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Abstract

A fundamental object in the theory of arithmetic surfaces is the Green’s function associ-
ated to the canonical metric. Previous expressions for the canonical Green’s function have
relied on general functional analysis or, when using specific properties of the canonical
metric, the classical Riemann theta function. In this article, we derive a new identity for
the canonical Green’s function involving the hyperbolic heat kernel. As an application of
our results, we obtain bounds for the canonical Green’s function through covers and for
families of modular curves.

1. Introduction

1.1. In [Ara74], S. Arakelov defined an intersection theory for divisors on arithmetic surfaces by
including a contribution at infinity, which is computed using certain Green’s functions defined on
the corresponding Riemann surfaces. Arakelov’s theory has been extended to higher dimensions,
primarily through the work of H. Gillet, C. Soulé, and G. Faltings. Motivated by recent work of
B. Edixhoven, which will be explained below, we derive here several analytic relations and estimates
for the Green’s functions used by Arakelov.

More specifically, let X be a compact Riemann surface of genus gX > 1. The canonical volume
form µcan on X is the positive (1, 1)-form obtained by the pull-back of the standard Euclidean
volume form on the Jacobian variety Jac(X) associated to X via the classical Abel-Jacobi map.
The canonical Green’s function gcan(z, w), also written as gcan,X(z, w), is the function of z, w ∈ X,
which is uniquely characterized by the differential equation

dzdczgcan(z, w) + δw(z) = µcan(z) (z, w ∈ X) ,

where δw(z) is the usual Dirac delta distribution, and the normalization condition∫
X

gcan(z, w)µcan(z) = 0 (w ∈ X) .

Fundamental properties of the canonical Green’s function, such as existence and symmetry, follow
from general functional analysis. By identifying the points z, w ∈ X with their pre-images in the
universal cover, which we take to be the hyperbolic upper half-plane H, we have that the function

gcan(z, w) + log |z − w|2

is bounded and continuous as z approaches w.
The results we present here involve a development of bounds for the canonical Green’s function

after removing its logarithmic singularity. In effect, we obtain three types of bounds. First, we study
the setting of a fixed compact hyperbolic Riemann surface X, ultimately deriving a sup-norm bound
involving quantities associated to the hyperbolic spectral theory and hyperbolic geometry on X.
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Second, we investigate these bounds in the relative situation, when X is a finite degree cover of fixed
compact hyperbolic Riemann surface. Third, we consider these bounds for families of hyperbolic
modular curves, meaning the sequences of modular curves {X0(N)}, {X1(N)}, or {X(N)} of genus
bigger than one.

To prove our results, we develop the bounds by first deriving bounds for the difference between
the canonical Green’s function and the hyperbolic Green’s function, whose definition parallels that of
the canonical Green’s function when replacing the canonical (1, 1)-form by the appropriately scaled
hyperbolic (1, 1)-form. We then express the difference between the canonical and the hyperbolic
Green’s functions using various expressions involving the hyperbolic heat kernel (including special
values of Selberg’s zeta function). The remainder of the article is devoted to proving bounds for
hyperbolic heat kernels, from which our main results follow.

1.2. Arithmetic applications. Analytic problems related to Arakelov theory can be interesting
both for their own sake and for potential applications to arithmetic algebraic geometry. Concerning
the specific work we undertake in the present paper, we were informed of some analytic problems
with immediate arithmetic implications in current work by B. Edixhoven, which we now briefly
discuss.

B. Edixhoven has a strategy to compute Galois representations modulo ` associated to a fixed
modular form of arbitrary weight, with the goal of devising an algorithm, which has complexity
that is polynomial in `. A typical modular form to consider is ∆, the (up to scale) unique cusp
form of weight 12 associated to the modular group PSL2(Z). In this case, B. Edixhoven’s strategy
amounts to computing the field of definition of a suitable torsion point of order ` on the Jacobian
variety Jac(X1(`)) of the modular curve X1(`). Naturally, such torsion points can be described
in terms of a divisor on X1(`). Since the dimension of Jac(X1(`)) grows quadratically with `, it
seems as if existing methods to compute torsion points, such as with computer algebra systems,
will be unfeasible. B. Edixhoven’s idea is to numerically approximate the divisor in question with
sufficiently high precision so that the approximation can turn into an exact result. More precisely, in
order to get a polynomial time algorithm, one needs that the precision in the above approximation
(meaning, the number of digits with which the numerical computations need to be carried out) is
to be at most polynomial in `.

In B. Edixhoven’s work, the required precision roughly is equal to the height of the divisor, which
is estimated using Arakelov theory. The arithmetic Riemann-Roch theorem, Noether’s formula,
estimates for the Faltings height of X1(`) and for norms of theta functions are applied. To complete
this analysis, B. Edixhoven needs various estimates involving an upper bound for Green’s functions
on X1(`), as a function of `. As an application of our general results, we derive an upper bound
for the Green’s functions on X1(`), after removing its logarithmic singularity. Indeed, our upper
bound is uniform in `, thus showing that the analytic contribution from the Green’s functions in
B. Edixhoven’s algorithm is an order smaller than required by the algorithm.

In communicating his ideas, B. Edixhoven informed us that F. Merkl has studied methods, which
yield upper bounds for Green’s functions, which are polynomial in `. Our method of proof, which
builds on previous investigations, notably [JK01], [JK04], and [JK05], provides a sharper upper
bound, which we hope will lead to a better estimate of the complexity of B. Edixhoven’s algorithm.

1.3. Summary of the main results. The hyperbolic Green’s function ghyp(z, w) on X is the
function of z, w ∈ X, which satisfies the differential equation

dzdczghyp(z, w) + δw(z) =
µhyp(z)

volhyp(X)
(z, w ∈ X),

2



Bounds on canonical Green’s functions

and the normalization condition∫
X

ghyp(z, w)µhyp(z) = 0 (w ∈ X),

where µhyp is the (1, 1)-form associated to the metric with constant negative curvature equal to minus
one giving X the volume volhyp(X). In particular, if z, w ∈ H, the hyperbolic Green’s function on
H is given by

gH(z, w) = − log

(∣∣∣∣z − wz − w̄

∣∣∣∣2
)
.

Our first main result, Theorem 3.8, expresses the difference gcan(z, w) − ghyp(z, w) in terms of a
function associated to hyperbolic geometry, namely the hyperbolic heat kernel on X. This con-
struction of gcan(z, w) allows for the study of the canonical Green’s function through techniques
of hyperbolic geometry. We then study the identity from Theorem 3.8 and prove bounds for the
hyperbolic Green’s function and the canonical Green’s function on X in terms of small eigenvalues
and corresponding eigenfunctions of the hyperbolic Laplacian on X, as well as other data coming
from hyperbolic geometry, such as the length of the shortest closed geodesic and the injectivity
radius of X. These results are summarized in Theorems 4.5, 4.8, and 4.9.

We then study these bounds for families of compact hyperbolic Riemann surfaces. In general,
let X1 be a finite degree cover of X0, a fixed compact hyperbolic Riemann surface. Let gX1 denote
the genus of X1, and λX1,1 be the smallest non-zero eigenvalue of the hyperbolic Laplacian on X1.
Given a uniformization X1 = ΓX1\H (with ΓX1 a cocompact torsion-free Fuchsian subgroup of the
first kind of PSL2(R)), we shall, by abuse of notation, identify X1 with a choice of a fundamental
domain for X1 in H, and identify points on X1 with their pre-images in H. Given δ > 0, and points
z, w ∈ X1, define the set

SΓX1
(δ; z, w) = {γ ∈ ΓX1 | dH(z, γw) < δ} ;

here dH(·, ·) denotes the hyperbolic distance on H. Let {λX1,n} denote the set of eigenvalues of
the hyperbolic Laplacian, which acts on the space of smooth functions on X1, with associated
orthonormal eigenfunctions {ϕX1,n}. We prove that for any ε > 0, δ > 0, and for all z, w ∈ X1, we
have the bounds

ghyp,X1(z, w)−
∑

γ∈SΓX1
(δ;z,w)

gH(z, γw)−
∑

0<λX1,n
6ε

4π
λX1,n

ϕX1,n(z)ϕX1,n(w) = OX0,ε,δ(1) ,

and

gcan,X1(z, w)− ghyp,X1(z, w) = OX0

(
1
gX1

(
1 +

1
λX1,1

))
;

therefore, by the triangle inequality, we show that

gcan,X1(z, w)−
∑

γ∈SΓX1
(δ;z,w)

gH(z, γw) = OX0,δ

(
1 +

1
λX1,1

)
.

