2s2 + · · · , then for every n the
desired coefficient is the residue

{( f (t))n}n−1 = Res
( f (t))n

tn dt

= Res
1

(g(t))n dt

= Res
h′(s)

sn ds

= n ·an

where in the third equality we have used the relation dt = h′(s)ds of differentials
coming from the substitution t = h(s). Starting from the coefficients {( f (t))n}n−1
we find by the above the coefficients an, hence the power series h(s) and therefore
the formal inverse g(t) with respect to the composition of power series. From this
we recover the desired power series f (t) = t/g(t).
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In our case our assumption on the coefficients says 1 = {( f (t))n}n−1 = n ·an, so
we get an = 1/n for all n. Then

h(s) = ∑
n≥1

1
n

sn = − log(1− s),

is the logarithm series, whose formal inverse is the series g(t) = 1− exp(−t). Thus
we find that

f (t) =
t

1− exp(−t)
,

which proves the uniqueness and the desired formula. Conversely, one easily verifies
that the class td(E ) defined by this formula has all the mentioned properties. ⊓⊔

Let us write out the first terms of the Todd class more explicitly. The power series
in the proposition is given by

f (t) =
t

1− exp(−t)
= 1+ 1

2 t +∑
i≥1

(−1)i−1 B2i
(2i)! · t

2i = 1+ 1
2 t + 1

12 t2− 1
720 t4 + · · ·

where B2i ∈ Q are the Bernoulli numbers. For E with Chern roots α1, . . . ,αr one
then computes

td(E ) =
r

∏
i=1

f (αi) = 1+
c1

2
+

c2
1 + c2

12
+

c1c2

24
+ · · ·

where the Chern classes ci = ci(E ) are the elementary symmetric polynomials in
the Chern roots. We can also express the Todd class in terms of Chern classes of
wedge powers as follows:

Lemma 1.3. For any vector bundle E of rank r we have

r

∑
i=0

(−1)i ch(∧iE ∨) = cr(E ) · td(E )−1.

Proof. Let α1, . . . ,αr be the Chern roots of E . Then cr(E ) = α1 · · ·αr while the
Chern roots of the exterior powers ∧iE ∨ are the sums of the form −αν1 −·· ·−ανi

with 1≤ ν1 < · · ·< νi ≤ r. Now use

r

∑
i=0

∑
ν∈Ii

(−1)ie−αν1−···−ανi =
r

∏
i=1

(1− e−αi)

= α1 · · ·αr ·
r

∏
i=1

1− e−αi

αi

where Ii denotes the set of tuples ν = (ν1, . . . ,νi) with 1≤ ν1 < · · ·< νi ≤ n. ⊓⊔
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For the Hirzebruch-Riemann-Roch theorem we also need the Chern character. In
terms of the Chern roots it is given by

ch(E ) =
r

∑
i=1

exp(αi) = ∑
n≥0

pn

n!
for the power sums pn = α

n
1 + · · ·+α

n
r .

In the theory of symmetric functions one learns that the power sum functions can
be expressed as a certain determinant in the elementary symmetric polynomials. In
concrete terms

pn = det


c1 1 0 · · ·
2c2 c1 1 0 · · ·
3c3 c2 c1 1 · · ·

...
...

. . . . . .
ncn cn−1 · · · c1


which gives

ch(E ) = r+ c1 +
c2

1−2c2

2
+

c3
1−3c1c2 +3c3

6
+ · · ·

We will soon prove that for all vector bundles on smooth projective varieties the
Hirzebruch-Riemann-Roch theorem χ(X ,E ) =

∫
X ch(E )td(X) holds. Let us see

how this generalizes what we already know:

Example 1.4. For any vector bundle E of rank r on a smooth projective variety X
we have

ch(E ) · td(TX ) =

=

(
r+ c1(E )+

c2
1(E )−2c2(E )

2
+ · · ·

)(
1+

c1(X)

2
+

c2
1(X)+ c2(X)

12
+ · · ·

)
Let us take a look at low dimensions:

a) For dimX = 1 the HRR theorem predicts

χ(X ,E ) =
∫

X

(
c1(E )+ r · c1(X)

2

)
which is precisely the classical Riemann-Roch formula.

b) For dimX = 2 the HRR theorem predicts

χ(X ,E ) =
∫

X

(
c2

1(E )−2c2(E )

2
+

c1(E )c1(X)

2
+ r · c

2
1(X)+ c2(X)

12

)
For E = OX this gives Noether’s formula

χ(X ,OX ) =
c2

1(X)+ c2(X)

12
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from the theory of algebraic surfaces. More generally, if E = OX (D) is a line
bundle given by a Cartier divisor D ∈ Div(X) and if we denote by KX = c1(ωX )
the first Chern class of the canonical line bundle on the smooth surface X , then
we get

χ(X ,OX (D)) =
D · (D−K)

2
+χ(X ,OX ),

the Riemann-Roch formula for line bundles on smooth projective surfaces.

2 Some remarks about Grothendieck groups

We have seen some time ago that the Chern character of vector bundles is additive
in short exact sequences, and the same holds for the Euler characteristic of coherent
sheaves. In general, the study of such additive functionals on an abelian category
leads to the following definition:

Definition 2.1. By the Grothendieck group K(A ) of an abelian category A we
mean the quotient of the free abelian group generated by isomorphism classes [E]
of objects E ∈A modulo the relations

[E] = [E ′]+ [E ′′] for each exact sequence 0→ E ′→ E→ E ′′→ 0 in A .

For a scheme X , let VB(X) resp. Coh(X) be the abelian category of vector bundles
resp. coherent sheaves on the scheme. We denote their Grothendieck groups by

K◦(X) := K(VB(X)) and K◦(X) := K(Coh(X)).

They behave in a way similar to cohomology resp. Borel-Moore homology:

Remark 2.2. For any scheme X we have:

a) K◦(X) is a ring with respect to the product

K◦(X)×K◦(X) −→ K◦(X), [E] · [F ] := [E⊗F ].

Note that this is well-defined because on vector bundles the tensor product is
exact in both variables. Moreover, for any morphism f : Y → X we get a ring
homomorphism

f ∗ : K◦(X) −→ f ∗(Y ), [E] 7→ [ f ∗(E)],

since the pullback of coherent sheaves is an exact functor on vector bundles.

b) K◦(X) is a module under the ring K◦(X), with the scalar multiplication defined
by

K◦(X)×K◦(X) −→ K◦(X), [E]× [F ] := [E⊗F ],
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since the tensor product of vector bundles with coherent sheaves is exact in both
variables. Moreover, for any proper morphism f : Y → X we have a group homo-
morphism

f∗ : K◦(Y ) −→ K◦(X), [E] 7→ ∑
i≥0

(−1)i [Ri f∗(E)].

and the projection formula holds:

f∗( f ∗(α) ·β ) = α · f∗(β ) for all α ∈ K◦(X), β ∈ K◦(Y ).

At this point one may wonder whether we really need to care about the distinction
between K◦(X) and K◦(X). The forgetful functor VB(X)→ Coh(X) is exact and
hence induces a homomorphism

K◦(X) −→ K◦(X)

called the duality map by analogy with Poincaré duality. If X is singular, then this
duality map is not an isomorphism:

Remark 2.3. A local ring A with maximal ideal m is regular iff A/mA admits a finite
resolution by free A-modules. Hence if X is a variety with a singular point p ∈ X ,
then the structure sheaf of the singular point is a coherent sheaf

E = OX/mX ,p ∈ Coh(OX )

which does not admit a finite resolution by locally free OX -modules. From this one
can deduce that [E ]∈K◦(X) is not in the image of the duality map K◦(X)→K◦(X),
i.e. for singular varieties the duality map cannot be surjective. Examples show that
in general it is also not injective. For smooth varieties the situation is better:

Lemma 2.4. For any smooth quasiprojective variety X the map K◦(X)→ K◦(X) is
an isomorphism.

Proof. The quasiprojectivity ensures that every coherent sheaf has a resolution by
locally free sheaves, and the smoothness then implies that it even has a finite such
resolution. Now one checks that the map sending the class of a coherent sheaf to the
alternating sum of the terms in any finite locally free resolution is well-defined as a
map K◦(X)→ K◦(X) and gives an inverse to the duality map. ⊓⊔

For the rest of this chapter, we will only deal with smooth varieties X and denote
their Grothendieck ring simply by K(X) := K◦(X)≃ K◦(X).

Example 2.5. The Grothendieck ring K(Pn) is generated by the classes [OPn(i)]
with i∈Z. Indeed, it follows from the graded version of the Hilbert syzygy theorem
that every coherent sheaf on projective space has a finite resolution by direct sums
of line bundles OPn(i) for various i ∈ Z.
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3 The Grothendieck-Riemann-Roch theorem

Let X be a smooth projective variety. Since the Chern character of vector bundles is
additive for short exact sequences and multiplicative for tensor products, it induces
a well-defined ring homomorphism

ch: K(X) −→ A∗(X)Q, [E] 7→ ch(E)

from the Grothendieck ring to the Chow ring A∗(X)Q = A∗(X)⊗Q with rational
coefficients. We have already seen that in order to compute the Euler characteristic
of coherent sheaves, we should multiply the Chern character by the Todd class of
the variety. So consider the additive group homomorphisms

τX : K(X) −→ A∗(X)Q, τ(E) := ch(E) · td(X)

and
χ : K(X) −→ Z, [E] 7→ χ(X ,E) = ∑

i≥0
(−1)i dimH i(X ,E).

We want to show that the diagram

K(X) Z

A∗(X)Q Q

χ

τX ∫
X

commutes. For projective space this is a simple computation:

Proposition 3.1. We have

χ(E) =
∫
Pn

ch(E) · td(Pn) for all E ∈ K(Pn).

Proof. Since K(Pn) is generated by classes of line bundles OPn(m) with m ∈ Z, it
is enough to check the formula when E is such a line bundle. In this case the Chern
character is

ch(OPn(m)) = exp(mζ )

where ζ = c1(OPn(1)), and the Todd class is

td(Pn) = td
(
(OPn(1))n+1)

= td(OPn(1))n+1

=

(
ζ

1− exp(−ζ )

)n+1
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where the first equality uses the Euler sequence. Now one computes∫
Pn

ch(O(m)) · td(Pn) =

{
emζ · ζ n+1

(1− e−ζ ))n+1

}
ζ n

=

{
emx · xn+1

(1− e−x)n+1

}
xn

= Resx=0
emx

(1− e−x)n+1 dx

= Resy=0
(1− y)−(m+1)

yn+1 dy

= (−1)n ·
(−(m+1)

n

)
=
(m+n

n

)
= χ(Pn,OPn(m)).

where in the fourth step we used the substitution y = 1− e−x so that dy = exdx. ⊓⊔

The case of arbitrary smooth projective varieties X can be reduced to the above
case as follows. Let i : X ↪→ Pn be an embedding in projective space, and consider
the diagram

K(X) K(Pn) Z

A∗(X)Q A∗(Pn)Q Q

i∗

τX τPn

χ

i∗
∫
Pn

The commutativity of the right hand square is what we checked above. Hence the
Hirzebruch-Riemann-Roch theorem will follow if we can show that the left hand
square also commutes. This is a special case of the following much more general
result, which can be seen as a relative version of the Hirzebruch-Riemann-Roch
theorem:

Theorem 3.2 (Grothendieck-Riemann-Roch). Let f : X → Y be any projective
morphism between smooth quasiprojective varieties. Then the following diagram
commutes:

K(X) K(Y )

A∗(X)Q A∗(Y )Q

f∗

τX τY

f∗

Proof. Step 1. We first discuss the special case where f : X ↪→ Y is the embedding
of the zero section in the projective completion of a vector bundle. More precisely,
suppowe that there is a vector bundle N of rank d on X such that Y = P(N ⊕ 1)
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and we have the following commutative diagram where the middle row is the zero
section X ↪→ N followed by the projective completion N ↪→ P(N⊕1):

Y

X N P(N⊕1)

X

f

id

p

We first express ch( f∗E) in terms of tautological bundles: Let S⊂ p∗(N⊕1) denote
the tautological line subbundle and Q = p∗(N⊕ 1)/S the tautological quotient of
rank d. Note that this quotient bundle comes with a natural section σ defined by the
following diagram:

OY Q

p∗(0⊕1) p∗(N⊕1)

σ

By construction the zero locus of this section is V (σ) = X ↪→Y . Since the vanishing
locus of any global setion of a vector bundle represents the top Chern class of the
vector bundle, we get

cd(Q) = [X ] ∈ A∗(Y ).

