
1. The finiteness theorem for h1(X,E )

The main point in the proof of the Riemann-Roch theorem for holomorphic
vector bundles E on a compact Riemann surface X is that the sheaf E = OX(E)
satisfies

hi(X,E ) := dimCH
i(X,E ) < ∞ for i = 0, 1.

For the proof of this finiteness result we follow the very clear and concise exposition
by Narasimhan in [2, sect. 7]. In class we have already treated the case i = 0 by a
simple argument using the maximum principle. For i = 1 we rely on the following
consequence of the open mapping theorem in functional analysis:

Proposition 1.1. If f : X � Y is a surjective compact operator between Banach
spaces, then

dimY < ∞.

Proof. Consider the unit ball B = {x ∈ X | ‖x‖ < 1}. The image f(B) ⊂ Y
is relatively compact since f is a compact operator. On the other hand, the open
mapping theorem in functional analysis says that any surjective continuous linear
operator between Banach spaces is an open mapping, hence the image f(B) ⊂ Y
is also open and therefore a relatively compact neighborhood of the origin. But it
is a general fact (exercise) that dimY <∞ iff the origin 0 ∈ Y admits a relatively
compact open neighborhood. �

We now return to complex analysis. For an open U ⊂ C let Ob(U) ⊂ O(U) be
the vector subspace of all bounded holomorphic functions. This is a Banach space
with respect to the norm ‖f‖ := supx∈U |f(x)|. A sequence f1, f2, · · · ∈ Ob(U) is
called

• uniformly bounded if there is a constant C > 0 with ‖fi‖ < C for all i.

• uniformly convergent to a function f ∈ Ob(U) if limn→∞ ‖fn − f‖ = 0.

• locally uniformly convergent if for every relatively compact open U0 b U
the restrictions fn|U0

∈ Ob(U0) converge uniformly on U0.

Locally uniform convergence implies pointwise convergence to a holomorphic limit
but this convergence need not be uniform; for example, consider fn(z) = zn on
the open disk U = {z ∈ C | |z| < 1}. We need the following powerful result from
complex analysis:

Theorem 1.2 (Montel). Any uniformly bounded sequence f1, f2, · · · ∈ Ob(U) has
a locally uniformly convergent subsequence. Thus for every relatively compact open
subset U0 b U the map Ob(U)→ Ob(U0), f 7→ f |U0

is a compact operator.

The proof is elementary and can be found for instance in [1, th. IV.4.9]. We
then obtain

Theorem 1.3. h1(X,E ) <∞.

Proof. The proof essentially combines proposition 1.1 and theorem 1.2, but the
Cech description for cohomology makes it a bit technical and so we divide it into
several steps:

Step 1. Fixing a nice cover. Put D(r) = {z ∈ C | |z| < r} for r > 0. We can
find an open cover

X =

N⋃
i=1

Ui with charts zi : Ui
∼−→ D(2)
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on which the given vector bundle becomes trivial, and on each chart we choose a
trivialization

hi : E|Ui

∼−→ Ui × Cn

Putting Ui(r) = z−1i (D(r)), we can furthermore assume that shrinking our cover
we still have

X =

N⋃
i=1

Ui(1/2),

which will leave enough space for arguments requiring relative compactness.

Step 2. The bounded Cech complex. We now introduce a variant of the Cech
complex using only bounded holomorphic sections. For U b V ⊂ X open with
a trivialization h = (h1, . . . , hn) : E|V ' V × Cn we define the space of bounded
sections

Eb(U) =
{
s ∈ E (U) | hi(s) ∈ Ob(U) for i = 1, . . . , n

}
.

Note that this definition does not depend on the chosen trivialization h or V as
long as U b V is relatively compact in the latter. We apply this to the intersections
of open subsets in the cover

U(r) =
(
Ui(r)

)
i=1,...,N

for r ∈ (1/2, 2).

Consider the bounded Cech complex

C 0(r)

δ0

��

{
ξ = (ξi) ∈ C 0(U(r),E ) | ξi ∈ Eb(Ui(r)) for all i

}

C 1(r)

δ1 ��

{
η = (ηij) ∈ C 1(U(r),E ) | ηij ∈ Eb(Uij(r)) for all i, j

}
...

and put

Z 1(r) = ker(δ1) ⊆ C 1(r).