As the notation indicates, all bounds are uniform on X1, and depend solely on the choices of ε, δ,
and the base surface X0. The proofs of these bounds are given in section 5.

As in [JK05], we extend our analysis to the study of the families of hyperbolic modular curves
{X0(N)}, {X1(N)}, and {X(N)}. In this setting, it was shown in [Bro99] that the smallest non-zero
eigenvalues are uniformly bounded away from zero. Therefore, our results imply, among others, the
estimates

gcan,X1(N)(z, w)− ghyp,X1(N)(z, w) = O
(
g−1
X1(N)

)
,
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and

gcan,X1(N)(z, w)−
∑

γ∈SΓX1(N)
(δ;z,w)

gH(z, γw) = Oδ(1) ,

with similar bounds for the other families of modular curves {X0(N)}, and {X(N)}. Again, as the
notation indicates, the bounds are uniform in N .

1.4. Outline of the paper. The article is organized as follows. In section 2, we establish our
notation and discuss background material and results. In section 3, we derive an explicit, analytic
expression relating the canonical Green’s function to the hyperbolic Green’s function and various
other data coming from hyperbolic geometry. For the most part, the data from hyperbolic geometry
that we use come directly from integral expressions involving the hyperbolic heat kernel, including
the special value of the Selberg zeta function, which was studied in [JK02]. The main formula we
derive is stated in Theorem 3.8. In section 4, we bound all quantities appearing in Theorem 3.8 in
terms of fundamental invariants from hyperbolic geometry, such as the smallest non-zero eigenvalue,
the length of the shortest closed geodesic, etc.; a list summarizing the invariants, which we use,
is given in section 2.6. In section 5, we study the behavior of these invariants in two different
settings, namely, a compact Riemann surface X1, which is a finite degree cover of some fixed
compact hyperbolic Riemann surface X0, or a compact Riemann surface X1, which lies in one of
the families of hyperbolic modular surfaces {X0(N)}, {X1(N)}, or {X(N)}. The analysis of many
of the hyperbolic invariants, which appear in the present paper have also been studied in detail in
[JK05]. The corresponding results of [JK05] are then applied to the bounds obtained in section 4,
thus completing the proofs of the results stated above.

1.5. Acknowledgements. We thank B. Edixhoven for discussing the applications of the present
article to his own work, and, specifically, for providing us with a written description of his ideas. This
description forms the basis of section 1.2. At one time, B. Edixhoven posed the question of deriving
upper bounds for the canonical Green’s functions on the modular curves {X1(N)} to P. Sarnak,
who forwarded Edixhoven’s question to us. We thank P. Sarnak for communicating Edixhoven’s
problem to us.

2. Background material

2.1. Hyperbolic and canonical metrics. Let Γ be a Fuchsian subgroup of the first kind of
PSL2(R) acting by fractional linear transformations on the hyperbolic upper half-plane, we denote
by H = {z ∈ C | Im(z) > 0}. We let X be the quotient space Γ\H and denote by gX the genus of
X. In a slight abuse of notation, we will through this article identify X with a fundamental domain
(say, a Ford domain, bounded by geodesic paths) and identify points on X with their pre-images
in H. We assume that gX > 1 and that Γ has no elliptic and, apart from the identity, no parabolic
elements, i.e., X is smooth and compact.

In the sequel, µ denotes a (smooth) metric on X, i.e., µ is a positive (1, 1)-form on X. We
write volµ(X) for the volume of X with respect to µ. In particular, we let µ = µhyp denote the
hyperbolic metric on X, which is compatible with the complex structure of X, and has constant
negative curvature equal to minus one. Locally, we have

µhyp(z) =
i

2
· dz ∧ dz̄

Im(z)2
.

As a shorthand, we write vX for the hyperbolic volume volµhyp
(X); we recall that vX is given by

4π(gX−1). The scaled hyperbolic metric µ = µshyp is simply the rescaled hyperbolic metric µhyp/vX ,
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which measures the volume of X to be one.
Let Sk(Γ) denote the C-vector space of cusp forms of weight k with respect to Γ equipped with

the Petersson inner product

〈f, g〉 =
i

2

∫
X

f(z) g(z) Im(z)k · dz ∧ dz̄
Im(z)2

(f, g ∈ Sk(Γ)) .

By choosing an orthonormal basis {f1, . . . , fgX} of S2(Γ) with respect to the Petersson inner product,
the canonical metric µ = µcan of X is given by

µcan(z) =
1
gX
· i

2

gX∑
j=1

|fj(z)|2 dz ∧ dz̄ .

We note that the canonical metric measures the volume of X to be one. For the purpose of comparing
the hyperbolic and the canonical metrics, we define

dX = sup
z∈X

∣∣∣∣ µcan(z)
µshyp(z)

∣∣∣∣ .
In [JK04], optimal bounds for dX through covers were obtained for arbitrary towers of compact
and non-compact Riemann surfaces; see also [Don96], where the author considered the problem of
towers of compact Riemann surfaces.

2.2. Green’s functions and residual metrics. We denote the Green’s function associated to the
metric µ by gµ. It is a function on X ×X characterized by the two properties

dzdczgµ(z, w) + δw(z) =
µ(z)

volµ(X)
,∫

X

gµ(z, w)µ(z) = 0 (w ∈ X) .

Assuming that z, w are points on X, which are sufficiently close, our convention for the Green’s
function is such that the sum gµ(z, w) + log |z − w|2 is bounded as w approaches z.

The Green’s function is an integral kernel which inverts the Laplacian associated to µ and is
orthogonal to the constant functions. More precisely, for any smooth, bounded function f on X, we
have the identity ∫

X

gµ(z, ζ)(−dζdcζf(ζ))µ(ζ) = f(z), provided
∫
X

f(ζ)µ(ζ) = 0.

If µ = µhyp, µ = µshyp, or µ = µcan, we set

gµ = ghyp , gµ = gshyp , gµ = gcan ,

respectively. By means of the function Gµ = exp(gµ), we can now define a metric ‖ · ‖µ,res on the
canonical line bundle Ω1

X of X in the following way. For z ∈ X, we set

‖dz‖2µ,res = lim
w→z

(
Gµ(z, w) · |z − w|2

)
.

We call the metric

µres(z) =
i

2
· dz ∧ dz̄
‖dz‖2µ,res

the residual metric associated to µ. If µ = µhyp, µ = µshyp, or µ = µcan, we set

‖ · ‖µ,res = ‖ · ‖hyp, res , ‖ · ‖µ,res = ‖ · ‖shyp,res , ‖ · ‖µ,res = ‖ · ‖can,res ,

µres = µhyp,res , µres = µshyp,res , µres = µcan,res ,
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respectively. We recall that the Arakelov metric µAr is defined as the residual metric associated to
the canonical metric µcan; the corresponding metric on Ω1

X is denoted by ‖ · ‖Ar. In order to be able
to compare the metrics µcan and µAr, we define the C∞-function φAr on X by the equation

µAr = eφArµhyp . (1)

2.3. Heat kernels and heat traces. The heat kernel KH(t; z, w) on H (t ∈ R>0; z, w ∈ H) is
given by the formula

KH(t; z, w) = KH(t; ρ) =
√

2e−t/4

(4πt)3/2

∞∫
ρ

ue−u
2/4t√

cosh(u)− cosh(ρ)
du , (2)

where ρ = dH(z, w) denotes the hyperbolic distance between z and w. If z = w, the previous formula
can be shown to equal

KH(t; z, z) = KH(t; 0) =
1

2π

∞∫
0

e−(r2+1/4)t r tanh(πr) dr .

