Stochastic Processes II

Exercises, 23rdth April

2.1 (2 points) Let $\left(B_{t}^{i}, t \geq 0\right), i=1,2$ be two independent Standard Brownian motions on some probability space (Ω, \mathcal{F}, P). Prove that

$$
B_{t}:=\frac{1}{\sqrt{2}}\left(B_{t}^{1}+B_{t}^{2}\right), \quad t \geq 0
$$

is also a Standard Brownian motion.
2.2 ($2+2$ points) Let a be a continuous function of finite variation and let x be a continuous function with continuous quadratic variation $\langle x\rangle$ on $[0, T]$.
a) Show that $x+a$ has continuous quadratic variation and

$$
\langle x+a\rangle=\langle x\rangle .
$$

b) Show that for $f \in C^{1}[0, T]$ and $t \in[0, T]$ there exists the Itô-Integral

$$
\int_{0}^{t} f\left(x_{s}+a_{s}\right) d x_{s}
$$

and for $y:=x+a$ it holds

$$
\int_{0}^{t} f\left(x_{s}+a_{s}\right) d x_{s}=\int_{0}^{t} f\left(y_{s}\right) d y_{s}-\int_{0}^{t} f\left(y_{s}\right) d a_{s}
$$

2.3 ($2+2$ points) Let $\left(B_{t}, t \geq 0\right)$ be a Standard Brownian motion on some probability space (Ω, \mathcal{F}, P).
a) Compute

$$
\int_{0}^{t} B_{s}^{n} d B_{s}
$$

where $n \in \mathbb{N}$.
b) Let

$$
W_{t}:=\sigma B_{t}+\mu t, \quad t \geq 0
$$

for some $\sigma \neq 0, \mu \in \mathbb{R}$. Show that

$$
X_{t}:=\exp \left(\sigma B_{t}+\mu t-\frac{\sigma^{2}}{2} t\right), \quad t \geq 0
$$

is a solution of a stochastic differential equation

$$
d X_{t}=X_{t} d W_{t}, \quad X_{0}=1
$$

in the Itô-sense.
$2.4\left(1+2+2\right.$ points) Let $\left(B_{t}\right)_{t \geq 0}$ be a Standard Brownian motion on some probability space (Ω, \mathcal{F}, P).
a) Let $h(s)(0 \leq s \leq 1)$ be a continuous function of finite variation and with $h(1)=0$. Using Itô's product formula show that for P-almost each trajectory $B(\omega)$ the equality

$$
\begin{equation*}
\int_{0}^{1} h(s) d B_{s}(\omega)=-\int_{0}^{1} B_{s}(\omega) d h(s) \tag{1}
\end{equation*}
$$

holds, and conclude that

$$
E\left[\int_{0}^{1} h(s) d B_{s}\right]=0 .
$$

b) Wiener and Paley have used (1) for definition of stochastic integral on the left-hand side (the right-hand side is well defined in classical measure theory). Moreover, they have extended the definition of the integral for arbitrary deterministic integrals $h \in L^{2}[0,1]$ using the isometry

$$
\begin{equation*}
E\left[\left(\int_{0}^{1} h(s) d B_{s}\right)^{2}\right]=\int_{0}^{1} h(s)^{2} d s \tag{2}
\end{equation*}
$$

Prove (2) and sketch the construction of the "Wiener-integral" via isometry.
c) Show that the random variable $M_{t}:=\int_{0}^{t} h(s) d B_{s}$ is normally distributed with expectation 0 and variance $\int_{0}^{t}(h(s))^{2} d s$ for each $t \in$ [0, 1].
Hint: The limit of P-a.s. convergent normally distributed random variables is again a normally distributed random variable.

The problems 2.1-2.4 should be solved at home and delivered at Wednesday, the 30th April, before the beginning of the tutorial.