Then

• C 0(r) is a Banach space with ‖ξ‖r = maxi supx∈Ui(r) |(hiξi)(x)|,
• Z 1(r) is a Banach space with ‖η‖r = maxi,j supx∈Uij(r) |(hiηij)(x)|.

The comparison of these norms for various radii r will be the main next point.

Step 3. Bounded versus usual Cech cohomology. Comparing the above bounded
with the usual Cech complex, we claim that for any r ∈ (1/2, 1) the following
properties hold:

(a) We have natural isomorphisms

H1(r) := Z 1(r)/δ0(C 0(r))
∼
ϕ
// H1(U(r),E )

∼ // H1(X,E ).

(b) The composition ψ : Z 1(1) −→ Z 1(r)� H1(r) is surjective.

Indeed, the second isomorphism in part (a) comes from the Leray theorem as U(r)
is an acyclic cover. Furthermore, shrinking the radius from 2 to r induces a natural
map H1(U(2),E )→ H1(U(r),E ) on Cech cohomology, and since the Ui(r) b Ui(2)
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are relatively compact, this map factors over H1(r). So we obtain the following
diagram:

H1(U(2),E )

'
��

∃ // H1(r)
ϕ // H1(U(r),E )

'
��

H1(X,E ) H1(X,E )

Since the lower row is the identity, it follows that the morphism ϕ from part (a) is
surjective, and similarly ψ from (b) is surjective.

It remains to check that ϕ is injective. Thus we want to show: If ξ ∈ C (U(r),E ),
then

δ0(ξ) ∈ Z 1(r) =⇒ ξ ∈ C 0(r),

i.e. boundedness of the differential of a cochain implies that the cochain itself
was bounded. This latter statement follows from the more precise estimate that
for 1/2 < ρ < r < 1 there exists a constant C = C(r, ρ) > 0, independent of ξ, such
that

‖ξ‖r ≤ ‖δ0(ξ)‖r + C · ‖ξ‖ρ.

To verify this last inequality, consider any point x ∈ Ui(r), pick j with Uj(ρ) 3 x
and write

ξi(x) = (ξi − ξj)(x) + ξj(x) = δ0(ξ)ij(x) + ξj(x).

Then

|(hiξi)(x)| ≤ |(hiδ0(ξ)ij)(x)|+ |(hiξj)(x)|

and so the desired inequality follows with

C = sup
x∈Uij(r)

‖(hih−1j )(x)‖,

the supremum over the pointwise operator norms of the transition matrices.

Step 4. Cech cohomology as a Banach space. We next claim δ0(C 0(r)) ⊆ Z 1(r)
is a closed subspace, hence

H1(r) := Z 1(r)/δ0(C 0(r))

inherits from Z 1(r) the structure of a Banach space. Indeed, let 1/2 < ρ < r < 1
and for N ∈ N put

C 0(r,N) :=
{
ξ ∈ C 0(r) | ordai(ξi) ≥ N

}
where ai ∈ Ui(r) denotes the point corresponding to the origin, i.e. zi(ai) = 0. As
in the proof of the finiteness theorem for h0(X,E ), it follows from the maximum
principle that

‖ξ‖ρ ≤
(
ρ
r

)N · ‖ξ‖r for ξ ∈ C 0(r,N).

So the inequality in step 3 gives

‖ξ‖r ≤ ‖δ0ξ‖r + C ·
(
ρ
r

)N · ‖ξ‖r
and therefore

‖ξ‖r ≤ 2 · ‖δ0ξ‖r for N � 0.

It follows that

δ0(C 0(r,N)) ↪→ Z1(r) is closed,

hence

H1(r,H) := Z1(r)/δ0(C 0(r,N)) is a Banach space.
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But

dim C 0(r)/C 0(r,N) <∞ =⇒ δ0(C 0(r)) ⊆ H1(r,N) is closed,

since any finite-dimensional subspace of a normed vector space is closed. Therefore
the claim of step 4 follows.

Step 5. An application of Montel’s theorem. We now put everything together;
since Ui(r) ∩ Uj(r) b Ui(1) ∩ Uj(1) is relatively compact, Montel’s theorem 1.2
shows that

Z 1(1) −→ Z 1(r)

is a compact operator for r < 1. The composite

Z 1(1) −→ Z 1(r) � H1(r) ' H1(X,E )

is then a compact and surjective operator, hence it follows that dimH1(X,E ) <∞
by proposition 1.1. �
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