The heat kernel KX(t; z, w) associated to X (t ∈ R>0; z, w ∈ X), resp. the hyperbolic heat kernel
HKX(t; z, w) associated to X (t ∈ R>0; z, w ∈ X) is defined by averaging over the elements of Γ,
resp. the elements of Γ different from the identity, namely

KX(t; z, w) =
∑
γ∈Γ

KH(t; z, γw) , resp.

HKX(t; z, w) =
∑
γ∈Γ
γ 6=id

KH(t; z, γw) .

The heat kernel KX(t; z, w) admits the following spectral representation. Let {λX,n} denote the set
of eigenvalues of the hyperbolic Laplacian ∆X , which acts on the space of smooth functions on X
with associated orthonormal eigenfunctions {ϕX,n}. Then, for all z, w ∈ X, we have

KX(t; z, w) =
∑
n

ϕX,n(z)ϕX,n(w)e−λX,nt .

The convergence of this series is uniform and absolute (see [Cha84], p. 112). Recall that the eigen-
functions can be taken to be real-valued, so there is no need for a complex conjugate over one of
the terms.

If z = w, we write KX(t; z) instead of KX(t; z, z), and HKX(t; z) instead of HKX(t; z, z). The
hyperbolic heat trace HTrKX(t) (t ∈ R>0) is now given by

HTrKX(t) =
∫
X

HKX(t; z)µhyp(z) .

We note that the hyperbolic Green’s function ghyp(z, w) (z, w ∈ X; z 6= w) relates in the following
way to the heat kernel

ghyp(z, w) = 4π

∞∫
0

(
KX(t; z, w)− 1

vX

)
dt . (3)

The hyperbolic Green’s function on H can be defined using the hyperbolic heat kernel, namely
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through the formula

gH(z, w) = 4π

∞∫
0

KH(t; z, w)dt .

As stated in the introduction, explicit formulas were given evaluating gH(z, w), namely

gH(z, w) = − log

(∣∣∣∣z − wz − w̄

∣∣∣∣2
)
,

as well as

gH(z, w) = − log
(
tanh2(dH(z, w)/2)

)
with dH(z, w) denoting the hyperbolic distance from z to w (see [Hej83], p. 31, and [Bea95], p. 130).
Both identities will play a role in our work.

2.4. Selberg’s zeta function. Let H(Γ) denote a complete set of representatives of non-conjugate,
primitive, hyperbolic elements in Γ. Denote by `γ the hyperbolic length of the closed geodesic
determined by γ ∈ H(Γ) on X; it is well-known that the equality

|tr(γ)| = 2 cosh(`γ/2)

holds. For s ∈ C, Re(s) > 1, the Selberg zeta function ZX(s) associated to X is defined via the
Euler product expansion

ZX(s) =
∏

γ∈H(Γ)

Zγ(s) , where Zγ(s) =
∞∏
n=0

(
1− e−(s+n)`γ

)
.

The Selberg zeta function ZX(s) is known to have a meromorphic continuation to all of C and
satisfies a functional equation. As in [JK01], we define the quantity

cX = lim
s→1

(
Z ′X
ZX

(s)− 1
s− 1

)
,

which expresses cX in terms of the hyperbolic heat kernel. From [JK01], Lemma 4.2, we recall the
formula

cX = 1 +

∞∫
0

(HTrKX(t)− 1) dt =

∞∫
0

(HTrKX(t)− 1 + e−t) dt . (4)

The quantity cX was studied in detail in [JK01]. Specifically, upper and lower bounds for cX were
obtained for a fixed hyperbolic Riemann surface X, and these bounds were also studied for surfaces
X1, which are finite degree covers of a fixed hyperbolic Riemann surface X0. The analysis of cX was
extended to the sequence {X0(N)} of hyperbolic modular surfaces in [JK05], section 5.

2.5. Heat kernel bounds. Directly from the integral formula (2) for KH(t; ρ), one can prove the
following two bounds. First, for any 0 < t0 < 1, there is a constant c0 > 0 such that for 0 < t < t0,
we have the upper bound

KH(t; ρ) 6
c0

4πt
e−ρ

2/(4t)

for all ρ > 0. Second, there is a constant c∞ > 0 such that, if t > t0, then

KH(t; ρ) 6 c∞e−t/4

for all ρ > 0. Continuing, one also has the bound

KX(t; z, w) 6
1
2

(KX(t; z) +KX(t;w)) ,
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which holds for all t > 0 and all z, w ∈ X. To prove this inequality, observe that for each n, we have

ϕX,n(z)ϕX,n(w)e−λX,nt 6
1
2

(
ϕ2
X,n(z)e−λX,nt + ϕ2

X,n(w)e−λX,nt
)
,

from which the stated bound now follows by summing over all n.
More generally, one can use hyperbolic geometry in order to prove an upper bound forKX(t; z, w).

For this, we follow [JL95], Lemma 2.3, in particular displayed formula (2.2) on p. 796, which we now
recall in detail. Fix 0 < t0 < 1, and choose δ0 sufficiently large such that KH(t; ρ) is a monotone
decreasing function of ρ for ρ > δ0 and all 0 < t < t0 (as with the above bounds for KH(t; ρ), the
verification of the existence of t0 and δ0 follows from the integral formula for KH(t; ρ)). Let rX be
any number less than or equal to the injectivity radius of X, meaning

rX 6 inf{dH(z, γz) | γ ∈ Γ , γ 6= id , z ∈ X} .

Since X is compact, one can choose rX > 0. For δ > 0 and fixed z, w ∈ X, we define the set

SΓ(δ; z, w) = {γ ∈ Γ | dH(z, γw) < δ} .

Then, as stated in [JL95], formula (2.2) on p. 796, we have the bounds∑
γ∈SΓ(δ;z,w)

KH(t; dH(z, γw)) 6 KX(t; z, w)

and, for all 0 < t < t0 and δ > δ0, we have

KX(t; z, w) 6
∑

γ∈SΓ(δ;z,w)

KH(t; dH(z, γw)) +
sinh(rX) sinh(δ)

sinh2(rX/2)
·KH(t; δ)

+
1

sinh2(rX/2)

∞∫
δ−4rX

KH(t; ρ) sinh(ρ+ 2rX) dρ .

The arguments proving these bounds are elementary, and we refer the reader to [JL95] for details.
We note here that the statement above is obtained through a slight refinement of that which is
given in [JL95], coming from observing that the various hyperbolic discs whose volumes are used to
estimate the number of lattice points can be taken to be centered at an orbit point of w. As a result,
certain estimates above involve rX rather than 2rX , as in [JL95]. This refinement is not critical for
the analysis here; nonetheless, for the sake of precision, we do quote and then employ this refined
result.

2.6. Certain hyperbolic-geometric invariants. For the convenience of the reader, we list here
certain hyperbolic invariants which will appear in our estimates.

The constants c0, c∞, t0, and δ0 appear in the upper bounds for KH(t; ρ) and were defined in
section 2.5. The constant rX is any number less than or equal to the injectivity radius of X, and we
will take δX to be any number such that δX > max{δ0, 4rX + 5} > 0. Given 0 < t0 < 1, we define

CHKX = max
z∈X

KX(t0; z) ,

which is finite, since X is compact. Following the arguments in [JL95], it can be shown that

sup
z,w∈X

#SΓ(δ; z, w) 6
sinh(δ + rX)

sinh(rX)
,

where the set SΓ(δ; z, w) was defined in section 2.5. The smallest non-zero eigenvalue of the hy-
perbolic Laplacian on X will be denoted by λX,1, and the length of the shortest non-zero closed
geodesic on X is denoted by `X,0. The constant cX is the constant term in the Laurant expansion
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of the logarithmic derivative of the Selberg zeta function ZX(s) at s = 1, as defined in section 2.4.
Finally, the sup-norm between the canonical and scaled hyperbolic volume forms is defined by

dX = sup
z∈X

∣∣∣∣ µcan(z)
µshyp(z)

∣∣∣∣ .

