Stochastic Processes II (Stochastische Analysis) Prof. Dr. Uwe Küchler Dr. Irina Penner

Exercises, 28th May

7.1 (4+3+1 points) For a standard Brownian motion $(B_t)_{t\geq 0}$ and $a \geq 0$ consider the first hitting time

$$T_a := \inf \{ t \ge 0 \mid B_t = a \} = \inf \{ t \ge 0 \mid B_t \ge a \}$$

and the first passage time

$$T_{a^+} := \inf \{ t \ge 0 \mid B_t > a \}.$$

Show that:

- a) The process T_a $(a \ge 0)$ is a left-continuous increasing process, and the process T_{a^+} $(a \ge 0)$ is its right-continuous version, i.e. $T_{a^+} = \lim_{b \downarrow a} T_b$ and $P[T_a = T_{a^+}] = 1$ for all $a \ge 0$.
- b) For b > a is $T_b T_a$ independent of \mathcal{A}_{T_a} and has the same distribution as T_{b-a} , i.e. it the process T_a $(a \ge 0)$ has stationary independent increments.
- c) T_a and a^2T_1 have the same distribution for all $a \ge 0$.
- 7.2 (3+2 points) Let $(\mathcal{A}_t)_{t\geq 0}$ be a filtration satisfying usual conditions. An adapted cadlag process $(X_t)_{t\geq 0}$ with $X_0 = \text{const}$ is called a local martingale, if there exists a "localizing sequence" of stopping times $(T_n)_{n\in\mathbb{N}}$, such that $T_n \to \infty$ *P*-a.s., and the stopped process $(X_{t\wedge T_n})_{t\geq 0}$ is a martingale with respect to $(\mathcal{A}_t)_{t\geq 0}$ for all $n \in \mathbb{N}$. Let $(X_t)_{t\geq 0}$ be a local martingale. Show that:
 - a) If (X_t) is continuous, then the sequence of stopping times

$$S_n := \inf \left\{ t \ge 0 \mid |X_t| > n \right\} \qquad (n \in \mathbb{N})$$

is a localizing sequence for (X_t) , and also any other sequence of stopping times $(R_n)_{n\in\mathbb{N}}$ with $R_n \leq S_n$ and $R_n \to \infty$ *P*-a.s. Thus we can assume without loss of generality that $(X_{t\wedge T_n})_{t\geq 0}$ is bounded for all $n \in \mathbb{N}$. b) If $X_t \ge 0$ for all $t \ge 0$, then $(X_t)_{t\ge 0}$ is a supermartingale.

7.3 (3+2 points)

- a) Let $(M_t)_{t\geq 0}$ be a continuous process such that both $(M_t, \mathcal{A}_t, t \geq 0)$ and $(M_t^2, \mathcal{A}_t, t \geq 0)$ are local martingales. Prove that the process (M_t) is *P*-a.s. constant.
- b) Let $(M_t, \mathcal{A}_t, t \ge 0)$ be a continuous local martingale with paths of finite variation. Prove that the process (M_t) is *P*-a.s. constant.

The problems 7.1 -7.3 should be solved at home and delivered at Wednesday, the 4th June, before the beginning of the tutorial.