Exercises, 21st May

6.1 (4 points) Let $\left(M_{t}\right)_{t \geq 0}$ be a non-negative continuous martingale that converges to 0 with $t \rightarrow \infty$ and let $M^{*}:=\sup _{t \geq 0} M_{t}$. For $x>0$ prove the following inequality

$$
P\left[M^{*} \geq x \mid \mathcal{F}_{0}\right]=1 \wedge \frac{M_{0}}{x} .
$$

Hint: Consider $T_{x}:=\inf \left\{t \geq 0 \mid M_{t} \geq x\right\}$ and apply the martingale convergence theorem to the process $\left(M_{T_{x} \wedge t}\right)_{t \geq 0}$.
6.2 ($2+2$ points) Use problem 1 to determine distribution functions of the following random variables:
a) The maximum of a Brownian motion with start in $x>0$ before the first visit in 0 .
b) The maximum of a Brownian motion with start in 0 and with a negative drift $-m<0$, i.e. $M^{*}:=\sup _{t \geq 0}\left(B_{t}-m t\right)$, where $\left(B_{t}\right)$ denotes a standard Brownian motion.
Hint: Consider $M_{t}:=\exp \left(2 m\left(B_{t}-m t\right)\right)(t \geq 0)$.
6.3 (3+2 points) Let

$$
X_{t}=x+\sigma B_{t}+m t \quad(t \geq 0)
$$

be a Brownian motion with start in $x \in \mathbb{R}$, variance $\sigma^{2}>0$ and drift $m \in \mathbb{R}$. (Here $\left(B_{t}\right)_{t \geq 0}$ denotes a standard Brownian motion.)
a) For $a<x<b$ compute the probability that X attains the value b before a.
Hint: For $m \neq 0$ determine $\lambda \in \mathbb{R}$ such that $\left(e^{\lambda X_{t}}\right)_{t \geq 0}$ is a martingale.
b) If $m \geq 0$, the stopping time $T_{b}:=\inf \left\{t \geq 0 \mid X_{t}=b\right\}$ is a.s. finite. Compute the Laplace-transform $E\left[e^{-\lambda T_{b}}\right](\lambda \geq 0)$.
6.4 (5 points) Let U be a uniformly integrable set of random variables and let \bar{U} denote the closure of U in $L^{1}(P)$. Prove that \bar{U} is also uniformly integrable.

The problems 6.1-6.4 should be solved at home and delivered at Wednesday, the 28th May, before the beginning of the tutorial.