3. Expressing canonical Green’s function using hyperbolic data

In this section we obtain a closed-form expression for the canonical Green’s function in terms of
hyperbolic geometry. The main result of this section, Theorem 3.8, expresses gcan in terms of the
hyperbolic Green’s function ghyp and analytic functions derived from the hyperbolic heat kernel.
The steps in our proof are as follows. First, we derive a general expression relating gcan to ghyp in
terms of various integrals involving µcan; see Lemma 3.1. Next, we prove an explicit relation between
the canonical metric µcan and the hyperbolic metric µhyp in terms of the hyperbolic heat kernel;
see Theorem 3.4. We then substitute Theorem 3.4 into Lemma 3.1 in order to complete the proof
of Theorem 3.8.

3.1. Lemma. With the above notations, we have, for all z, w ∈ X, the formula

ghyp(z, w)− gcan(z, w) =
∫
X

ghyp(z, ζ)µcan(ζ) +
∫
X

ghyp(w, ζ)µcan(ζ)

−
∫
X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ) .

Proof. Let FL(z, w), resp. FR(z, w), denote the left-, resp. right-hand side of the stated identity.
Using the characterizing properties of the Green’s functions, one can show directly that we have for
fixed w ∈ X

dzdczFL(z, w) = dzdczFR(z, w) = µshyp(z)− µcan(z) ,
and ∫

X

FL(z, w)µcan(z) =
∫
X

FR(z, w)µcan(z) =
∫
X

ghyp(w, ζ)µcan(ζ).

Consequently, FL(z, w) = FR(z, w), again for fixed w. However, it is obvious that FL and FR are
symmetric in z and w. This completes the proof of the lemma. 2

3.2. Proposition. With the above notations, we have, for all z ∈ X, the formula

gXµcan(z) = µshyp(z) +
1
2

c1(Ω1
X , ‖ · ‖hyp,res)(z) ;

here Ω1
X denotes the canonical line bundle on X.

Proof. Let us rewrite the identity in Lemma 3.1 as

ghyp(z, w)− gcan(z, w) = φ(z) + φ(w) , (5)

where

φ(z) =
∫
X

ghyp(z, ζ)µcan(ζ)− 1
2

∫
X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ) .

Taking dzdcz in relation (5), we get the equation

µshyp(z)− µcan(z) = dzdczφ(z) . (6)

9
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On the other hand, we have by definition

log ‖dz‖2hyp,res = lim
w→z

(
ghyp(z, w) + log |z − w|2

)
,

log ‖dz‖2can,res = lim
w→z

(
gcan(z, w) + log |z − w|2

)
.

From this we deduce, again using (5),

log ‖dz‖2hyp,res − log‖dz‖2can,res = lim
w→z

(ghyp(z, w)− gcan(z, w)) = 2φ(z) . (7)

Now, taking −dzdcz of equation (7), yields

c1(Ω1
X , ‖ · ‖hyp,res)(z)− c1(Ω1

X , ‖ · ‖can,res)(z) = −2dzdczφ(z) . (8)

Combining equations (6) and (8) leads to

2(µshyp(z)− µcan(z)) = c1(Ω1
X , ‖ · ‖can,res)(z)− c1(Ω1

X , ‖ · ‖hyp,res)(z) . (9)

Recalling

c1(Ω1
X , ‖ · ‖can,res)(z) = (2gX − 2)µcan(z) ,

we derive from (9)

µshyp(z)− µcan(z) =
2gX − 2

2
µcan(z)− 1

2
c1(Ω1

X , ‖ · ‖hyp,res)(z) ,

which proves the proposition. 2

3.3. Proposition. With the above notations, we have the following formula for the first Chern form
of Ω1

X with respect to ‖ · ‖hyp,res

c1(Ω1
X , ‖ · ‖hyp,res)(z) =

1
2π
· µhyp(z) +

 ∞∫
0

∆XKX(t; z)dt

µhyp(z).

Proof. By our definitions, we have for z ∈ X

c1(Ω1
X , ‖ · ‖hyp,res)(z) = −dzdcz log ‖dz‖2hyp,res = −dzdcz lim

w→z
(ghyp(z, w) + log |z − w|2)

= −dzdcz lim
w→z

4π

∞∫
0

(
KX(t; z, w)− 1

vX

)
dt+ log |z − w|2


= −dzdcz lim

w→z

4π

∞∫
0

KH(t; z, w)dt+ log |z − w|2


−dzdcz lim
w→z

4π

∞∫
0

∑
γ∈Γ
γ 6=id

KH(t; z, γw)− 1
vX

dt

 .

Using the formula for the Green’s function gH(z, w) on H, we obtain for the first summand in the

10
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latter sum

A = −dzdcz lim
w→z

4π

∞∫
0

KH(t; z, w) dt+ log |z − w|2


= −dzdcz lim
w→z

(
gH(z, w) + log |z − w|2

)
= −dzdcz log |z − z̄|2 = − 2i

2π
∂z ∂̄z log(z − z̄)

=
i

π
∂z

dz̄
z − z̄

= − i
π
· dz ∧ dz̄

(z − z̄)2

= − i
π
· dz ∧ dz̄

(2iIm(z))2
=

1
2π
· µhyp(z) .

For the second summand we obtain

B = −dzdcz lim
w→z

4π

∞∫
0

∑
γ∈Γ
γ 6=id

KH(t; z, γw)− 1
vX

dt


= −4πdzdcz

∞∫
0

∑
γ∈Γ
γ 6=id

KH(t; z, γz)− 1
vX

dt .

Since the latter integral converges absolutely, as does the integral of derivatives of the integrand,
we are allowed to interchange differentiation and integration; this gives

B = −4π

∞∫
0

dzdcz

∑
γ∈Γ
γ 6=id

KH(t; z, γz)− 1
vX

dt

= −4π

∞∫
0

∑
γ∈Γ
γ 6=id

dzdczKH(t; z, γz)dt .

The claimed formula then follows, since KH(t; z, z) is independent of z, and recalling the identity

−4πdzdczf(z) = (∆Xf(z))µhyp(z) ,

for any smooth function f on X. 2

3.4. Theorem. With the above notations, we have, for all z ∈ X, the formula

µcan(z) = µshyp(z) +
1

2gX

 ∞∫
0

∆XKX(t; z)dt

µhyp(z).

Proof. We simply have to combine Propositions 3.2 and 3.3, and to use that

1
gX

+
vX

4πgX
= 1 .

2

11
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3.5. Lemma. For all z ∈ X, let H(z) be defined by

H(z) =

∞∫
0

(
HKX(t; z)− 1

vX

)
dt− cX − 1

vX
.

Then, H(z) is uniquely characterized by satisfying the integral formula∫
X

H(z)µhyp(z) = 0

and the differential equation

∆XH(z) =

∞∫
0

∆XKX(t; z) dt .

Proof. Concerning the integral equation, note that, by interchanging the order of integration, we
have ∫

X

H(z)µhyp(z) =
∫
X

 ∞∫
0

(
HKX(t; z)− 1

vX

)
dt− cX − 1

vX

µhyp(z)

=

∞∫
0

(HTrKX(t)− 1) dt− (cX − 1) = 0 ,

where the last equality follows from formula (4), given in section 2.4. As for the differential equation,
note that for any z ∈ X, we have

HKX(t; z) = KX(t; z)−KH(t, 0).

Since KH(t, 0) and (cX − 1)/vX are annihilated by ∆X , the result follows. 2

3.6. Lemma. With the above notations, we have, for all z ∈ X, the formula∫
X

ghyp(z, ζ)µcan(ζ) =
2π
gX

H(z) .

