Stochastic Processes II
(Stochastische Analysis)
Prof. Dr. Uwe Küchler
Dr. Irina Penner

Exercises, 7th Mai

4.1 (3 points) We denote by $h_{n}(x, t), n=0,1, \ldots$ the Hermite-polynomials defined by

$$
\exp \left(\alpha x-\frac{1}{2} \alpha^{2} t\right)=\sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!} h_{n}(x, t), \quad x \in \mathbb{R}, t \geq 0
$$

i.e.

$$
h_{n}(x, t)=\left.\frac{d^{n}}{d \alpha^{n}} \exp \left(\alpha x-\frac{1}{2} \alpha^{2} t\right)\right|_{\alpha=0} .
$$

Show that for a continuous function $\left(x_{t}\right)_{t \geq 0}$ with continuous quadratic variation $\langle x\rangle$ and $x_{0}=0$ it holds

$$
\begin{aligned}
h_{n}\left(x_{t},\langle x\rangle_{t}\right) & =n \int_{0}^{t} h_{n-1}\left(x_{s},\langle x\rangle_{s}\right) d x_{s} \\
& =n!\int_{0}^{t} \cdots \int_{0}^{t_{n-1}} d x_{t_{n}} \ldots d x_{t_{1}}, \quad n=1,2, \ldots
\end{aligned}
$$

In particular the functions $H_{n}:=h_{n}(x,\langle x\rangle), n=0,1, \ldots$ solve the Itôequation

$$
d H_{n}=n H_{n-1} d x .
$$

4.2 (4 points) Let $\left(X_{t}, t \geq 0\right)$ be a geometric Brownian motion, i.e.

$$
X_{t}=x_{0} \exp \left(\sigma B_{t}+\alpha t\right), \quad t \geq 0
$$

where $x_{0}>0$ is a real number, $\left(B_{t}, t \geq 0\right)$ a Standard Brownian motion and $\sigma>0, \alpha \in R_{1}$.
i) Calculate all moments $E\left[X_{t}^{p}\right], \quad t \geq 0, p \in R$.
ii) For which σ, α the process $\left.X_{t}, t \geq 0\right)$ is a martingale?
iii) Prove that for every $n \geq 1$ the process $\left(h_{n}\left(B_{t}, t\right)\right.$, $\left.t \geq 0\right)$ is a martingale. (Notation as in exercise 4.1)
4.3 (3 points) Let $\left(B_{t}, t \geq 0\right)$ be a Standard Brownian motion.
i) Show that for $\alpha, \sigma, x_{0} \in R$ the solution of

$$
d X_{t}=-a X_{t} d t+\sigma d B_{t}, \quad X_{0}=x_{0}
$$

is given by

$$
\begin{aligned}
X_{t} & =\mathrm{e}^{-a t}\left(x_{0}+\int_{0}^{t} \mathrm{e}^{a s} \sigma d B_{s}\right) \\
& =\mathrm{e}^{-a t} x_{0}+\sigma B_{t}-a \sigma \int_{0}^{t} \mathrm{e}^{-a(t-s)} B_{s} d s, t \geq 0
\end{aligned}
$$

ii) Calculate $E\left[X_{t}\right], \operatorname{Var}\left[X_{t}\right], \operatorname{Cov}\left[X_{s}, X_{t}\right]$ for $s, t \geq 0$. ($\left(X_{t}\right)$ is called the Ornstein-Uhlenbeck-process.)
4.4 (3 points) Consider the Brownian Bridge

$$
Z_{t}:=(1-t) \int_{0}^{t} \frac{1}{1-s} d B_{s}, \quad t \in[0,1], Z_{1}:=0
$$

(with $\left(B_{t}\right)_{0 \leq t \leq 1}$ standard BM).
Show that Z solves the Itô-equation

$$
d Z_{t}=d B_{t}-\frac{Z_{t}}{1-t} d t
$$

on $(0,1)$ with $Z_{0}=Z_{1}=0$.

