Exercises, 25th June

11.1 ($2+4$ points) Let B be a standard d-dimensional Brownian motion.
a) Prove the "0-1-law" for the "tail" σ-field

$$
\hat{\mathcal{F}}:=\bigcap_{t \geq 0} \sigma\left(X_{s}, s \geq t\right),
$$

i.e. show that $P[A] \in\{0,1\}$ for every $A \in \hat{\mathcal{F}}$.
b) Use a) to prove the Liouville's Theorem: All bounded harmonic functions on \mathbb{R}^{d} are constant. (A function h is called harmonic if the Laplace-operator $\Delta h=0$.)
11.2 ($1+5$ points) Let B be a standard Brownian motion on the Wiener space, and let $X_{t}=B_{t}+\alpha t(t \in[0, T])$ be the corresponding Brownian motion with drift $\alpha \in \mathbb{R}$ and start in $X_{0}=0$. Show that:
a) The distribution P^{α} of X is equivalent to the Wiener measure P with the density function

$$
\frac{d P^{\alpha}}{d P}=\exp \left(\alpha B_{T}-\frac{1}{2} \alpha^{2} T\right) .
$$

b) The distribution of the maximum

$$
M_{T}=\max _{0 \leq t \leq T} X_{t}
$$

under P resp. the distribution of $\max _{0 \leq t \leq T} B_{t}$ under P^{α} is given by

$$
P\left[M_{T} \leq c\right]=\Phi\left(\frac{c-\alpha T}{\sqrt{T}}\right)-e^{2 \alpha c} \Phi\left(\frac{-c-\alpha T}{\sqrt{T}}\right), \quad c \geq 0 .
$$

Hint: Use the "reflection principle" for the joint distribution of B_{T} and $\max _{0 \leq t \leq T} B_{t}$ under P :

$$
P\left[\max _{t \in[0, T]} B_{t} \geq m, B_{T} \leq m-x\right]=P\left[B_{T} \geq m+x\right] \text { for } m, x \geq 0
$$

11.3 (4 points) Let $A, T:[0, \infty) \rightarrow[0, \infty)$ be two continuous increasing functions. We consider A as a distribution function of a positive measure $d A$ on $[0, \infty)$ and interprete T as time change. Prove the following formula:

$$
\int_{T_{0}}^{T_{t}} f(s) d A_{s}=\int_{0}^{t} f\left(T_{s}\right) d A_{T_{s}}
$$

for all measurable functions $f:[0, \infty) \rightarrow[0, \infty)$.
11.4 (4 extra points) Let B^{x} be a 3 -dimensional Brownian motion starting at $0 \neq x \in \mathbb{R}^{3}$, i.e. $B^{x}=x+B$, where B is a standard 3 -dimensional Brownian motion. Let further

$$
M_{t}:=\frac{1}{\left|B_{t}^{x}\right|}, \quad t \geq 0
$$

Show that
a) M solves $d M_{t}=M_{t}^{2} d B_{t}$ and thus is a local martingale.
b) M is bounded in L^{2}, i.e. $\sup _{t \geq 0} E\left[M_{t}^{2}\right]<\infty$, and hence M is uniformly integrable.
c) We have $\lim _{t \rightarrow \infty} E\left[M_{t}\right]=0$. In particular M is not a "real" martingale.

Problems 11.1-11.3 should be solved at home and delivered at Wednesday, the 2nd July, before the beginning of the tutorial. Problem 11.4 is additional.