Proof. Using Theorem 3.4, we have∫
X

ghyp(z, ζ)µcan(ζ) =
∫
X

ghyp(z, ζ)

µshyp(ζ) +
1

2gX

 ∞∫
0

∆XKX(t; ζ)dt

µhyp(ζ)


=

1
2gX

∫
X

ghyp(z, ζ)

 ∞∫
0

∆XKX(t; ζ)dt

µhyp(ζ)

=
1

2gX

∫
X

ghyp(z, ζ)∆XH(ζ)µhyp(ζ) ,

where the last equality follows from Lemma 3.5. Using the integral formula in Lemma 3.5, the
assertion is proved by using that ghyp inverts the operator −ddc on the space of functions whose
integral is zero. 2

12
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3.7. Lemma. With the above notations, we have the formula∫
X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ) =
π

g2
X

∫
X

H(ξ)∆XH(ξ)µhyp(ξ) .

Proof. Using Lemma 3.6, we have∫
X

∫
X

ghyp(ξ, ζ)µcan(ζ)µcan(ξ) =
2π
gX

∫
X

H(ξ)µcan(ξ) .

We now employ Theorem 3.4, which gives∫
X

H(ξ)µcan(ξ) =
∫
X

H(ξ)

µshyp(ξ) +
1

2gX

 ∞∫
0

∆XKX(t; ξ)dt

µhyp(ξ)


=

1
2gX

∫
X

H(ξ)

 ∞∫
0

∆XKX(t; ξ)dt

µhyp(ξ) ,

where we have used the integral equation from Lemma 3.5 to obtain the last equality. The result
follows by using the differential equation from Lemma 3.5. 2

3.8. Theorem. With the above notations, we have the formula

gcan(z, w)− ghyp(z, w) = φX(z) + φX(w) ,

where

φX(z) =
2π
gX

H(z)− π

2g2
X

∫
X

H(ξ)∆XH(ξ)µhyp(ξ) .

Proof. The proof is obtained by combining Lemma 3.1, Lemma 3.6, and Lemma 3.7. 2

3.9. Remark. Recall from section 2.3 that the hyperbolic Green’s function ghyp is simply expressed
in terms of the hyperbolic heat kernel. Together with the definition of H(z) given in Lemma 3.5, the
main result in Theorem 3.8 then states a closed form expression for the canonical Green’s function
gcan using the hyperbolic heat kernel. By comparison, note that the analysis in [Jor90] relied on an
evaluation of the canonical Green’s function in terms of the classical Riemann theta function; see
[Jor90], in particular Proposition 2.4 and the preceding computations. Consequently, we now have
a complete, closed-form expression for the Riemann theta function in terms of the hyperbolic heat
kernel. A potentially fascinating study would be to explore this relation further, either from the
point of view of obtaining results in hyperbolic geometry from the algebraic geometry of the theta
function, or conversely.

4. Bounds of various hyperbolic data

We now work from Theorem 3.8 and obtain bounds for the canonical Green’s function for a fixed
surface X. First, we study bounds for the hyperbolic Green’s function, which we derive using the
heat kernel bound stated in section 2.5; these bounds are given in Theorem 4.5. Next, we estimate
the function φX in Theorem 3.8; these estimates are given in Corollary 4.6 and Proposition 4.7.
After this, the bounds we seek for the canonical Green’s function are immediate and are stated
in Theorem 4.8 and Theorem 4.9. As we will see in the next section, the explicit nature of these

13
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bounds are such that we can easily determine the behavior of the estimates through covers and for
sequences of hyperbolic modular curves.

4.1. Lemma. Let t0 and CHKX be as in sections 2.5 and 2.6. For any ε > 0 and z, w ∈ X, we then
have the following estimate involving the eigenfunctions ϕX,n of the hyperbolic Laplacian∑

06λX,n<ε

|ϕX,n(z)ϕX,n(w)| 6 CHKX · eεt0 .

Proof. First observe that for each n, we have

|ϕX,n(z)ϕX,n(w)| 6 1
2
(
ϕ2
X,n(z) + ϕ2

X,n(w)
)

;

hence, it suffices to prove the claim when z = w. For this, we note that e−λX,nt0 · eεt0 > 1, provided
λX,n < ε. Therefore, we find∑

06λX,n<ε

ϕ2
X,n(z) 6

∑
06λX,n<ε

ϕ2
X,n(z)e−λX,nt0 · eεt0 6 eεt0 ·KX(t0; z) 6 CHKX · eεt0 ,

which proves the claim. 2

4.2. Lemma. Let c0, c∞, t0, rX , δX , and CHKX be as in sections 2.5 and 2.6. For any δ > δX , ε > 0,
and z, w ∈ X, let

Kε,δ
X (t; z, w) = KX(t; z, w)−

∑
06λX,n<ε

ϕX,n(z)ϕX,n(w)e−λX,nt −
∑

γ∈SΓ(δ;z,w)

KH(t; dH(z, γw)) .

Then, we have the following bounds:

(a) If 0 < t < t0, then∣∣∣Kε,δ
X (t; z, w)

∣∣∣ 6 CHKX · eεt0 +
c0 sinh(rX) sinh(δ)

8δ2 sinh2(rX/2)
+

c0e
2rX

2π sinh2(rX/2)
;

(b) If t > t0, then ∣∣∣Kε,δ
X (t; z, w)

∣∣∣ 6 CHKX · e−ε(t−t0) +
c∞ sinh(δ + rX)

sinh(rX)
e−t/4 .

Proof. To prove part (a), we first use the triangle inequality to write∣∣∣Kε,δ
X (t; z, w)

∣∣∣ 6 ∑
06λX,n<ε

|ϕX,n(z)ϕX,n(w)| e−λX,nt +
∑

γ /∈SΓ(δ;z,w)

KH(t; dH(z, γw)) .

By Lemma 4.1, the first summand is bounded by CHKX · eεt0 . As for the second summand, we will
proceed by using the heat kernel estimates from section 2.5, namely the bounds∑
γ /∈SΓ(δ;z,w)

KH(t; dH(z, γw)) 6
sinh(rX) sinh(δ)

sinh2(rX/2)
·KH(t; δ)+

1
sinh2(rX/2)

∞∫
δ−4rX

KH(t; ρ) sinh(ρ+2rX)dρ .

Trivially, the lower bound for the sum in question is zero, since each term in the series is positive.
Since 0 < t < t0 < 1, we can use the bound

KH(t; δ) 6
c0

4πt
e−δ

2/(4t) ,

which gives
sinh(rX) sinh(δ)

sinh2(rX/2)
·KH(t; δ) 6

c0 sinh(rX) sinh(δ)
sinh2(rX/2)

· 1
4πt

e−δ
2/(4t) .
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It is elementary to compute that the maximum of e−a/t/t, as a function of t > 0 and fixed a > 0,
occurs when t = a, yielding the maximum value of e−1/a. Therefore, taking a = δ2/4, we get

c0 sinh(rX) sinh(δ)
sinh2(rX/2)

· 1
4πt

e−δ
2/(4t) 6

c0 sinh(rX) sinh(δ)
sinh2(rX/2)

· 1
πδ2

e−1 6
c0 sinh(rX) sinh(δ)

8δ2 sinh2(rX/2)
,

using that πe > 8; thus, we have computed the second term in the stated upper bound. For the last
term, we use the stated upper bound for KH(t; ρ) together with the trivial estimate sinh(x) 6 ex/2
in order to write

1
sinh2(rX/2)

∞∫
δ−4rX

KH(t; ρ) sinh(ρ+ 2rX)dρ 6
c0e

2rX

8πt · sinh2(rX/2)

∞∫
δ−4rX

e−ρ
2/(4t)+ρdρ .

Over the specified limits of integration, we have that ρ2 > ρ(δ − 4rX), so then

e−ρ
2/(4t)+ρ 6 e−ρ(δ−4rX)/(4t)+ρ = e−ρ(δ−4rX−4t)/(4t).

By assumption, δ > δX > 4rX + 5, so then for 0 < t < t0 < 1, we have that δ− 4rX − 4t > 1, hence
the exponential functions e−ρ

2/(4t)+ρ are integrable for all 0 < t < t0 near infinity. With this, we
then have

∞∫
δ−4rX

e−ρ
2/(4t)+ρdρ 6

∞∫
δ−4rX

e−ρ(δ−4rX−4t)/(4t)dρ =
4t

δ − 4rX − 4t
e−(δ−4rX)(δ−4rX−4t)/(4t) .