Now consider the Koszul resolution

0 → ∧dQ∨ → ··· → ∧2Q∨ → Q∨ → OY → f∗OX → 0

for the structure sheaf on the closed subscheme f : X ↪→Y . The arrows in this Koszul
resolution are induced by s∨ : Q∨ → OY , and a local computation shows that this
Koszul resolution is an exact sequence. The multiplicativity of the Chern character
then gives

ch( f∗OX ) =
d

∑
i=0

(−1)i ch(∧iQ∨) by the Koszul resolution

= cd(Q) · td(Q)−1 by the Todd class formula in lemma 1.3

= [X ]∩ td(Q)−1 since cd(Q) = [X ] by the above.

With this formula for the Chern character ch( f∗OX ), we can now easily compute
ch( f∗E) for any vector bundle E on X as follows: We know from the projection
formula that

f∗E ≃ f∗( f ∗p∗E) ≃ f∗(OX )⊗E

because p◦ f = id. Hence
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ch( f∗(E)) = ch( f∗(OX )) · ch(p∗(E)) by multiplicativity of ch(−)

= [X ]∩ (td(Q)−1 · ch(p∗E)) by the above formula for ch( f∗OX )

= f∗ f ∗(td(Q)−1 · ch(p∗E)) by the projection formula

= f∗(td( f ∗Q)−1 · ch( f ∗p∗E)) by naturality of td and ch

= f∗(td(N)−1 · ch(E)) since f ∗Q≃ N and p◦ f = id

= f∗( f ∗(td(Y ))−1 · td(X) · ch(E)) since N ≃ f ∗(TY )/TX

= td(Y )−1 · f∗(td(X) · ch(E)) by the projection formula

This proves the Grothendieck-Riemann-Roch theorem for the embedding of the zero
section in the projective completion of a vector bundle.

Step 2. Next we prove the theorem in the case when f : X ↪→ Y is an arbitrary
closed immersion (by the discussion preceding the theorem, this will in particu-
lar imply the Hirzebruch-Riemann-Roch formula χ(X ,E) =

∫
X ch(E) · td(X)). The

idea is to reduce the statement to the previous case, using the deformation to the
normal cone. Let N = NX/Y be the normal bundle. Like in the construction of the
deformation to the normal cone, consider the commutative diagram

X P(N⊕1)∪ Ỹ M∞ {∞}

X×P1 BlX×{∞}(Y ×P1) M P1

X Y M0 {0}

g∞

i∞ I∞

g

p i0

g0= f

I0

Given a vector bundle E on X , consider its pullback Ẽ = p∗(E) on X ×P1 and pick
a finite locally free resolution of the coherent sheaf obtained by pushforward of Ẽ
to M, i.e. an exact sequence

0 → Gn → Gn−1 → ··· → G0 → g∗(Ẽ) → 0

where all Gi are locally free sheaves on M. Since X ×P1 and M are flat over P1,
the above exact sequence remains exact shen restricted to the fibers M0 and M∞.
Restricting to M0 we get a resolution

0 → Gn|M0 → Gn−1|M0 → ··· → G0|M0 → f∗(E) → 0.

With the shorthand notation ch(H∗) = ∑i∈Z(−1)ich(Hi) for finite complexes H∗ of
locally free sheaves, we then compute
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I0∗(ch( f∗E)) = I0∗(ch(G∗|M0)) by the previous resolution

= ch(G∗) · [M0] by the projection formula

= ch(G∗) · [M∞] since [M∞] = [M0] in A∗(M)

= ch(G∗) ·
(
[P(N⊕1)]+ [Ỹ ]

)
since M∞ = P(N⊕1)∪ Ỹ

= a∗(ch(G∗|P(N⊕1)))+b∗(ch(G∗|Ỹ )) for a = I∞|P(N⊕1), b = I∞|Ỹ .

By our earlier flatness observation we know that G∗|M∞
is a resolution of Ẽ|M∞

,
hence for the two terms on the right hand side of the previous chain of equalities we
obtain:

• G∗|P(N⊕1) is a resolution of g∞∗(E), hence ch(G∗|P(N⊕1)) = ch(g∞∗(E)),

• G∗|Ỹ is a resolution of g∞∗(E)|Ỹ = 0, hence ch(G∗|Ỹ ) = 0.

It follows that

I0∗(ch( f∗E)) = a∗(ch(g∞∗(E))

= a∗g∞∗(td(N)−1ch(E))

where the last equality applies step 1 for the embedding g∞ : X ↪→ P(N⊕1), noting
that td(N) = td(P(N⊕1))|X · td(X)−1. Taking the pushforward of the last displayed
identity under

q : M = BlX×{∞}(Y ×P1) → Y ×P1 → Y

with q◦ I0 = idY and q◦a◦g∞ = g0 = f , we get ch( f∗E) = f∗(td(N)−1 ·ch(E)) and
the claim follows via the projection formula as in step 1.

Step 3. To prove the Grothendieck-Riemann-Roch theorem for f : X → Y an
arbitrary projective morphism of smooth quasi-projective varieties, we write the
morphism as the composite

X ↪→ Y ×Pn −→ Y

of a closed immersion in a relative projective space and the projection. The case
of a closed immersion has been treated in the previous step, so it only remains to
deal with the case when f : X = Y ×Pn→ Y is a projection. In this case we have a
commutative diagram

K(Y )⊗K(Pn) K(Y ×Pn)

A∗(Y )Q⊗A∗(Pn)Q A∗(Y ×Pn)Q

×

τY⊗τPn τY×Pn

×
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where the surjectivity of the Künneth map on Grothendieck rings in the top row can
be shown in a similar way to the one on Chow rings, using that one of the factors
is a projective space. This reduces us to the case where Y = Spec(k) and X = Pn

which has been treated in proposition 3.1. ⊓⊔

Corollary 3.3 (Hirzebruch-Riemann-Roch). Let X be a smooth projective variety,
then

χ(X ,E) =
∫

X
ch(E) · td(X) for all E ∈ K(X).

Proof. Apply Grothendieck-Riemann-Roch to f : X → Y = Spec(k). Note that for
this we only need the first two steps of the above proof. ⊓⊔

4 Example: How to compute Hodge numbers

Recall that the cohomology of any smooth complex projective variety X admits the
Hodge decomposition

H i(X(C),C) ≃
⊕

p+q=i

Hq(X(C),Ω p
X ).

Assuming this, the Hirzebruch-Riemann-Roch formula gives a very simple proof of
the Gauss-Bonnet formula:

Theorem 4.1 (Gauss-Bonnet). Let X be smooth projective of dimension d over C,
then

χtop(X(C)) =
∫

X
cd(X).

Proof. We have

χtop(X) = ∑
i≥0

(−1)i dimH i(X(C),C) by definition of χtop(X)

= ∑
p,q≥0

(−1)p+q dimHq(X ,Ω p
X ) by the Hodge decomposition

= ∑
p≥0

(−1)p
χ(X ,Ω p

X ) by definition of χ(X ,−)

=
∫

X
∑
p≥0

(−1)p ch(Ω p
X ) · td(X) by Hirzebruch-Riemann-Roch

=
∫

X
cd(TX ) · td(X)−1 · td(X) by lemma 1.3 for E = TX

and hence the claim follows. ⊓⊔
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To study the individual Euler characteristics χ(X ,Ω p
X ) it is convenient to consider

the polynomial
χy(X) := ∑

p≥0
χ(X ,Ω p

X ) · y
p ∈ Z[y],

sometimes called the Hirzebruch genus. This polynomial unifies various invariants
related to the Hodge numbers hp,q(X) = dimHq(X ,Ω p

X ):

• For y = 0 we get χ0(X) = χ(X ,OX ).

• For y = −1 we get χ−1(X) = ∑p,q(−1)p+qhp,q(X). The Hodge decomposition
shows that this coincides with the topological Euler characteristic.

• For y = +1 we get χ+1(X) = ∑p,q(−1)qhp,q(X). If d = dimX is even, then this
number is by the Hodge index theorem equal to the signature of the intersection
form on the middle cohomology Hd(X(C),R).

As an example, let us now compute the Hirzebruch genus for smooth projective
hypersurfaces. The result does not depend on the specific choice of the hypersurface
but only on its degree and dimension. The formula is best stated as a generating
series over all dimensions:

Theorem 4.2. Fix a ∈ N, and for n ∈ N denote by Zn ⊂ Pn any smooth degree a
hypersurface. Then we have

∑
n≥0

χy(Zn) · zn =
1

(1− z)(1+ yz)
· (1+ yz)a− (1− z)a

(1+ yz)a + y(1− z)a .

Proof. Let ζ = c1(OPn(1))|Zn . From the sequence 0→ TZ→ TPn |Zn →OPn(d)|Zn →
0 we get

td(Zn) = td(Pn)|Zn · td(OPn(d)|Zn)
−1

= td(OPn(1)|Zn)
n+1 · td(OPn(d)|Zn)

−1

=

(
ζ

1− e−ζ

)n+1

·
(

aζ

1− e−aζ

)−1

For the Chern character we need some more notation: For any vector bundle E on X
consider the polynomial

chy(E) := ∑
p≥0

ch(∧pE) · yp ∈ A∗(X)[y].

One easily sees from the Whitney formula that these polynomials are multiplicative
in the sense that

chy(E) = chy(E ′) · chy(E ′′)
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for any short exact sequence of vector bundles 0→ E ′→ E → E ′′→ 0. This being
said, we can compute the polynomial chy(Ω

1
Zn
) by looking at the two short exact

sequences

0→OPn(−a)|Zn→Ω
1
Pn |Zn→Ω

1
Zn→ 0 and 0→Ω

1
Pn→OPn(−1)n+1→OPn→ 0

to get:

chy(Ω
1
Zn) = chy(Ω

1
Pn)|Zn · chy(OPn(−a)|Zn)

−1

=
chy(OPn(−1)n+1)

chy(OPn)

∣∣
Zn
· chy(OPn(−a)|Zn)

−1

=
(1+ ye−ζ )n+1

1+ y
· (1+ ye−aζ )−1

By Hirzebruch-Riemann-Roch then

χy(Zn) = ∑
p≥0

χ(Zn,Ω
p
Zn
) · yp

=
∫

Zn

chy(Zn) · td(Zn)

=
∫

Zn

(
(1+ ye−ζ )n+1

1+ y
· 1

1+ ye−aζ
·
(

ζ

1− e−ζ

)n+1

· 1− e−aζ

aζ

)

=

[
(1+ ye−w)n+1

1+ y
· 1

1+ ye−aw ·
(

w
1− e−w

)n+1

· 1− e−aw

aw

]
wn

= Resw=0

(
(1+ ye−w)n+1

1+ y
· 1

1+ ye−aw ·
(

1
1− e−w

)n+1

· 1− e−aw

aw
·dw

)

To simplify the residue on the right hand side, we introduce a new variable z by
substituting e−w = (1− z)/(1+ yz), which after a short computation leads to the
identities

dw
1+ y

=
dz

(1− z)(1+ yz)
and

1+ ye−w

1− e−w = · · · = 1
z
.

