Summer term 2008

Stochastic Processes II (Stochastische Analysis) Prof. Dr. Uwe Küchler Dr. Irina Penner

Exercises, 18th June

- 10.1 (4 points) Let X be an adapted continuous process on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)$ with continuous quadratic variation $\langle X \rangle_t$ and let A be an adapted continuous increasing process with $A_0 = 0$. Prove that the following are equivalent:
 - a) X is a local martingale with $\langle X \rangle_t = A_t P$ -a.s. for all $t \ge 0$.
 - b) The process

$$G_t^{\alpha} := \exp\left(\alpha X_t - \frac{1}{2}\alpha^2 A_t\right), \qquad t \ge 0,$$

is a local martingale for every $\alpha \in \mathbb{R}$.

- 10.2 (4+4 points) Let B be a Brownian motion, and let $h : [0, \infty) \to \mathbb{R}$ be a continuous function of finite variation. Show that:
 - a) The processes

$$M_t := \int_0^t h(s) dB_s, \qquad t \ge 0,$$

and

$$\mathcal{E}(M)_t := \exp(M_t - \frac{1}{2} \langle M \rangle_t), \qquad t \ge 0,$$

are continuous martingales.

b) The sets

$$\{\mathcal{E}(M)_{\infty} = 0\}$$
 and $\{\langle M \rangle_{\infty} = \infty\}$

coincide P-a.s..

- 10.3 (2+4+1 points) Let $\tau^n = \{0 = t_0^1 < \ldots < t_{k_n}^n = T\}$ $(n = 1, 2, \ldots)$ a sequences of partitions of the interval [0, T] with $|\tau^n| \to 0$. Show that
 - a) If $A : [0,T] \to \mathbb{R}$ is a continuous function of finite variation with $A_0 = 0$, then

$$\sum_{t_i^n \in \tau^n, t_i^n < T} A_{\theta_i^n} (A_{t_{i+1}^n} - A_{t_i^n}) \to \frac{1}{2} A_T^2$$

for any choice of the points $\theta_i^n \in [t_i^n, t_{i+1}^n]$ $(i = 0, \dots, k_n - 1, n \in \mathbb{N})$. b) For a Brownian motion B and $\lambda \in [0, 1]$ both

$$S_{\lambda}^{n} := \sum_{t_{i}^{n} \in \tau^{n}, t_{i}^{n} < T} (\lambda B_{t_{i}} + (1 - \lambda) B_{t_{i+1}}) (B_{t_{i+1}} - B_{t_{i}})$$

and

$$\bar{S}_{\lambda}^{n} := \sum_{t_{i}^{n} \in \tau^{n}, t_{i}^{n} < T} B_{\lambda t_{i} + (1-\lambda)t_{i+1}} (B_{t_{i+1}} - B_{t_{i}})$$

converge in L^2 to

$$\frac{1}{2}B_T^2 + \left(\frac{1}{2} - \lambda\right)T.$$

c) For which λ is $\frac{1}{2}B_t^2 + (\frac{1}{2} - \lambda)t (t \ge 0)$ a martingale?

The problems 10.1 -10.3 should be solved at home and delivered at Wednesday, the 25th June, before the beginning of the tutorial.