Since δ − 4rX − 4t > 1, we have δ − 4rX > 1, so then

4t
δ − 4rX − 4t

e−(δ−4rX)(δ−4rX−4t)/(4t) 6 4t · e−(δ−4rX)(δ−4rX−4t)/(4t) 6 4t .

Summing up, we find

1
sinh2(rX/2)

∞∫
δ−4rX

KH(t; ρ) sinh(ρ+ 2rX)dρ 6
c0e

2rX

2π sinh2(rX/2)
,

which completes the proof of (a).
We now prove part (b). To begin, we use the spectral decomposition of the heat kernel and the

triangle inequality to get∣∣∣Kε,δ
X (t; z, w)

∣∣∣ 6 ∑
λX,n>ε

|ϕX,n(z)ϕX,n(w)| e−λX,nt +
∑

γ∈SΓ(δ;z,w)

KH(t; dH(z, γw)) .

From section 2.6, we then have∑
γ∈SΓ(δ;z,w)

KH(t; dH(z, γw)) 6 #SΓ(δ; z, w) · sup
η∈[0,δ]

KH(t; η) 6
c∞ sinh(δ + rX)

sinh(rX)
e−t/4 ,

which yields one of the terms in the stated upper bound. For the other term, we note that

∑
λX,n>ε

|ϕX,n(z)ϕX,n(w)| e−λX,nt 6 1
2

 ∑
λX,n>ε

ϕ2
X,n(z)e−λX,nt +

∑
λX,n>ε

ϕ2
X,n(w)e−λX,nt

 ,

so it suffices to prove that ∑
λX,n>ε

ϕ2
X,n(z)e−λX,nt 6 CHKX · e−ε(t−t0) .
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For this, we consider the function

h(t; z) = eεt ·
∑

λX,n>ε

ϕ2
X,n(z)e−λX,nt .

For fixed z ∈ X, the function h(t; z) is monotone decreasing in t for all t > 0. In particular, we then
have

h(t; z) 6 h(t0; z) = eεt0 ·
∑

λX,n>ε

ϕ2
X,n(z)e−λX,nt0 6 eεt0 ·KX(t0; z) 6 CHKX · eεt0 .

Therefore, we end up with

0 6
∑

λX,n>ε

ϕ2
X,n(z)e−λX,nt = e−εt · h(t; z) 6 e−εt · CHKX · eεt0 = CHKX · e−ε(t−t0) .

With all this, part (b) is proved. 2

4.3. Remark. If needed, the estimates in Lemma 4.2 could be enhanced to reflect the role played
by δ. For example, the estimates for 0 < t < t0 can be easily improved so that the upper bound
approaches zero as δ increases. However, rather than further weigh down the above estimates, we
choose to underplay the role of δ solely because further bounds are not needed in the present article.

4.4. Lemma. For any z, w ∈ H with dH(z, w) ∈ [a, b], we have the estimate

|gH(z, w)| 6 max
{∣∣log(tanh2(a/2))

∣∣ , ∣∣log(tanh2(b/2))
∣∣} .

Proof. From [Bea95], p. 130, we have

gH(z, w) = − log
(
tanh2(dH(z, w)/2)

)
.

The function tanh(u) is monotone increasing for u > 0, so its maximum and minimum for u ∈ [a, b]
occur at the boundary, from which the lemma follows. 2

4.5. Theorem. Let c0, c∞, t0, rX , δX , and CHKX be as in sections 2.5 and 2.6. For any δ > 0, ε > 0,
and z, w ∈ X, we then have the estimate∣∣∣∣∣∣ghyp(z, w)−

∑
γ∈SΓ(δ;z,w)

gH(z, γw)−
∑

0<λX,n<ε

4π
λX,n

ϕX,n(z)ϕX,n(w)

∣∣∣∣∣∣ 6 BX,ε,δ ,
where

BX,ε,δ =



4π
(
CHKX · eεt0 +

c0 sinh(rX) sinh(δ)
8δ2 sinh2(rX/2)

+
c0e

2rX

2π sinh2(rX/2)
+

4c∞ sinh(δ + rX)
sinh(rX)

+
CHKX

ε

)
,

if δ > δX ;

4π
(
CHKX · eεt0 +

c0 sinh(rX) sinh(δX)
8δ2
X sinh2(rX/2)

+
c0e

2rX

2π sinh2(rX/2)
+

4c∞ sinh(δX + rX)
sinh(rX)

+
CHKX

ε

)

+
sinh(δX + rX)

sinh(rX)
max

{∣∣log(tanh2(δ/2))
∣∣ , ∣∣log(tanh2(δX/2))

∣∣} , if δ 6 δX .
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Proof. By the definition of Kε,δ
X (t; z, w) given in Lemma 4.2, we have

ghyp(z, w)−
∑

0<λX,n<ε

4π
λX,n

ϕX,n(z)ϕX,n(w)−
∑

γ∈SΓ(δ;z,w)

gH(z, γw) = 4π

∞∫
0

Kε,δ
X (t; z, w)dt .

If δ > δX , the result immediately follows from integrating the bounds from Lemma 4.2, taking into
account the decomposition

∞∫
0

∣∣∣Kε,δ
X (t; z, w)

∣∣∣ dt =

t0∫
0

∣∣∣Kε,δ
X (t; z, w)

∣∣∣ dt+

∞∫
t0

∣∣∣Kε,δ
X (t; z, w)

∣∣∣ dt .
On the other hand, if δ 6 δX , we simply write

Kε,δ
X (t; z, w) = Kε,δX

X (t; z, w) +
∑

γ∈SΓ(δX ;z,w)\SΓ(δ;z,w)

KH(t; dH(z, γw)) .

Then, taking absolute values and using the triangle inequality, the integral over |Kε,δX
X (t; z, w)| is

estimated as in the previous case using Lemma 4.2, but with δ replaced by δX , while the remaining
sum is estimated using Lemma 4.3 together with the bound

# (SΓ(δX ; z, w) \ SΓ(δ; z, w)) 6 #SΓ(δX ; z, w) 6
sinh(δX + rX)

sinh(rX)
.

The proof of the theorem is now complete. 2

4.6. Corollary. Let λX,1 and `X,0 be as in section 2.6, and put

F (z) =

∞∫
0

(
HKX(t; z)− 1

vX

)
dt (z ∈ X) .

For any ε ∈ (0, λX,1) and δ ∈ (0, `X,0), we then have the estimate

sup
z∈X
|F (z)| 6

BX,ε,δ
4π

,

where BX,ε,δ is as in Theorem 4.5.

Proof. The result follows immediately from the argument given in the proof of Theorem 4.5, taking
into account that for the stated choices of ε and δ, we have

HKX(t; z)− 1
vX

= Kε,δ
X (t; z, z) .

2

4.7. Proposition. Let λX,1 and dX be as in section 2.6, and H(z) as in Lemma 3.5. For any
Riemann surface X of genus gX > 1, we then have the estimate

0 6
π

2g2
X

∫
X

H(z)∆XH(z)µhyp(z) 6
π(dX + 1)2vX

2g2
XλX,1

.

Proof. With H(z) as in Lemma 3.5, we have as in Corollary 4.6

F (z) =

∞∫
0

(
HKX(t; z)− 1

vX

)
dt = H(z) +

cX − 1
vX

.
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It is elementary to show that∫
X

H(z)∆XH(z)µhyp(z) =
∫
X

F (z)∆XF (z)µhyp(z) ,

since

∆XF (z) = ∆XH(z) and
∫
X

∆XF (z)µhyp(z) = 0 .

Therefore, it suffices to prove that

0 6
∫
X

F (z)∆XF (z)µhyp(z) 6
(dX + 1)2vX

λX,1
,

which is precisely the statement from [JK05], Proposition 4.1, which we refer to for further details.
2

4.8. Theorem. Let λX,1, `X,0, cX , and dX be as in section 2.6. For any ε ∈ (0, λX,1), δ ∈ (0, `X,0),
and z, w ∈ X, we then have the estimate

|gcan(z, w)− ghyp(z, w)| 6
BX,ε,δ
gX

+
4π|cX − 1|
gXvX

+
π(dX + 1)2vX

g2
XλX,1

,

where BX,ε,δ is as in Theorem 4.5.