Substituting these expressions, we can rewrite the above formula in a simpler way
as

χy(Zn) = Resz=0
1

zn+1 ·
(

1
(1− z)(1+ yz)

· (1+ yz)a− (1− z)a

(1+ yz)a + y(1− z)a

)
which is the coefficient of zn of the term in brackets. Hence the claim follows. ⊓⊔
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As the above illustrates, the Euler characteristics of sheaves of differential forms
are very easily computed using the Hirzebruch-Riemann-Roch theorem. In nice
cases we can then even compute the Hodge numbers:

Remark 4.3. Let Y be a smooth complex projective variety and X ⊂ Y an effective
ample divisor. Then the Lefschetz hyperplane theorem says that on cohomology the
restriction homomorphism

H i(Y (C),Z) −→ H i(X(C),Z) is

bijective for i < dimY ,

injective for i = dimY .

If Y and X are both smooth, then the restriction map is compatible with the Hodge
decompositions and hence

hp,q(X) = hp,q(Y ) for p+q < dimY.

By Serre duality the Hodge numbers of X are then determined by those of Y except
in the middle degree, and the Hodge numbers in the middle degree can be computed
from the other Hodge numbers and from the Euler characteristics χ(X ,Ω p

X ) via the
formula

hp,q(X) = (−1)q ·

(
χ(X ,Ω p

X ) − 2
n−p−1

∑
i=0

(−1)i hp,i(X)

)
.

Example 4.4. If Y = Pn is a projective space, we know that for 0 ≤ p,q ≤ n the
Hodge numbers are

hp,q(Pn) = δpq =

{
1 if p = q,
0 otherwise.

If X ⊂ Pn is a smooth hypersurface, it follows that for 0 ≤ p,q ≤ n− 1 the Hodge
numbers are

hp,q(X) =

δpq if p+q ̸= n−1,

(−1)q χ(X ,Ω p
X ) + (−1)n + δpq if p+q = n−1.

Here χ(X ,Ω p
X ) can be computed via the previous theorem. For instance, to compute

the Hodge numbers of cubic hypersurfaces Zn ⊂ Pn we take a = 3 in the previous
theorem, which gives the power series

∑
n≥0

χy(Zn) · zn =
1

(1− z)(1+ yz)
· (1+ yz)3− (1− z)3

(1+ yz)3 + y(1− z)3

= 3z+(y2−7y+1)z3 +(−y3−4y2 +4y+1)z4 + · · ·
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Let us look at a few examples:

• χy(Z1) = 3: A smooth cubic Z1 ⊂ P1 consists of three reduced points.

• χy(Z2) = 0: A smooth cubic Z2 ⊂ P2 is an elliptic curve, with Hodge diamond

1
1 1

1

• χy(Z3) = y2−7y+1: A smooth cubic surface Z3 ⊂ P3 has the Hodge diamond

1
0 0

0 7 0
0 0

1

• χy(Z4) =−y3−4y2 +4y+1: A smooth cubic Z4 ⊂ P4 has the Hodge diamond

1
0 0

0 1 0
0 5 5 0

0 1 0
0 0

1





Chapter V
Grassmann varieties and Schubert calculus

1 Plücker coordinates on Grassmann varieties

A important class of varieties that are ubiquitous in enumerative geometry and in
many other applications are Grassmann varieties parametrizing subspaces of a given
dimension in a given vector space. In this final chapter we want to discuss their
intersection theory in detail, but let us first riefly recall some basic definitions.

Let V be a vector space of dimension dimk(V ) = n. For d ∈ {1, . . . ,n− 1}, we
want to endow the set

Gr(d,V ) = {subspaces W ⊂V of dimension dimk(W ) = d }

with a natural structure of an algebraic variety. For this we embed it in a projective
space via the following map which is called the Plücker embedding:

Lemma 1.1. We have an injective map

ι : G(d,V ) ↪→ P(∧dV ), [W ] 7→ [∧dW ]

Proof. For any subspace W ⊂V of dimension d, the top wedge power ∧dW ⊂∧dV
is a line, i.e. a point

[∧dW ] ∈ P(∧dV ).

In order to verify that the Plücker map is injective, pick any basis v1, . . . ,vd of W
and note that

ι(W ) = [w] ∈ P(∧dV ) for the vector w = v1∧·· ·∧ vd ∈ ∧dV.

Extending the chosen basis to a basis of V and working in coordinates with respect
to this basis, one easily sees that

W = {v ∈V | v∧w = 0 in ∧d+1 V }.

Hence the subspace W ⊂V is determined uniquely by the point ι(W ) = [w]. ⊓⊔

129
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We next claim that the image of the Plücker embedding is a Zariski closed subset,
which will endow it with a natural structure of an algebraic variety. For this it will
be convenient to introduce coordinates: Fix a basis e1, . . . ,en of V . Then ∧dV has a
basis consisting of the vectors

eI := ei1 ∧·· ·∧ eid with I = (1≤ i1 < · · ·< id ≤ n).

Thus any vector in ∧dV has a unique expansion as ∑I pI · eI where pI = pi1,...,id ∈ k
are called the Plücker coordinates of the vector. By varying the vector we can regard
the Plücker coordinates as homogenous coordinates on the projective space P(∧dV )
and write

P(∧dV ) = Proj R for the graded ring R = k[pI : I = (1≤ i1 < · · · id ≤ n)],

where the generators pI ∈ R are put in degree one.

Example 1.2. For V = k4 and d = 2, we have seen earlier that

Gr(2,4) =V+(p12 p34− p13 p24 + p14 p23)⊂ P5 = Proj k[p12, p13, p14, p23, p24, p34].

Explicitly, given a point

a = [a12 : a13 : a14 : a23 : a24 : a34] ∈ P5(k)

with coordinates ai j = pi j(a), say a12 = 1, we can write it as a = ι(W ) for the
subspace

W ⊂ V spanned by the rows of the matrix A =

(
0 1 a13 a14
−1 0 a23 a24

)
.

This example generalizes as follows:

Proposition 1.3. The image ι(Gr(d,V )) ⊂ P(∧dV ) is a Zariski closed subset. It is
cut out by the following set of homogenous quadratic equations which are called the
Plücker relations:

d+1

∑
ν=1

(−1)ν pi1,...,id−1, jν · p j1,..., ĵν ,..., jd+1
= 0 for all

1≤ i1 < · · ·< id−1 ≤ n,

1≤ j1 < · · ·< jd+1 ≤ n.

Proof. First we comment on the notation in the Plücker relations: The hat ·̂ over an
index means as usual that this index is omitted. For the insertion of indices, note that
depending on ν the tuple (i1, . . . , id−1, jν) might not be increasing and might even
contain an index twice. To take care of this, we extend the notation as follows: For
arbitrary (k1, . . . ,kd) we put

pk1,...,kd :=

{
sgn(σ) · pkσ(1),...,kσ(d)

if kσ(1) < · · ·< kσ(d) for some σ ∈Sd ,

0 otherwise.
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Step 1. Let us now verify the inclusion ι(Gr(d,V )) ⊂ V+(PR) for the set PR of
Plücker relations. Let W ⊂ V be any subspace of dimension d, corresponding to a
point [W ] ∈ Gr(d,V ). With respect to the chosen basis e1, . . . ,en of V from above,
we may represent the subspace as the span of the columns of some matrix

A = (ai j) ∈ Mat(d×n) of maximal rank rk(A) = d,

as in the above example. The matrix A is of course not unique, it is determined only
up to left multiplication by a matrix in GL(d) (corresponding to a change of basis
in W ). In these terms the Plücker coordinates of the point ι(W ) ∈ P(∧dV ) are given
by the d×d minors

pk1,...,kd (W ) = det

a1k1 · · · a1kd
...

. . .
...

adk1 · · · adkd


i.e. the determinants of the matrix given by a subset of columns of A. One then
computes

d+1

∑
ν=1

(−1)ν · pi1,...,id−1, jν (W ) · p j1,..., ĵν ,..., jd+1
(W )

=
d+1

∑
ν=1

(−1)ν ·det

a1i1 · · · a1id−1 a1 jν
...

...
...

adi1 · · · adid−1 ad jν

 ·det

a1 j1 · · · â1 jν · · · a1 jd
...

...
...

ad j1 · · · âd jν · · · ad jd



=
d+1

∑
ν=1

d

∑
µ=1

(−1)ν+d+µ ·aµ jν ·det


...

...
âµi1 · · · âµid−1

...
...

 ·det

· · · â1 jν · · ·
...

· · · âd jν · · ·



=
d+1

∑
ν=1

d

∑
µ=1

(−1)d+µ ·det


...

...
âµi1 · · · âµid−1

...
...

 ·det


· · · âµ jν · · ·
· · · â1 jν · · ·

...
· · · âd jν · · ·

 = 0

where in the second equality we have developed the first of the two determinants
with respect to its last column, in the third equality we have developed the second
of the determinants, and the vanishing in the last equality comes from the fact that
in the last occuring determinant the first and the (µ +1)-st rows coincide. Thus the
image ι(W ) satisfies the Plücker relations as desired.
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Step 2. As a preparation for proving the opposite inclusion V (PR)⊂ ι(Gr(d,V )),
we need an auxiliary statement: Let a ∈V (PR) be a point in the vanishing locus of
the Plücker relations. Let pI(a) be the Plücker coordinates of the given points; they
are only well-defined up to multiplication with a common nonzero scalar, but we do
not care since the Plücker relations are homogenous. Fix K =(1≤ k1 < · · ·< kd ≤ n)
with pK(a) ̸= 0. Then we claim that all Plücker coordinates of the given point are
determined already if we know the Plücker coordinates pI(a) only for the tuples I
which differ from K in at most one entry:

We show this by induction on the number of entries in which a given tuple differs
from K. Let I = (1≤ i1 < · · ·< id ≤ n) be any tuple, and suppose it differs from K
in precisely m > 1 entries. Pick any µ such that the index j = iµ does not appear
in K. Then by the Plücker relations we have

pi1,...,̂iµ ,...,id , j
(a) · pk1,...,kd (a) =

d−1

∑
ν=1

(−1)ν · pi1,...,̂iν ,...,id ,kν
(a) · pk1,...,̂kν ,...,kd , j

(a).

After dividing by pk1,...,kd (a) ̸= 0, this expresses pi1,...,îµ ,...,id , j
(a) =±pI(a) in terms

of Plücker coordinates for index sets which differ from the reference index K in
fewer than m terms. Hence the claim of step 2 follows.

Step 3. Now we can prove the inclusion V (PR)⊂ ι(Gr(d,V )). Let a ∈V (PR) be
any point in the vanishing locus of the Plücker relations, and as in the previous step
pick a tuple K = (1≤ k1 < · · ·< kd ≤ n) with the property that pK(a) ̸= 0. We want
to show

a = ι(W ) for some [W ] ∈ Gr(d,V ).

Consider for i = 1, . . . ,d the vectors

wi :=
n

∑
ν=1

ai je j ∈ V with ai j := pk1,...,ki−1, j,ki+1,...,kd (a)/pK(a).

The vectors w1, . . . ,wd ∈V are linearly independent, because for all indices i and ν

we have

(coefficient of ekν
in wi) = aikν

=

{
0 for i ̸= ν ,

1 for i = ν .

