Stochastic Processes II (Stochastische Analysis) Prof. Dr. Uwe Küchler Dr. Irina Penner

Exercises, 21st May

6.1 (4 points) Let $(M_t)_{t\geq 0}$ be a non-negative continuous martingale that converges to 0 with $t \to \infty$ and let $M^* := \sup_{t\geq 0} M_t$. For x > 0 prove the following inequality

$$P[M^* \ge x \,|\, \mathcal{F}_0\,] = 1 \wedge \frac{M_0}{x}.$$

Hint: Consider $T_x := \inf \{ t \ge 0 | M_t \ge x \}$ and apply the martingale convergence theorem to the process $(M_{T_x \land t})_{t \ge 0}$.

- 6.2 (2+2 points) Use problem 1 to determine distribution functions of the following random variables:
 - a) The maximum of a Brownian motion with start in x > 0 before the first visit in 0.
 - b) The maximum of a Brownian motion with start in 0 and with a negative drift -m < 0, i.e. $M^* := \sup_{t \ge 0} (B_t mt)$, where (B_t) denotes a standard Brownian motion. Hint: Consider $M_t := \exp(2m(B_t - mt))$ $(t \ge 0)$.
- 6.3 (3+2 points) Let

$$X_t = x + \sigma B_t + mt \qquad (t \ge 0)$$

be a Brownian motion with start in $x \in \mathbb{R}$, variance $\sigma^2 > 0$ and drift $m \in \mathbb{R}$. (Here $(B_t)_{t \geq 0}$ denotes a standard Brownian motion.)

a) For a < x < b compute the probability that X attains the value b before a.

Hint: For $m \neq 0$ determine $\lambda \in \mathbb{R}$ such that $(e^{\lambda X_t})_{t \geq 0}$ is a martingale.

- b) If $m \ge 0$, the stopping time $T_b := \inf\{t \ge 0 \mid X_t = b\}$ is a.s. finite. Compute the Laplace-transform $E[e^{-\lambda T_b}]$ $(\lambda \ge 0)$.
- 6.4 (5 points) Let U be a uniformly integrable set of random variables and let \overline{U} denote the closure of U in $L^1(P)$. Prove that \overline{U} is also uniformly integrable.

The problems 6.1 -6.4 should be solved at home and delivered at Wednesday, the 28th May, before the beginning of the tutorial.