Proof. By combining Theorem 3.8 and Proposition 4.7, we get

|gcan(z, w)− ghyp(z, w)| 6 4π
gX

sup
z∈X
|H(z)|+ π(dX + 1)2vX

g2
XλX,1

.

By the definition of H(z) and F (z), we now derive from Corollary 4.6

sup
z∈X
|H(z)| 6 sup

z∈X
|F (z)|+ |cX − 1|

vX
6
BX,ε,δ

4π
+
|cX − 1|
vX

.

By combining the above estimates, the theorem is proved. 2

4.9. Theorem. Let λX,1, `X,0, cX , and dX be as in section 2.6. For any ε ∈ (0, λX,1), δ ∈ (0, `X,0),
and z, w ∈ X, we then have the estimate∣∣∣∣∣∣gcan(z, w)−

∑
γ∈SΓ(δ;z,w)

gH(z, γw)

∣∣∣∣∣∣ 6 AX,ε,δ ,
where

AX,ε,δ = BX,ε,δ +
BX,ε,δ
gX

+
4π|cX − 1|
gXvX

+
π(dX + 1)2vX

g2
XλX,1

with BX,ε,δ as in Theorem 4.5.

Proof. Since∣∣∣∣∣∣gcan(z, w)−
∑

γ∈SΓ(δ;z,w)

gH(z, γw)

∣∣∣∣∣∣ 6 |gcan(z, w)− ghyp(z, w)| +∣∣∣∣∣∣ghyp(z, w)−
∑

γ∈SΓ(δ;z,w)

gH(z, γw)

∣∣∣∣∣∣ ,
the claim follows immediately by combining the bounds in Theorem 4.5 and Theorem 4.8. 2
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4.10. Remark. Note that Theorem 4.5 follows from elementary considerations in hyperbolic geom-
etry. In order to prove Theorem 4.8, we needed the representation of the canonical Green’s function
in terms of the hyperbolic Green’s function, which we proved in Theorem 3.8. All quantities from
hyperbolic geometry which appear in the definition for AX,ε,δ are well-known invariants except for
cX . However, it has been recognized for some time that either cX or Z ′X(1) are global hyperbolic
invariants which determine the complexity of the Riemann surface X.

5. Uniform bounds for families of Riemann surfaces

In this section, we will study the upper bounds obtained in Theorem 4.5, Theorem 4.8 and Theo-
rem 4.9 for certain sequences of compact Riemann surfaces. For the purpose of notational conve-
nience, we will use the following definition.

5.1. Definition. Let {XN}, indexed by N ∈ N ⊆ N, be a sequence of compact Riemann surfaces
of genus gXN > 1 equipped with the hyperbolic metric µhyp. We will say that the sequence is
admissible, if it is of one of the following two types:

(i) N = N, and for each N ∈ N , the compact Riemann surface XN+1 is a finite degree cover of
XN .

(ii) The sequence is the subsequence of one of the families of modular curves {X0(N)}, {X1(N)},
or {X(N)} consisting of those modular curves having genus bigger than one.

Denote by p0 ∈ N the minimal element in case (i), i.e., p0 = 0, and the smallest prime in N in
case (ii).

5.2. Remark. In this section, we study the bounds stated in Theorem 4.5, Theorem 4.8 and
Theorem 4.9 for admissible sequences of compact Riemann surfaces. The purpose is to determine
the extent to which the derived bounds are uniform for all elements in the admissible sequence. We
will denote any bound by Op0 , which will signify an implied constant being universal for all Riemann
surfaces in the admissible sequence {XN}N∈N under consideration. Similar notation will be used
to denote constants, say c(p0), whose dependence is universal for all elements in the admissible
sequence.

5.3. Lemma. Let {XN}N∈N be an admissible sequence of compact Riemann surfaces. Then, the
hyperbolic invariants defined in section 2.6 satisfy the following bounds:

(a) There is a constant C1 = C1(p0) > 0 such that for all N ∈ N , we have `XN ,0 > C1 .

(b) There is a constant C2 = C2(p0) > 0 such that for all N ∈ N , we can take rXN = C2 .

(c) There is a constant C3 = C3(p0) > 0 such that for all N ∈ N , we have dXN 6 C3 .

(d) There is a constant C4 = C4(p0) > 0 such that for all N ∈ N , we have CHKXN
6 C4 .

(e) There is a constant C5 = C5(p0) > 0 such that for all N ∈ N , we have cXN 6 C5 · gXN /λXN ,1 .

Proof. Let us first prove the results for an admissible sequence of compact Riemann surfaces of type
(i), and then consider the case of an admissible sequence of type (ii), i.e., the sequences of modular
curves. In order to prove the lemma for an admissible sequence of compact Riemann surfaces of
type (i), we have to consider the pair of compact Riemann surfaces XN (N ∈ N) and X0, where
XN is a finite degree cover of X0.

By taking C1 = `X0,0, part (a) follows from the observation that `XN ,0 > `X0,0. Since the only
requirement on rXN is that rXN ∈ (0, `XN ,0), part (b) follows from (a) by choosing, e.g., C2 = C1/2.
The bound in (c) is stated as the main theorem in [Don96] (see also [JK04]). For part (d), we argue
as follows. As usual, we have XN = ΓN\H and X0 = Γ0\H for suitable subgroups ΓN and Γ0 in
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PSL2(R). Since ΓN is a subgroup of Γ0, we have the trivial bound KXN (t; z) 6 KX0(t; z), from
which part (d) follows by taking C4 = CHKX0

. Finally, for part (e), we refer to the main results in
[JK01], where upper and lower bounds for cXN are proved. The upper bound stated here comes
from the proof of Theorem 4.7 in [JK01]. In particular, one has to use the top displayed line on
p. 21 there with δ = 5 and ε ∈ (0, α), α = min{7/64, λXN ,1}. From this point on, one then uses the
following bounds: The number of small eigenvalues less than ε is one, namely the zero eigenvalue;
the number of elements in H(ΓN ) of length at most 5 is bounded by Op0(gXN ), as argued in the
proof of Theorem 4.11 in [JK01]; and the constant CXN ,ε defined on p. 20 in [JK01] is bounded
by Op0(gXN ), which is proved by combining the main result in [JK02] and the well-known estimate
that the number of eigenvalues less than 1/4 is O(gXN ), with an implied constant which is universal.
We also refer to [JK05], Proposition 4.2, for a proof of part (e).

Let us now consider the stated assertions for the admissible sequences of modular curves. For
this, complete proofs of parts (a), (c), (e) are given in [JK05], Proposition 5.3 for the sequence of
modular curves {X0(N)}N∈N , while part (b) follows again directly from (a). The proof of all parts
of Proposition 5.3 in [JK05] extend with only notational changes to the other sequences of modular
curves {X1(N)}N∈N , resp. {X(N)}N∈N ; one only has to observe that, if p is a prime in N , then
deg(X1(p0p)/X1(p0)) = O(gX1(p)), resp. deg(X(p0p)/X(p0)) = O(gX(p)), with implied constants
which are universal. The verification of the latter claim follows directly from known formulas (see,
e.g., [Shi94]).

Finally, it remains to prove part (d) for the sequences of modular curves. We give a proof of
(d) for the sequence of modular curves {X0(N)}N∈N . For a prime p > p0 in N , consider the finite
degree cover X0(p0p) −→ X0(p). Since

KX0(p)(t; z, w) =
∑

γ∈Γ0(p0p)\Γ0(p)

KX0(p0p)(t; z, γw)

by the existence and uniqueness of heat kernels, we find

KX0(p)(t; z) 6
1
2

∑
γ∈Γ0(p0p)\Γ0(p)

(
KX0(p0p)(t; z) +KX0(p0p)(t; γz)

)
.

This shows

CHKX0(p) 6 (p0 + 1) · CHKX0(p0p)
.