Therefore W = ⟨w1, . . . ,wd⟩ is a subspace of dimension dimk W = d, giving a point

[W ] ∈ Gr(d,V ).

We claim that this point has the given Plücker coordinates pI(a). Indeed, by the
previous step it suffices to verify this for tuples I which differ from K by at most
one entry, i.e. tuples of the form

I = (k1, . . . ,ki−1, j,ki+1, . . . ,kd).
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The corresponding Plücker coordinate of the point [W ] ∈ Gr(d,V ) is then given by
the determinant

pI(W ) = det

a1k1 · · · a1ki−1 a1 j a1ki+1 · · ·a1kd
...

...
...

...
...

adk1 · · · adki−1 ad j adki+1 · · ·adkd

 = ai j = pI(a)/pK(a)

because the displayed matrix coincides with the identity matrix outside of its i-th
column. As Plücker coordinates only matter up to multiplication by an overall scalar,
we can clear the denominator pK(a). Then pI(W ) = pI(a) for all I as desired. ⊓⊔

2 Schubert varieties

We have seen earlier that the Grassmann variety Gr(2,4) is cellular, i.e. it admits a
decomposition as a disjoint union of locally closed subvarieties isomorphic to affine
spaces. We will now show that such a cell decomposition exists for every Grassmann
variety Gr(d,V ). As before we fix a basis e1, . . . ,en of V and write

Gr(d,V ) = V (PR) ⊂ P(∧dV ) = Proj k[pI : I = (1≤ i1 < · · ·< id ≤ n)].

We first show that Gr(d,V ) is covered by open charts which are affine spaces:

Lemma 2.1. For any index I, let UI = Gr(d,V ) \V+(pI) ⊂ Gr(d,V ) be the basic
open subset of the Grassmannian where the corresponding Plücker coordinate pI
does not vanish. Then we have

UI ≃ Ad(n−d)

In particular the Grassmannian Gr(d,V ) is a smooth variety of dimension d(n−d).

Proof. Let [W ] ∈Gr(d,V ). As above we write W ⊂V as the span of the columns of
a matrix

A ∈ Mat(d×n) of full rank rk(A) = d.

In these terms we have [W ] ∈ UI iff det(AI) ̸= 0 for the matrix AI ∈ Mat(d× d)
which is obtained from the given matrix by taking only the columns indexed by the
entries of I. The row span W ⊂V of a matrix A does not change if we multiply the
matrix from the left by an invertible matrix. If [W ] ∈UI , then the matrix AI is itself
invertible, so after left multiplication by its inverse we may assume that AI = 1. This
normalization leaves no freedom for further left multiplication: Every [W ] ∈UI is
the row span of a unique A ∈Mat(d× n) with AI = 1. Since for the entries of the
remaining n−d columns there are no restrictions, we see that

UI ≃ {A ∈Mat(d×n) | AI = 1} ≃ Ad(n−d)

and the claim follows. ⊓⊔
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From the viewpoint of normal forms of matrices we have done a bad job in fixing
the chart in advance: Most points of Gr(d,V ) lie in more than one charts of our open
cover, so there is in general no unique choice for the index set I. Instead of taking an
open cover, we now want to obtain a cell decomposition of the Grassmannian into
pairwise disjoint locally closed subsets. The building blocks arise directly from the
Gauss algorithm in linear algebra:

Definition 2.2. For any matrix A ∈ Mat(d × n) of full rank rk(A) = d, Gaussian
elimination by elementary row operations shows that there exists a unique invertible
matrix S ∈ GL(d) such that left multiplication by S brings the given matrix in the
following reduced echelon form1

S ·A =


∗ ... ∗ 1
∗ ... ∗ 0 ∗ ... ∗ 1
∗ ... ∗ 0 ∗ ... ∗ 0 ∗ ... ∗ 1

...
...

...
...

...
...

∗ ... ∗ 0 ∗ ... ∗ 0 ∗ ... ∗ 0 ∗ ... ∗ ... ∗ ... ∗ 1


Here the blank entries in the upper triangular part stand for zeroes, whereas the stars
stand for arbitrary elements. Note that on the right end of the reduced echelon form
there may be some zero columns, depending on the matrix A. For generic A the
square matrix formed by the last d columns of A will be invertible, in which case
the reduced echelon form is a block matrix ∗ · · · ∗...

...
∗ · · · ∗

1 0
. . .

0 1


formed by an arbitrary matrix of size d×(n−d) juxtaposed with the identity matrix
of size d×d. In this case the number of trailing zeroes at the end of row i is d− i. To
measure how far the reduced echelon form of a given matrix A is from this generic
case, we define λ1 ≥ λ2 ≥ ·· · ≥ λd ≥ 0 by the formula

λi = (number of trailing zeroes at the end of row i in S ·A)− (d− i)

= max{ℓ | S ·A = (bi j) has entries bi j = 0 for all j > n−d + i− ℓ},

where S ∈ GL(d) denotes the unique matrix such that S ·A is in reduced echelon
form. We also say that the reduced echelon form of A has type λ = (λ1, . . . ,λd). As
usual we will drop zeroes at the end of partitions when there is no risk of confusion,
writing λ = (3,2) = (3,2,0) = (3,2,0,0) = · · · etc.

1 In linear algebra one usually considers echelon forms which look like the above rotated by 180
degrees; for us the above shape is more convenient since it will allow us to label flags increasingly,
though later we will in fact need both types of echelon forms.
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Example 2.3. For a generic matrix A ∈Mat(d× n) the reduced echelon form has
type λ = (0, . . . ,0); matrices whose reduced echelon form is ‘more special’ will
correspond to partitions with larger entries. The matrix

A =

4 1 0 0 0 0
5 0 7 1 0 0
6 0 3 0 2 1


is in reduced echelon form and its type is the partition λ = (2,1,0) = (2,1).

Definition 2.4. We say that a subspace W ⊂V has type λ = (λ1, . . . ,λd) if it can be
written as the span of the rows of a matrix A ∈Mat(d×n) in reduced echelon form
of type λ . To include limiting cases, we endow the set of partitions with the partial
order defined by

µ ≥ λ ⇐⇒ ∀i : µi ≥ λi.

and we say that a d-dimensional subspace W ⊂ V is of type ≥ λ if it is of type µ

for some partition µ ≥ λ . This being said, we define the Schubert variety of type λ

to be the subset

Σλ := {[W ] ∈ Gr(d,V ) |W is of type ≥ λ} ⊂ Gr(d,V ).

By the Schubert cell of type λ we mean the subset

Σ
◦
λ

:= {[W ] ∈ Gr(d,V ) |W is of type λ} = Σλ \
⋃

µ>λ

Σµ ⊂ Gr(d,V ),

where we write µ > λ if µ ≥ λ but µ ̸= λ .

Remark 2.5. The above conditions on subspaces can be formulated geometrically
as follows: Consider the flag

V λ
∗ : V λ

1 ⊂ V λ
2 ⊂ ·· · ⊂ V λ

d ⊂ V with V λ
i = ⟨e1,e2, . . . ,en−d+i−λi⟩,

then W is of type ≥ λ iff dimW ∩V λ
i ≥ i for all i. More generally, for any flag of

subspaces
V∗ : V1 ⊂ V2 ⊂ ·· · ⊂ Vd ⊂ V

we can consider the associated Schubert variety

ΣV∗ := {[W ] ∈ Gr(d,V ) | dimW ∩Vi ≥ i for all i } ⊂ Gr(d,V ).

This is just the Schubert variety in the old sense but with e1, . . . ,en replaced by
a different basis adapted to the given flag: The group GL(V ) acts transitively on
the Grassmannian Gr(d,V ) as well as on the set of flags and Schubert varieties of a
given type λ . We will later compute intersection products between cycles by moving
them into general position via this transitive group action.
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Example 2.6. Let d = 2 and V = k4 with the standard basis e1, . . . ,e5. In Gr(2,4)
we have

Σλ =
{
[W ] ∈ Gr(2,4) | dimW ∩⟨e1, . . . ,e3−λ1⟩ ≥ 1, dimW ∩⟨e1, . . . ,e4−λ2⟩ ≥ 2

}
=
{
[W ] ∈ Gr(2,4) |W ∩⟨e1, . . . ,e3−λ1⟩ ̸= 0, W ⊂ ⟨e1, . . . ,e4−λ2⟩

}
,

so explicitly we find the following Schubert varieties:

Σ0,0 = Gr(2,4),

Σ1,0 = {W |W ∩⟨e1,e2⟩ ̸= 0} = V+(p34),

Σ1,1 = {W |W ⊂ ⟨e1,e2,e3⟩} = V+(p14, p24, p34),

Σ2 = {W | e1 ∈W} = V (p23, p24, p34),

Σ2,1 = {W | e1 ∈W ⊂ ⟨e1,e2,e3⟩} = V+(p14, p23, p24, p34),

Σ2,2 = {⟨e1,e2⟩} = V+(p13, p14, p23, p24, p34).

At this point some general observations are in order:

• The inclusion relations are given by Σλ ⊃ Σµ iff µ ≥ λ .
• The codimension of Σλ in the Grassmannian is the degree |λ |= ∑i λi.
• Each Schubert variety is cut out by certain Plücker coordinates, hence it is an

intersection of Gr(2,4)⊂ P5 with a certain collection of hyperplanes.

All three facts remain true in general. Let us start with the last one, which endows
the Schubert variety with the structure of an algebraic variety:

Proposition 2.7. Schubert varieties are Zariski closed: Put di = n−d+ i−λi, then
we have

Σλ = V+

(
p j1,..., jd | 1≤ j1 < · · ·< jd ≤ n and ∃ i : ji > di

)
.

Proof. Before starting the proof, you may want to compare with the above example
to get a feeling for the indices. Back to the general case, let S be the vanishing locus
of Plücker coordinates on the right hand side of the statement. We first show the
inclusion Σλ ⊂ S: Let [W ] ∈ Σλ . By definition

dim(W ∩Vi) ≥ i for the subspaces Vi := ⟨e1, . . . ,edi⟩,

so inductively we can find a basis w1, . . . ,wd of W with wi ∈W ∩Vi for all i. We
then have

wi =
n

∑
j=1

ai j · e j with ai j = 0 for all j > di.
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and the corresponding Plücker coordinates are given for I = (1≤ j1 < · · ·< jd ≤ n)
by the minors

pI(W ) = det

a1 j1 · · · a1 jd
...

. . .
...

ad j1 · · · ad jd

 .

If the index set I = ( j1, . . . , jd) satisfies jν > dν for some index ν , then this minor
has the block form

pI(W ) = det


a1 j1 · · · a1 jν−1 0

...
...

...
aν j1 · · · aν jν−1 0

0 · · · 0
...

. . .
...

0 · · · 0
∗ ∗
∗ ∗


where the two diagonal blocks are square matrices. Now this determinant vanishes
due to the zeroes in the rightmost column of the first diagonal block.

It remains to show the reverse inclusion S ⊂ Σλ . Let a ∈ S. Then by definition a
is a point of the Grassmannian whose Plücker coordinates satisfy

pI(a) = 0 for all index sets I = ( j1, . . . , jd) such that ∃ν : jν > dν .

Now among all index sets K = (1≤ k1 < · · ·< kd ≤ n) with pK(a) ̸= 0, fix one for
which k1 + · · ·kd is maximal. Up to multiplication with an overall nonzero scalar
we may assume that pK(a) = 1. Then a ∈Gr(d,V ) is the point corresponding to the
subspace

W = ⟨w1, . . . ,wd⟩, where wi = ∑
j

ai j · e j for ai j = pk1,...,ki−1, j,ki+1,...,kn

as we have seen at the end of the proof of proposition 1.3. We claim that wi ∈Vi for
all i, or equivalently

ai j = 0 for all j > di.