Using the trivial inequality CHKX0(p0p)
6 CHKX0(p0), we get CHKX0(p) 6 (p0 + 1) · CHKX0(p0) for all primes

p ∈ N . The claimed bound for CHKX0(N) now follows by the same principle as used in the proof of
Proposition 5.3 in [JK05]. The proof for the other sequences of modular curves {X1(N)}N∈N , resp.
{X(N)}N∈N is analoguous. 2

5.4. Remark. The proofs of parts (a), (b), (c), (d) in Lemma 5.3 are elementary and follow from
standard arguments in hyperbolic geometry and analysis. Part (e) is considerably more involved.
As can be seen from [JK01] and [JK05], the bound stated in (e) ultimately reduces to two bounds:
The number of eigenvalues less than 1/4, and the implied constant in the error term of the prime
geodesic theorem. The latter constant is the focus of study in [JK02].

5.5. Theorem. Let {XN}N∈N be an admissible sequence of compact Riemann surfaces. For any
δ > 0, ε > 0 and N ∈ N , we then have the estimate

ghyp,XN (z, w)−
∑

γ∈SΓN
(δ;z,w)

gH(z, γw)−
∑

0<λXN,n<ε

4π
λXN ,n

ϕXN ,n(z)ϕXN ,n(w) = Op0,ε,δ(1) .

Here, we have written ghyp,XN (z, w) instead of ghyp(z, w) for the hyperbolic Green’s function on
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XN = ΓN\H in order to emphasize the dependence on XN .

Proof. The bound follows directly by combining Theorem 4.5 with parts (b) and (d) of Lemma 5.3,
as well as the definition of δX in terms of rX , e.g., by simply taking δX = max{δ0, 4rX + 5}+ 1 (see
section 2.6). 2

5.6. Theorem. Let {XN}N∈N be an admissible sequence of compact Riemann surfaces. For any
N ∈ N , we then have the estimate

gcan,XN (z, w)− ghyp,XN (z, w) = Op0

(
1
gXN

(
1 +

1
λXN ,1

))
.

Here, we have written gcan,XN (z, w) instead of gcan(z, w) for the canonical Green’s function on XN .

Proof. Taking ε < 1, using parts (b), (d) of Lemma 5.3, and choosing δ = C1/2 with the constant
C1 of Lemma 5.3 (a), we derive from the explicit formula for BXN ,ε,δ as stated in Theorem 4.5 that

BXN ,ε,δ = Op0

(
1 +

1
ε

)
.

Now we turn to the bound given in Theorem 4.8. Then, by taking ε = min{1/2, λXN ,1/2}, and using
parts (c), (e) of Lemma 5.3, the result follows. 2

5.7. Corollary. Let {XN}N∈N be an admissible sequence of compact Riemann surfaces. For any
δ > 0 and N ∈ N , we then have the estimate

gcan,XN (z, w)−
∑

γ∈SΓN
(δ;z,w)

gH(z, γw) = Op0,δ

(
1 +

1
λXN ,1

)
;

again, we have written gcan,XN (z, w) instead of gcan(z, w) for the canonical Green’s function on
XN = ΓN\H.

Proof. The claim follows by combining Theorem 5.5 with ε = min{1/2, λXN ,1/2} with Theorem 5.6
after having used the triangle inequality. 2

5.8. Corollary. Let {XN}N∈N be an admissible sequence of compact Riemann surfaces. For any
N ∈ N , we then have the estimate

max
z∈XN

|φAr(z)| = Op0

(
1 +

1
λXN ,1

)
;

here the C∞-function φAr has been introduced in section 2.2, formula (1).

Proof. Using the known formula for gH(z, w), as stated in section 2.3, we can write

gcan,XN (z, w)− gH(z, w) = gcan,XN (z, w) + log |z − w|2 − log |z − w̄|2 .

Therefore, when using the definition of the residual metrics as given in section 2.2, we then have

lim
w→z

(gcan,XN (z, w)− gH(z, w)) = log ‖dz‖2can,res − log(2 Im(z))2 =

log

(
‖dz‖2can, res

Im2(z)

)
− log(4) = log

(
µhyp(z)
µAr(z)

)
− log(4) = −φAr(z)− log(4) .

From this, the asserted result follows directly from Corollary 5.7 by taking δ = C1/2 (see Lemma 5.3
(a)). 2

5.9. Lemma. Let X be any of the modular curves X0(N), X1(N) or X(N) having genus bigger
than one. Then, there is a constant c > 0 satisfying λX,1 > c.
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Proof. We recall from [Bro99], Theorem 3.1, that

lim inf
N→∞

λX(N),1 > 5/36 .

Hence, there is a constant c > 0, independent of N , such that λX(N),1 > c for all N > N0, for some
N0, thus, the claim holds for the modular curves X(N) of genus bigger than one. Since X(N) is a
cover of X0(N), resp. X1(N), the Raleigh quotient method for estimating eigenvalues, which shows
that the smallest eigenvalue decreases through covers, now implies that λX(N),1 6 λX0(N),1, resp.
λX(N),1 6 λX1(N),1, which completes the proof. 2

5.10. Corollary. Let {XN}N∈N be an admissible sequence of compact Riemann surfaces of type
(ii), i.e., of modular curves. For any N ∈ N , we then have the following estimates:

(a)

max
z,w∈XN

|gcan,XN (z, w)− ghyp,XN (z, w)| = Op0

(
1
gXN

)
;

(b)

max
z,w∈XN

∣∣∣∣∣∣gcan,XN (z, w)−
∑

γ∈SΓN
(δ;z,w)

gH(z, γw)

∣∣∣∣∣∣ = Op0,δ(1) (δ > 0);

(c)

max
z∈XN

|φAr(z)| = Op0(1) .

Proof. Combine Lemma 5.9 with the previous results, namely: Theorem 5.6 for part (a), Corol-
lary 5.7 for part (b), and Corollary 5.8 for part (c). 2

5.11. Remark. It is immediate from Theorem 5.6, Corollary 5.7, and Corollary 5.8 that Corol-
lary 5.10 holds for any admissible sequence, which admits a universal non-zero lower bound for
λXN ,1. For an arbitrary cover X1 of X0, we claim that

1
λX1,1

= OX0

(
g2
X1

)
.

For this, one applies [Cha84], Theorem 14, p. 112, which reduces the problem to that of bounding
an isoperimetric constant associated to X1 as a function of the degree deg(X1/X0), and the bound
needed to prove this claim follows immediately from the definition of the isoperimetric constant in
question (see also [Cha84], Theorem 12, p. 111 and Definition 5, p. 110).

5.12. Remark. As stated in the introduction, this paper was motivated by a question from B. Edix-
hoven who asked for bounds for the canonical Green’s function on X1(N). Recall that, as stated in
the proof of Lemma 4.4, the hyperbolic Green’s function gH(z, w) (z, w ∈ H) is expressible in terms
of elementary functions. Combining this expression with Corollary 5.10 (b) provides the upper and
lower bounds sought by B. Edixhoven.

5.13. Remark. In a slightly more general situation, one can restrict attention to arbitrary compact
subsets of XN , and consider admissible sequences of non-compact hyperbolic surfaces. Beginning
with Lemma 4.2, the constant rXN would then be bounded away from zero with a lower bound which
depends on the subset of XN under consideration. The resulting bound for hyperbolic heat kernels
and hyperbolic Green’s functions then can be applied throughout the subsequent calculations. By
doing so, one can address the problem of understanding the asymptotic behavior of the canonical
Green’s function for a degenerating family of algebraic curves approaching the Deligne-Mumford
boundary of the moduli space of stable curves of a fixed positive genus, as first studied in [Jor90].
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5.14. Remark. In his recent work [Küh05], U. Kühn uses the analysis of the present paper and
from [JK04] to derive bounds for the arithmetic self-intersection number of the relative dualizing
sheaf on an arithmetic surface. By revisiting the analytic component of the computations in [AU97],
he is able to both simplify the method of proof given in [AU97] and to provide a technique which
extends to the modular curves X1(N) and X(N).
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