Indeed, since by assumption a ∈ S \V (pK), the definition of S implies ki ≤ di. If
j > di, then it follows that ki < j. But then

∑
ν

kν < j+ ∑
ν ̸= j

kν ,

hence by our choice of K we have pk1,...,kν−1, j,kν+1,··· ,kd (a) = 0. This proves ai j = 0
for all j > di, hence wi ∈Vi for all i. It follows that

w j ∈ Vj ⊂ Vi for j = 1,2, . . . , i.

Since w1, . . . ,wd are linearly independent, we get dim(W ∩Vi)≥ dim⟨w1, . . . ,wi⟩= i
for all i, which means that [W ] ∈ Σλ as desired. ⊓⊔
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In particular, the Schubert cells give a partition of the Grassmann variety into
locally closed subsets:

Corollary 2.8. The Schubert cells Σ ◦
λ
⊂Gr(d,V ) are locally closed subvarieties and

we have
Gr(d,V ) =

⊔
λ

Σ
◦
λ
.

Proof. By the above Σ ◦
λ
= Σλ \

⋃
µ>λ Σµ is the complement of a closed subset in

another closed subset, so it is locally closed. To see that these locally closed subsets
are pairwise disjoint, note that Σ ◦

λ
is the set of spaces spanned by matrices with

reduced echelon of type λ . The uniqueness of the reduced echelon form of matrices
with a given row span therefore implies Σ ◦

λ
∩Σ ◦µ =∅ for µ ̸= λ . ⊓⊔

In fact the same argument shows that the Grassmann variety is a cellular variety,
because the Schubert cells are affine spaces:

Proposition 2.9. The Schubert cells Σ ◦
λ
⊂ Gr(d,V ) are smooth of codimension |λ |,

more precisely
Σ
◦
λ
≃ An(d−n)−|λ |.

The tangent spaces to the Grassmannian and to the Schubert cell at a point [W ]∈Σ ◦
λ

are given by

T[W ]Gr(d,V ) = Hom(W,V/W )

∪

T[W ]Σ
◦
λ
= { f ∈ Hom(W,V/W ) : f (W λ

i )⊂ (V/W )λ
i for all i}

where we put

W λ
i := W ∩V λ

i and (V/W )λ
i := V λ

i /W λ
i with V λ

i := Vn−d+i−λi .

Proof. Put K = (k1, . . . ,kd) with ki = n−d+ i−λi. On UK = Gr(d,V )\V+(pK) we
have the isomorphism

UK ≃ Ad(n−d) = {A ∈Mat(d×n) : AK = 1}

sending a subspace W ⊂ V to the unique matrix A whose rows span the subspace
and whose columns labelled by the indices in K are the standard basis vectors. Via
this isomorphism the Schubert cell Σ ◦

λ
⊂UK corresponds to those matrices A which

are moreover in reduced row echelon form of type λ . This condition imposes the
vanishing of |λ | further matrix entries. Looking at the position of those entries one
obtains the given description of tangent spaces. ⊓⊔

Remark 2.10. The closure Σλ of the cells Σ ◦
λ

is usually singular, but one can show
that it is always Cohen-Macaulay.
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3 The Chow ring of Grassmann varieties

We have seen that the Grassmann variety is cellular, with a disjoint decomposition
into Schubert cells. In particular, its Chow ring is generated as an additive group by
the fundamental classes

σλ = [Σλ ] ∈ A|λ |(Gr(d,V )),

called Schubert classes. Note that up to now we have not put any restrictions on the
shape of the partition λ = (λ1, . . . ,λd), but for λ of the ‘wrong shape’ the Schubert
variety Σλ will be empty; more precisely, one easily sees from the definitions that

Σλ ̸= ∅ ⇐⇒ λ = (λ1, . . . ,λd) satisfies 0≤ λi ≤ n−d for all i

⇐⇒ the Young diagram of λ is contained in a d× (n−d) rectangle,

where for the last characterization we represent partitions by their Young diagram
consisting of a left-aligned table of d rows with λi boxes in row i. For instance, the
partition λ = (4,2,1) has the Young diagram

so it defines a nonempty Schubert variety in Gr(3,7) but not in Gr(3,6).

We want to see that as an additive group A∗(Gr(d,V )) is freely generated by
the cycles σλ for the partitions λ whose Young diagram fits inside a d× (n− d)
rectangle. We will proceed like for projective space: To show that there exist no
additive relations between Schubert cycles, we look at suitable intersection products
with complementary cycles. In general Schubert varieties Σλ and Σµ do not meet
transversely, so to find the intersection product σλ ·σµ we first need to move them
in general position. We will do this using the transitive action of GL(V ).

Lemma 3.1. Let X be a variety endowed with an action of G = GL(V ). Then for
any subvariety Z ⊂ X and any g ∈ G(k) we have

[Z) = [gZ] ∈ A∗(X).

Proof. View G as an open subset of the affine space Mat(n×n). Let L⊂Mat(n×n)
be the line connecting the two points id,g ∈ G(k). We pick an isomorphism L≃ A1

such that id 7→ 0 and g 7→ 1. Let

W = {(x,g) ∈ X× (G∩L)|g−1x ∈ Z} ⊂ X×L = X×A1.

Then W → A1 has the fibers W0 = Z and W1 = gZ, so the claim follows. ⊓⊔
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When applying the above to the Grassmann variety X = Gr(d,V ), we are led to
considering Schubert varieties with respect to different flags. We have so far used
the notation

Σλ = {[W ] ∈ Gr(d,V )|∀i : dimW ∩V λ
i ≥ i}

for the flag

V λ
∗ : V λ

1 ⊂ ·· · ⊂V λ
d ⊂V with V λ

i := ⟨e1, . . . ,en−d+i−λi⟩,

which is convenient when dealing only with one partition at a time. In studying
intersection products between two or more Schubert cycles, we need to deal with
several partitions at the same time, so we cannot stick to flags of length d with
dimension jumps adapted to a fixed partition. Instead, we consider complete flags,
i.e. flags of the form

F∗ : 0 = F0 ⊂ F1 ⊂ ·· · ⊂ Fn =V with dimFi/Fi−1 = 1 for all i

and use the notation

Σλ (F∗) = {[W ] ∈ Gr(d,V )|∀i : dimW ∩Fn−d+i−λi ≥ i}

for Schubert varieties. For any complete flag F∗ and any partition λ = (λ1, . . . ,λd)
we have

σλ = [Σλ (F∗)] ∈ Gr(d,V )

by the above lemma, since GL(V ) acts transitively on the set of complete flags.
The freedom to use arbitrary complete flags easily allows to compute intersection
numbers between Schubert cycles of complementary degree. To state the result we
need one more definition:

Definition 3.2. For fixed n and d, the dual of a partition λ = (λ1, . . . ,λd) is defined
to be the partition

λ
∗ = (n−d−λd ,n−d−λd−1, . . . ,n−d−λ1),

i.e. the partition whose Young diagram is the complement of the one of λ inside a
box of size d× (n− d), rotated by 180 degrees so that the sizes of the rows again
form a weakly decreasing sequence from top to bottom. Note that the degrees of λ

and λ ∗ satisfy
|λ |+ |λ ∗| = d(n−d).

Example 3.3. Let n = 7 and d = 3. Then for λ = (4,2,1) we have λ ∗ = (2,1,0) as
shown in the following picture:

λ = ⇝ ⇝ λ
∗ =
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Proposition 3.4. Let λ = (λ1, . . . ,λd) and µ = (µ1, . . . ,µd) be two partitions such
that the associated Schubert cycles have complementary codimension in Gr(d,V ),
i.e. |λ |+ |µ|= d(n−d). Then their intersection number is

(σλ ,σµ) =

{
1 if µ = λ ∗

0 otherwise

Proof. Fix a basis e1, . . . ,en of V and let F∗ and G∗ be the two complete flags defined
by

Fi = ⟨e1, . . . ,ei⟩ and Gi = ⟨en, . . . ,en−i+1⟩.

Since the rational equivalence classes of Schubert cycles can be represented using
any flag, we have

σλ = [Σλ (F∗)], σµ = [Σµ(G∗)] ∈ A∗(Gr(d,V )).

If Σλ (F∗)∩Σµ(G∗) ̸=∅, pick any [W ]∈ Σλ (F∗)∩Σµ(G∗); then for all i∈ {1, . . . ,d}
we have

dimW ∩Fn−d+i−λi ≥ i and dimW ∩Gn−d+(d+1−i)−µd+1−i
≥ d +1− i,

which for dimension reasons forces W ∩Fn−d+i−λi ∩Gn+1−i−µd+1−i ̸= 0. By our
choice of F∗ and G∗ this implies

⟨e1, . . . ,en−d+i−λi⟩∩ ⟨en, . . . ,en+1−(n+1−i−µd+1−i)⟩ ̸= 0

which forces n−d + i−λi ≥ i+µd+1−i, i.e. λi +µd+1−i ≥ n−d for all i. Since by
assumption the degrees of the two partitions satisfy |λ |+ |µ|= d(n−d), it follows
that equality holds for all i. Thus

Σλ (F∗)∩Σµ(G∗) ̸= ∅ only if µ = λ
∗

Moreover, for µ = λ ∗ the previous estimates give

dimW ∩⟨e1, . . . ,en−d+i−λi⟩ ≥ i

dimW ∩⟨en−d+i−λi , · · · ,en⟩ ≥ d +1− i

for all i. This forces dimW ∩⟨en−d+i−λi⟩= 1 for all i, and since dimW = d we get

W = ⟨en−d+1−λ1 ,en−d+2−λ2 , · · · ,en−λd
⟩.

So as a set the intersection Σλ (F∗)∩Σµ(G∗) consists of a single point. Moreover,
the intersection is transverse and hence is a reduced point as a scheme, because
the tangent spaces to the Schubert varieties satisfy TW (Σλ (F∗))∩TW (Σµ(G∗)) = 0
inside TW (Gr(d,V )) = Hom(W,V/W ) by proposition 2.9. Hence the intersection
number is one, and the claim follows. ⊓⊔
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Remark 3.5. The above arguments may become more suggestive if the points of
the Grassmann variety are represented as the row spans of matrices A ∈Mat(d×n)
whose column indices refer to the chosen basis vectors e1, . . . ,en. In these terms, the
points of Σ ◦

λ
(F∗) = Σλ (F∗)\

⋃
ν>λ Σν(F∗) are spans of matrices in ‘lower’ echelon

form

S ·A =


∗ ... ∗ 1
∗ ... ∗ 0 ∗ ... ∗ 1
∗ ... ∗ 0 ∗ ... ∗ 0 ∗ ... ∗ 1

...
...

...
...

...
...

∗ ... ∗ 0 ∗ ... ∗ 0 ∗ ... ∗ 0 ∗ ... ∗ ... ∗ ... ∗ 1


while points of Σ ◦µ(G∗) are spans of matrices in ‘upper’ echelon form

T ·A =


1 ∗ ... ∗ 0 ∗ ... ∗ 0 ∗ ... ∗ ... ∗ ... ∗ ... ∗ ... ∗

1 ∗ ... ∗ 0 ∗ ... ∗ ... ∗ ... ∗ ... ∗ ... ∗
1 ∗ ... ∗ ... ∗ ... ∗ ... ∗ ... ∗

...
...

1 ∗ ... ∗


The condition µ = λ ∗ precisely says that the two echelon forms have the pivot
columns at the same positions, say 1≤ i1 < · · ·< id ≤ n. We can then compute the
intersection between the two Schubert varieties in the affine chart pi1,...,id = 1 of the
Grassmann variety by equating the above two matrices: The intersection is the locus
where all entries ∗ vanish; this shows that the intersection consists of a single point
and that the two Schubert varieties meet transversely at that point.

While the above still only deals with Schubert cycles of complementary degree,
it is already enough to determine the additive structure of the Chow ring:

Corollary 3.6. The Chow groups of Gr(d,V ) are free abelian groups generated by
the Schubert cycles,

Ar(Gr(d,V )) ≃
⊕
|λ |=r

Z ·σλ for all r ≥ 0.

Proof. We already know from the cell decomposition that the Chow groups are
generated by the Schubert cycles. Moreover, for any collection of integers nλ ∈ Z
with

γ := ∑
λ

nλ ·σλ = 0

we get nλ = (σµ ,γ) = 0 for µ = λ ∗ because of proposition 3.4, hence there are no
nontrivial additive relations between Schubert cycles. ⊓⊔

Of course this is not enough for intersection theory: In order to understand the
ring structure on A∗(Gr(d,V )) we want to determine the coefficients cν

λ ,µ ∈ N0 in
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the expansion
σλ ·σµ = ∑

ν

cν

λ µ
·σν

for partitions λ ,µ of arbitrary degree, i.e. also when |λ |+ |µ|< d(n−d). The cν

λ µ

play an important role not only in enumerative geometry but also in representation
theory and combinatorics; they are called Littlewood-Richardson coefficients. To
understand them we need some more notation:

Definition 3.7. Let λ ,ν be two partitions with ν ≥ λ . The Young diagram of λ is
a subset of the Young diagram of ν when both are written in left-aligned form, and
we call the complement of the former in the latter a skew diagram of shape ν/λ . A
skew diagram is a horizontal strip if no column of it contains more than one box.

Example 3.8. Let ν = (4,3,1). For λ = (3,2) the skew shape ν/λ is a horizontal
strip:

ν = ⇝ ⇝ ν/λ =

On the other hand, for λ = (2,2) the skew shape ν/λ is not a horizontal strip:

ν = ⇝ ⇝ ν/λ =

Proposition 3.9 (Pieri’s formula). For any partition λ =(λ1, . . . ,λd) and any r∈N
we have

σλ ·σ(r) = ∑
ν

σν in Gr(d,V ),

where the sum runs over all partitions ν ≥ λ with ν/λ a horizontal strip of size r.

Proof. Taking intersection products with Schubert cycles of complementary degree,
we see by proposition 3.4 that the claim is equivalent to the statement that for any
partition ν and the dual partition ν∗ = (n−d−νd , . . . ,n−d−ν1) we have

σλ ·σ(r) ·σν∗ =

{
1 if ν/λ is a horizontal strip of size r,
0 otherwise.

To prove the above formula, we pick a basis e1, . . . ,en of V and let F∗ and G∗ be the
complete flags defined as above by

Fi = ⟨e1, . . . ,ei⟩ and Gi = ⟨en, . . . ,en−i+1⟩.
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Again σλ = [Σλ (F∗)] and σν∗ = [Σν∗(G∗)], but since the dimensions of these two
Schubert cycles are not complementary, the corresponding reduced lower resp. up-
per echelon matrices will no longer have their pivot elements in the same columns,
so we need a bit more care. By definition we have

[W ] ∈ Σλ (F∗)⇐⇒ ∀i : dimW ∩Fn−d+i−λi ≥ i

[W ] ∈ Σν∗(G∗)⇐⇒ ∀i : dimW ∩Gd+1−i−νi ≥ d +1− i

where for the second inequality we have inserted the definition ν∗d+1−i = n−d−νi
of the dual partition. In particular, any [W ]∈Σλ (F∗)∩Σν∗(G∗) must have a non-zero
intersection with

Ai = Fn−d+i−λi ∩Gd+1−i−νi = ⟨en−d+i−νi ,en−d+i−νi+1, . . . ,en−d+i−λi⟩.

for each i ∈ {1, . . . ,d}. Since

dimAi =

{
νi−λi +1 if νi ≥ λi,

0 otherwise,

we already see that Σλ (F∗)∩ Σν∗(G∗) = ∅ unless ν ≥ λ , which is in line with
the prediction of Pieri’s formula. So in what follows we assume ν ≥ λ . From our
choice of F∗ and G∗ as ‘opposite’ flags and from the above inequalities defining
the Schubert varieties, one sees by linear algebra that any [W ] ∈ Σλ (F∗)∩Σν∗(G∗)
satisfies

W ⊂ A := A1 + · · ·+Ad ⊂ V

A priori the sum on the right hand side need not be direct, and we only have the
estimate

dimA ≤
r

∑
i=1

dimAi =
r

∑
i=1

(νi−λi +1) = |ν |− |λ |+d = d + r

The directness of the sum can be characterized in several ways:

ν/λ is a horizontal strip ⇐⇒ ∀i : νi ≤ λi−1

⇐⇒ A = A1⊕·· ·⊕Ad

⇐⇒ dimA = d + r

Now let H∗ be another complete flag in V that has been chosen generically. By
definition

[W ] ∈ Σ(r)(H∗) ⇐⇒ W ∩U ̸= 0

where U = Hn−d+1−r ⊂V is a generic subspace of dimension n−d +1− r. Hence
any element

[W ] ∈ Σλ (F∗)∩Σν∗(G∗)∩Σ(r)(H∗)
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in the intersection of all three Schubert varieties satisfies W ⊂ A and W ∩U ̸= 0,
which can happen only if A∩U ̸= 0. Since U ⊂V has been chosen to be a generic
subspace of dimension

dimU = n+1− (d + r) ≤ n+1−dimA

the three Schubert varieties can intersect only if dimA ≥ d − r. By the previous
discussion we then have

• dim A = d− r,
• dim U ∩A = 1,
• A = A1⊕·· ·⊕Ad .

Let v ∈U ∩A \ {0}. By the last item we can decompose this vector uniquely as a
sum

v = v1 + · · ·vr with vi ∈ Ai.

For [W ]∈ Σλ (F∗)∩Σν∗(G∗)∩Σ(r)(H∗) we have 0 ̸= A∩W ⊂ A∩U = ⟨v⟩, hence
v ∈W . On the other hand, the dimension inequalities in the definition of Schubert
varieties also imply that

W = W1⊕·· ·⊕Wr for the intersections Wi = W ∩Ai,

so it follows that vi ∈W for all i. But then for dimension reasons we have

W = ⟨v1, . . . ,vd⟩,

hence there exists a unique point [W ] ∈ Σλ (F∗)∩Σν∗(G∗)∩Σ(r)(H∗) in the inter-
section of the three Schubert varieties. To conclude the proof, one easily verifies in
affine charts that the three Schubert varieties intersect transversely at this point if
the flag H∗ is chosen generically, so the intersection number is one. ⊓⊔

Example 3.10. Let n = 9 and d = 3. For λ = (3,2,1) and r = 3 we get from Pieri’s
formula that

σ(3,2,1) ·σ(3) = σ(6,2,1)+σ(5,3,1)+σ(5,2,2)+σ(4,3,2)

as illustrated in the following picture where the white boxes depict the strip ν/λ for
the four partitions ν that appear in the sum:

In shat follows we will often omit the brackets around partitions indexing Schubert
cycles, writing σ3,2,1 instead of σ(3,2,1) to simplify notations.
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Already the case µ = (1) in Pieri’s formula is interesting. Using it repeatedly we
can answer questions in enumerative geometry such as the following:

Example 3.11. How many lines in the projective space P3 intersect four given lines
in general position? To answer this question we have to compute the intersection
number σ4

1 ∈ Z for the Schubert cycle σ1 ∈ A1(Gr(2,4)). Applying Pieri’s formula
three times we get

σ
2
1 = σ2 +σ1,1

σ
3
1 = (σ3,0 +σ2,1)+σ2,1 = 2σ2,1

σ
4
1 = 2(σ3,1 +σ2,2) = 2σ2,2,

where σ2,2 is the class of a point. Thus in P3 there are precisely two lines that
intersect four given lines in general position. Try to check this by hand!

More generally, how many subspaces of dimension d − 1 are there in Pn that
intersect d(n−d) subspaces of dimension n−d−1? To answer this we need to find
the intersection number

Nn,d = σ
d(n−d)
1 ∈ Z for the class σ1 ∈ A1(Gr(d,n)).

Note that the class of a point is σn−d,···n−d , corresponding to the Young diagram
which is a box of size d × (n− d). Proceeding via Pieri’s formula as above, we
see that Nn,d is the number of ways to successively build this Young diagram by
appending boxes at the end of existing rows or columns, starting from the top left
corner. Putting a label i in the i-th appended box, we get a standard Young tableau
of shape λ , i.e. a filling of the Young diagram of shape λ with the labels 1,2, . . . , |λ |
such that all rows and columns are increasing. For n= 4 and d = 2 there are precisely
two standard tableaux of shape (2,2):

1 2
3 4

1 3
2 4

In general, the above shows that the intersection number Nn,d is the number of stan-
dard tableaux of shape d× (n− d). In combinatorics one shows that the number
N(λ ) of standard tableaux of any shape λ is given by the hook length formula

N(λ ) =
|λ |!

∏s∈λ hook(s)

where the hook length hook(s) is defined to be the number of boxes in the Young
diagram that lie to the right or below the box s, including s. The following picture
shows the hook lengths for λ = (3,3):

4 3 2
3 2 1
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Hence
N5,2 =

6!
4 ·3 ·2 ·3 ·2 ·1

= 5.

Note that Pieri’s formula for the intersection with the Schubert cycles σ(r) for
singleton partitions determines the intersection product on the Chow ring of the
Grassmann variety completely:

Lemma 3.12. The ring A∗(Gr(d,V )) is generated by the classes σ(r) with r ∈ N0.

Proof. It suffices to show that for each partition λ = (λ1, . . . ,λd) the class σλ can be
written as a polynomial in classes σ(r) for various r ∈N. We do this by lexicographic
induction on the pair

N(λ ) := (ℓ,λℓ) where ℓ = max{ i ∈ N0 |λi > 0}.

For ℓ = 1 the partition λ = (r) is already a singleton partition and there is nothing
to show. The next case are partitions of length ℓ = 2, say λ = (r,s), where Pieri’s
formula says

σλ = σ(r,s) = σ(r) ∗σ(s)−
s−1

∑
i=0

σ(r−i,i)

and we are done by induction because the right hand side only involves terms σµ

with N(µ)< N(λ ). The general case works similarly: For any λ of length ℓ Pieri’s
formula gives

σλ ≡ σ(λ1,...,λℓ−1) ·σ(λℓ) modulo
⊕

N(µ)<N(λ )

Z ·σµ ,

so the claim follows by induction. ⊓⊔

In principle this allows us to compute arbitrary products of Schubert cycles by
writing the cycles as polynomials in classes σ(r) and using Pieri’s formula, but doing
this by hand can be quite tedious; convenient methods come from the theory of
symmetric functions which we briefly review now:

Definition 3.13. A semistandard tableau of shape λ = (λ1, . . . ,λd) is a filling of the
Young diagram of shape λ with natural numbers such that in each row the entries
weakly increase from left to right and in each column the entries strictly increase
from top to bottom. We denote by SST(λ )≤d the set of semistandard tableaux of
shape λ with entries in {1, . . . ,d}, and to any such tableau T ∈ SST(λ )≤d we attach
the monomial

xT = xn1
1 · · ·x

nd
d ∈ Q[x1, . . . ,xd ]

where ni denotes the number of occurances of the entry i in the tableau. We define
the Schur polynomial of shape λ = (λ1, . . . ,λd) in d variables as the sum of all such
monomials:

sλ (x) = ∑
T∈SST(λ )≤d

xT ∈ Q[x1, . . . ,xd ].
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Example 3.14. The semistandard tableaux of shape λ = (r) with entries ≤ d are
precisely the tableaux

i1 i2 · · · · · · ir with 1≤ i1 ≤ i2 ≤ ·· · ≤ ir.

They give the complete symmetric polynomial s(r)(x) = hr(x) ∈Q[x1, . . . ,xd ].

Example 3.15. For λ = (1r) = (1, . . . ,1) the tableaux in SST(λ )≤d are precisely
those of the form

i1
i2...
ir

with 1≤ i1 < · · ·< ir ≤ d.

They give the elementary symmetric polynomial s(1r)(x) = er(x) ∈Q[x1, . . . ,xd ].

Thus Schur polynomials can be seen as symmetric polynomials that ‘interpolate’
between complete and elementary symmetric polynomials. The following theorem
recalls some of their basic properties:

Theorem 3.16. The Schur polynomials sλ (x) with λ = (λ1, . . . ,λd) form a Z-basis
for the ring

Λd = Z[x1, . . . ,xd ]
Sd

of symmetric polynomials in d variables. They can be expressed as follows.

a) Weyl character formula: For any e = (e1, . . . ,ed) put Dα(x) = det(x
e j
i )1≤i, j≤d ,

then

sλ (x) =
Dλ+δ (x)

Dδ (x)
for the vector δ = (d−1,d−2, . . . ,d1,0).

b) Jacobi-Trudi formula: Let µ = λ t be the transpose of the partition λ , obtained
by interchanging rows with columns in the Young diagram. Then in terms of the
complete symmetric polynomials and the elementary symmetric polynomials we
have

sλ (x) = det(hλi+ j−i)1≤i, j≤d = det(eµi+ j−i)1≤i, j≤d .

Proof. Omitted, see any book on symmetric functions. ⊓⊔

We are now prepared to describe the ring structure on A∗(Gr(d,V )) completely
using Schur polynomials. Put n = dim(V ) as above.

Theorem 3.17. Inside the ring of symmetric polynomials in d variables, consider
the ideal

Id,n = (σλ (x) : λ1 > n−d) ⊴ Λd = Z[x1, . . . ,xd ]
Sd .

Then we have a ring isomorphism

Λd/In,d
∼−→ A∗(Gr(d,V )), sλ (x) 7→ σλ .
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Proof. Since the Schur polynomials for a Z-basis for the free abelian group Λd ,
there is a unique group homomorphism

ϕ : Λr −→ A∗(Gr(d,V )) with sλ (x) 7→ σλ .

This is an isomorphism of groups since the Chow groups are free abelian on the set
of Schubert cycles σλ with λ1 ≤ n−d whereas σλ = 0 for λ1 > n−d. So the only
thing that remains to be verified is that the above group homomorphism ϕ sends
the product of symmetric functions to the intersection product on the Chow ring. To
see this we recall from the theory of symmetric functions that the product of Schur
functions also satisfies Pieri’s formula

sλ (x) · s(r)(x) = ∑
ν

sν(x)

where the sum is over all partitions ν ≥ λ with ν/λ a horizontal strip of size r. It
follows that

ϕ(sλ (x) · s(r)(x)) = ∑
ν

ϕ(sν(x)) = ∑
ν

σν = σλ ·σ(r) = ϕ(sλ (x)) ·ϕ(s(r)(x))

for any λ . It follows as desired that

ϕ(sλ (x) · sµ(x)) = ϕ(sλ (x)) ·ϕ(sµ(x))

for all λ ,µ because Λd is generated as a ring by the polynomials s(r)(x) = hr(x). ⊓⊔

The upshot is that the intersection theory on Grassmann varieties is completely
determined by combinatorics. In particular, in the intersection product

σλ ·σµ = ∑
ν

cν

λ µ
·σν

the cν

λ µ
∈ Z coincide with the Littlewood-Richardson coefficients defined by the

expansion
sλ (x) · sµ(x) = ∑

ν

cν

λ µ
· sν(x)

of the product of Schur polynomials. There is a well-known way to compute them
combinatorially. To describe it we need some more notation:

Definition 3.18. A semistandard skew tableau of shape ν/λ is a filling of the skew
diagram of shape ν/λ such that in each row the entries increase weakly from left
to right and in each column they increase strictly from top to bottom. The tableau
has content µ if it contains each entry i precisely µi times. The associated word is
the sequence obtained by reading the entries of each row from right to left, starting
with the top row and continuing until the bottom row. We say that the skew tableau
is a Littlewood-Richardson tableau if the associated word has the property that each
of its initial segments contain each entry i at least as often as the entry i+1.
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Theorem 3.19 (Littlewood-Richardson rule). The coefficient cν

λ µ
is equal to the

number of Littlewood-Richardson tableaux of shape ν/λ with content µ .

Proof. See any textbook on combinatorics and symmetric functions. ⊓⊔

Example 3.20. Let λ = (3,2), µ = (3,2,1) and ν = (5,4,2). One easily checks that
there are precisely two Littlewood-Richardson tableaux of shape ν/λ and content µ:

1 1
1 2

2 3

1 1
2 2

1 3

Hence by the Littlewood-Richardson rule it follows that c(5,4,2)
(3,2),(3,2,1) = 2.

4 Degeneracy loci

In this section we will apply Schubert calculus to find formulas for the fundamental
class of degeneraci loci

Dr(ϕ) = {x ∈ X | rk(ϕ(x) : F(x)→ G(x))≤ r} ⊂ X

for morphisms ϕ : F → G between vector bundles, and more generally degeneracy
loci where the restriction of the morphism to a given flag of subbundles of F has
prescribed ranks. For this we need to work with Grassmannians in a relative setting,
replacing vector spaces by vector bundles:

Let V be a vector bundle of rank n on a smooth quasiprojective variety X . Then
there exists a variety Gr(d,V ) with a smooth projective morphism

p : Gr(d,V ) −→ X

parametrizing subbundles of V of rank d in the sense that for any scheme f : T → X
over X we have a natural bijection

HomX (T,Gr(d,V )) ≃ { subbundles W ⊂ f ∗(V ) of rank d }.

Note that by this universal property the variety Gr(d,E) and the morphism p are
determined uniquely up to isomorphism. To show the existence, one can start with
the case where V = X×An is a trivial bundle and take Gr(d,V ) = X×Gr(d,n); the
general case is obtained by gluing such models on charts via local trivializations of
the vector bundle. Generalizing the previous section, consider a non-complete flag
of subbundles

V∗ : V1 ⊂ ·· · ⊂ Vd ⊂ V with dimVi = n−d + i−λi,
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where λ = (λ1, . . . ,λd) is a partition of length at most d. The relative analog of
Schubert varieties are the loci ΣV∗ ⊂Gr(d,V ) whose points with values in f : T → X
are given by

ΣV∗(T ) = {subbundles W ⊂ f ∗(V ) of rank d | ∀i : rk(W ∩Vi) ≥ i}

= {subbundles W ⊂ f ∗(V ) of rank d | ∀i : rk(W →V/Vi) ≤ d− i}.

Our main goal in this section is to find a formula for the fundamental class

[ΣV∗ ] ∈ A∗(Gr(d,V ))

in terms of Chern classes of the bundles p∗(Vi) and the tautological quotient bundle
on the Grassmann variety; this will then easily imply formulas for the degeneracy
loci between arbitrary morphisms of vector bundles by using the universal property
of the Grassmann variety. The first step is to pass from the Schubert variety to a
suitable flag variety:

Lemma 4.1. There exists a variety Fl(V∗) with a morphism π : Fl(V∗)→ X which
parametrizes subflags of the given flag where the pieces have minimal rank, in the
sense that

HomX (T,Fl(V∗)) = {W1 ⊂ ·· · ⊂Wd | Wi ⊂ f ∗(Vi) subbundle of rank rk(Wi) = i }

for any f : T → S. The variety Fl(V∗) is irreducible and the morphism Fl(V∗)→ X
is smooth of relative dimension

dim(Fl(V∗))−dim(X) = d(n−d)−|λ |.

We have a forgetful morphism

p : Fl(V∗) −→ ΣV∗ ⊂ Gr(d,V ), [W1 ⊂ ·· · ⊂Wd ] 7→ [Wd ]

which restricts to an isomorphism over the open dense subset

U = { [W ] ∈ Gr(d,V ) | ∀i : rk(W ∩Vi) = i} ⊂ ΣV∗ .

Proof. Starting from π0 = id : G0 = X → X with the zero vector bundle D′0 = 0, we
construct for i = 1, . . . ,d inductively a sequence of

• varieties Gi,
• morphisms πi : Gi→ X ,
• subbundles D′i ⊂ π∗i (Vi) of rank rk(D′i) = i,

as follows: On Gi−1 we have the vector bundle Ei−1 = π∗i−1(Vi)/D′i−1 and take Gi to
be the projective bundle

ϕi : Gi := P(Ei−1) −→ Gi−1.
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Let πi = πi−1 ◦ϕi : Gi → X denote the projection. On Gi = P(Ei−1) we have the
tautological subbundle

Si ⊂ ϕ
∗
i (Ei−1) = π

∗
i (Vi)/ϕ

∗
i (D

′
i−1)

and define
D′i := (preimage of Si) ⊂ π

∗
i (Vi).

Let Fl(V∗) = Gd with its natural morphism π : Fl(V∗)→ X and ψi = ϕi+1 ◦ · · · ◦ϕd
as shown in the diagram

Fl(V∗) X

Gd · · · Gi Gi−1 · · · G0

π

ψi

ϕi

πi−1

where each ϕi is a projective bundle of relative dimension

dim(Gi)−dim(Gi−1) = rk(Ei−1)−1
= rk(Vi)− rk(D′i−1)−1
= (n−d + i−λi)− (i−1)−1
= n−d−λi.

In particular π : Fl(V∗)→X is smooth of relative dimension d(n−d)−|λ | and Fl(V∗)
is irreducible. Moreover, on the flag variety Fl(V∗) the pullback of the given vector
bundle comes with a universal flag

D∗ : D1 ⊂ ·· · ⊂ Dd ⊂ π
∗(V ) defined by Di := ψ

∗
i (D

′
i) ⊂ π

∗(Vi),

and one easily verifies that this implies the desired universal property. Moreover it
is clear from the definitions that the forgetful morphism p : Fl(V∗)→ Gr(d,V ) has
its image contained in the Schubert variety ΣV∗ and restricts to an isomorphism over
the open subset where the lower bounds on the rank are attained. ⊓⊔

The idea is now to write the birational morphism p : Fl(V∗)→ ΣV∗ ⊂Gr(d,V ) as
the graph embedding into Y = Gr(d,V )×X Fl(V∗) followed by the projection onto
the first factor:

F(V∗) Y Gr(d,V )×X Fl(V∗)

Gr(d,V )

p
p1

We can then compute the fundamental class [ΣV∗ ] in two steps:

• Compute the fundamental class [Fl(V∗)] ∈ A∗(Y ).
• Compute the pushforward p1∗[Fl(V∗)] ∈ A∗(Gr(d,V )).
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We begin with the first task. To state the result we need some notation for certain
determinants that will appear repeatedly:

Definition 4.2. Suppose we are given for i = 1, . . . ,d a power series Pi = ∑ j ai j t j

with coefficients in some fixed commutative ring. Then for any sequence of natural
numbers µ = (µ1, . . . ,µd) we put

∆µ(P1, . . . ,Pd) := det(ai,µi+ j−i)1≤i, j≤d .

When all the power series are equal, we simply write ∆µ(P) = ∆µ(P, · · · ,P).

Example 4.3. The expansion of Schur polynomials for a partition λ = (λ1, . . . ,λd)
in terms of elementary symmetric polynomials via the Jacobi-Trudi identity can be
written as

sλ (x) = ∆µ(P) where µ = λ
t and P = ∑

j
e j(x) t j ∈ Λd [t].

Example 4.4. For any polynomials a(t) = ∏
d
i=1(1+αi t) and b(t) = ∏

e
j=1(1+β j t)

one defines their resultant by

Res(a,b) =
d

∏
i=1

e

∏
j=1

(β j−αi).

This resultant vanishes iff the polynomials a(t) and b(t) have a common zero. What
makes it interesting is that it can be computed directly from the coefficients of a(t)
and b(t) without knowing the zeroes αi and β j. This can be seen for instance from
the first identity in the following result:

Lemma 4.5. Let a(t),b(t) be as above, and take µ = (e, . . .e) with e repeated d
times. Then we have

Res(a,b) = ∆µ(P) = ∆µ(P1, . . . ,Pd)

for the power series P(t) = b(t)/a(t) and Pk(t) = ∏
e
j=1(1+β jt)/∏

k
i=1(1+αit).

Proof. These are equalities between universal polynomials in the elements αi,β j
with integer coefficients, so it suffices to prove them over Z[α1, . . . ,αd ,β1, . . .βe]
where the αi,β j are free variables: If we can show the claimed equalities over this
universal ring, they will also hold over any other commutative ring by specializing
the variables. So from now on we will assume to work over an integral domain.

For the first equality Res(a,b) = ∆µ(P), one then easily checks that both sides
are homogenous polynomials of total degree de in the variables αi and β j, and they
agree if all β j vanish. Hence it will be enough to show that the determinant ∆µ(P)
vanishes if the polynomials a(t) and b(t) have a common zero. To see this, note that
if a(t) and b(t) have a common zero, then P(t) = b(t)/a(t) is a rational function
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with denominator of degree < d, which means that the coefficients in the power
series development

P(t) = ∑
i≥0

cit i

satisfy a linear recurrence relation of length < d. This recurrence gives an element
in the kernel of the matrix (cµi+ j−i)1≤i, j≤d and consequently ∆µ(P) = 0. The second
equality ∆µ(P) = ∆µ(P1, . . . ,Pd) follows by applying elementary row operations to
the matrices, using the relations between rows given by (1+αk)Pk = Pk−1. ⊓⊔

The following simple example explains why determinants of the above shape are
relevant for the study of degeneracy loci:

Example 4.6. Let ϕ : F → G be a morphism between vector bundles on X . Then
the locus

D0(ϕ) = {x ∈ X | ϕ(x) = 0} ⊂ X

is the zero locus of a section of the vector bundle

V = H om(F,G) = F∨⊗G of rank e f where d = rk(F),e = rk(G).

If it has the expected codimension, then the fundamental class of this zero locus is
given by the top Chern class of the vector bundle. Let αi and β j be the Chern roots
of F and G, respectively, then the Chern roots of V are the differences β j−αi and
the top Chern class is

cde(V ) = ∏
i, j
(β j−αi) = Res(ct(F),ct(G))

Let µ = (e, . . . ,e) with e repeated d times, then lemma 4.5 gives

cde(V ) = ∆µ(P) where P = ct(G)/ct(F).

If F has a filtration by subbundles F1 ⊂ ·· · ⊂ Fd = F with rk(Fi/Fi−1) = 1 for all i,
then the same lemma also gives

cde(V ) = ∆µ(P1, . . . ,Pd) where Pi := ct(G)/ct(Fi).

We can now compute the fundamental class of the Flag variety as follows:

Proposition 4.7. The image of the graph Fl(V∗) ↪→ Y = Gr(d,V )×X Fl(V∗) has the
fundamental class

[Fl(V∗)] = ∆n−d,...,n−d(P1, . . . ,Pd) ∈ A∗(Y ) for Pi = ct(Q)/ct(Di),

where

• R = p∗1(Q) is the pullback of the universal quotient bundle Q on Gr(d,V ),

• Ci = p∗2(Di) are the pullbacks of the universal bundles Di on Fl(V∗).
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Proof. By definition the image of the graph embedding is

Fl(V∗) = {(W,W1 ⊂ ·· · ⊂Wd) ∈ Y = Gr(d,V )×Fl(V∗) |W =Wd}

= zero set of the composite morphism p∗2(Dd)→ p∗2π
∗V = p∗1π

∗V → p∗1Q

= zero set of a section of the vector bundle p∗2(D
∨
d )⊗ p∗1(Q) = C∨d ⊗R.

Now the rank of this vector bundle is rk(C∨d ⊗R) = d(n− d) = codimY (Fl(V∗)),
hence the fundamental class of the vanishing locus of its section is given by the top
Chern class [Fl(V∗)] = cd(n−d)(C∨d ⊗R) = ∆n−d,...,n−d(P1, . . . ,Pd) where the last
step uses example 4.6. ⊓⊔

It remains to compute the pushforward of the above class under the projection to
the Grassmann variety, which leads to the main result of this section:

Theorem 4.8 (Kempf-Laksov formula for the universal Schubert cycles). The
subvariety ΣV∗ ⊂Gr(d,V ) is irreducible of codimension |λ | with fundamental class

[ΣV∗ ] = ∆λ (c(Q−V1), . . . ,c(Q−Vd)) where c(Q−Vi) := ct(Q)/ct(Vi).

Proof. Consider again the graph embedding Fl(V∗) ⊂ Y = Gr(d,V )× Fl(V∗). We
know that the morphism

p1 : Fl(A) −→ ΣV∗ ⊂ Gr(d,V )

is an isomorphism over an open dense subset the Schubert variety ΣV∗ , hence the
statement about the irreducibility and the codimension follows from the analogous
statement about the flag variety. Moreover, we compute

[ΣV∗ ] = p1∗[Fl(V∗)] by birationality of p1

= p1∗∆n−d,...,n−d(P1, . . . ,Pd) by proposition 4.7,

where
Pi = ct(R)/ct(Ci) ∈ A∗(Gr(d,V )×X Fl(V∗))[t].

We will now compute the pushforward step by step using the description of the
flag variety in the proof of lemma 4.1: Putting Hi = Gr(d,V )×X Gi we factor the
projection p1 as

Gr(d,V )×X Fl(V∗) Gr(d,V )

Hd · · · Hi Hi−1 · · · H0

p1

ψi

ϕi

πi−1

The idea is to work downwards by descending induction on i = d,d− 1, . . . ,1 to
replace µ = (n−d, . . . ,n−d) by the partitions

µ
(i) = (n−d, · · · ,n−d,λi+1, . . . ,λd)
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and the Pj by the polynomials defined by

P(i)
j =

ct(Q)/ct(Vj) for j > i,

ct(Q)/ct(D′j) for j ≤ i,

where abusively we again denote by Q,Vj,D′j the pullback of the respective bundles
to Gi. We claim that

ϕi,∗∆
µ(i)(P

(i)
1 , . . . ,P(i)

d ) = ∆
µ(i−1)(P

(i−1)
1 , . . . ,P(i−1)

d ) ∈ A∗(Hi)

for all i. To see this one can proceed as follows:

• We have ct(Q)/ct(D′i) = ct(Qi) · ct(Q)/ct(Vi) for Qi =Vi/D′i.

• We have ϕi∗(ct(Qi)) = tri with ri = rk(Qi) = n−d−λi because

ϕi∗(c j(Qi)) =


0 for j > ri because then c j(Qi) = 0 as ri = rk(Qi),

0 for j < ri for dimension reasons since ri = dim(Hi/Hi−1),

1 for j = ri since Hi→ Hi−1 is a Pri -bundle.

• The claim then follows from the projection formula since putting together the
above we have

ϕi,∗(P
(i)
i ) = ϕi,∗ (ct(Qi) · ct(Q)/ct(Vi)) = tri · ct(Q)/ct(Vi) = P(i−1)

i .

Since p1 = ϕ1 ◦ · · · ◦ϕd , it then follows by applying the above formula inductively
that

p1,∗∆n−d,...,n−d(P1, . . . ,Pd) = ∆λ (c(Q−V1), . . . ,c(Q−Vd))

as required, because µ(1) = λ and P(1)
j = c(Q−Vj). ⊓⊔

Theorem 4.9 (Kempf-Laksov formula for degeneracy loci). Let ϕ : F → G be a
morphism between vector bundles on a smooth quasiprojective variety, and denote
their ranks by rk(F) = d and rk(G) = e. Suppose that we are given a flag of vector
subbundles

V1 ⊂ ·· · ⊂Vc ⊂ F for some c ≥ d− e,

and put ai = rk(Fi). Let λ = (λ1, . . . ,λc) where λi = e+ i−ai. Then the degeneracy
locus

D(ϕ,V∗) := {x ∈ X | ∀i : rk(ϕ(x) : Fi(x)→ Gi(x))≤ ai− i} ⊂ X

is either empty or of codimension ≤ |λ |. If it is empty or of codimension = |λ |, then
its fundamental class is

[D(ϕ,V∗)] = ∆λ (c(G−F1), . . . ,c(G−Fc)).
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Proof. Consider the vector bundle V = F⊕G. We regard F as a subbundle of V via
the graph of ϕ , with quotient G. By the universal property of the Grassmann variety
there exists a unique morphism δ : X → Gr(d,V ) such that G ≃ δ ∗(Q) where Q
denotes the universal quotient bundle on the Grassmann variety. Now by the splitting
principle we may assume that the given flag extends to a flag

V∗ : V1⊂ ·· ·Vc⊂Vc+1⊂ ·· ·Vd =V with rk(Vj)= e+ j for j = c+1, . . . ,d.

Then the associated Schubert variety ΣV∗ ⊂ Gr(d,V ) satisfies

D(ϕ,V∗) = δ
−1(ΣV∗).

One can show that ΣV∗ is Cohen-Macaulay of the right codimension, and that this
implies that the fundamental class of the scheme-theoretic inverse image coincides
with the pullback between Chow rings in the sense that [D(ϕ,V∗)] = δ ∗[ΣV∗ ]. Hence
the result follows from the previous theorem. ⊓⊔

Corollary 4.10 (Porteous’ formula). Let ϕ : F→G be a morphism between vector
bundles on a smooth quasiprojective variety, and denote their ranks by rk(F) = d
and rk(G) = e. For 0≤ r ≤ e the degeneracy locus

Dr(ϕ) = {x ∈ X | rk(ϕ(x))≤ r} ⊂ X

is either empty or of codimension ≤ (d− r)(e− r). If it is empty or of codimension
equal to (d− r)(e− r), then its fundamental class is

[Dr(ϕ)] = ∆e−r,...,er(c(G−F))

where the index (e− r, . . . ,e− r) consists of precisely d− r parts.

Proof. By the splitting principle we may assume that there exists a flag

F1 ⊂ ·· · ⊂ Fd−r = F with ai = rk(Fi) = r+ i.

Then rk(ϕ(x))≤ r iff rk(ϕ(x)|Fi(x))≤ ai− i = r for all i, which means that

Dr(ϕ) = D(ϕ,F∗)

and we can apply the previous theorem with λi = e− ai + i = e− r for all i. In the
case where the degeneracy locus is empty or of the expected dimension, we get

[Dr(ϕ)] = ∆e−r,...,e−r(c(G−F1), . . . ,c(G−F1) = ∆e−r,...,e−r(c(G−F))

where the last equality uses the identity between the two determinantal formulas for
the resultant in lemma 4.5. ⊓⊔
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