Summer term 2008

Stochastic Processes II

(Stochastische Analysis) Prof. Dr. Uwe Küchler Dr. Irina Penner

Exercises, 11th June

- 9.1 (1+1+1 points) Prove the following properties of the covariation $\langle M, N \rangle$ of two continuous local martingales M and N:
 - a) $\langle M, N \rangle = \langle N, M \rangle$,
 - b) $\langle \alpha M, N \rangle = \alpha \langle M, N \rangle, \quad \alpha \in \mathbb{R}.$
 - c) If N_1 and N_2 are two continuous local martingales, then $\langle M, N_1 + N_2 \rangle = \langle M, N_1 \rangle + \langle M, N_2 \rangle$.
- 9.2 (8 points) Let M be a continuous local martingale. Prove that the sets $\left\{ \lim_{t \to \infty} M_t \text{ exists and is finite} \right\}$ and $\left\{ \langle M \rangle_{\infty} < \infty \right\}$ coincide P-a.s..
- 9.3 (3 points) Let $M, N \in \mathcal{H}^2$ with $M_0 = N_0 = 0$. The martingales M and N are called *weakly orthogonal* if $E[M_sN_t] = 0$ for every s and $t \ge 0$. Prove that the following properties are equivalent:
 - a) M and N are weakly orthogonal,
 - b) $E[M_s N_s] = 0$ for every $s \ge 0$,
 - c) $E[\langle MN \rangle_s] = 0$ for every $s \ge 0$,
 - d) $E[M_{\tau}N_s] = 0$ for every $s \ge 0$ and every stopping time $\tau \ge s$.

9.4 (4 points) Use the Itô-isometry to compute the variance of

$$\int_0^t |B_s|^p dB_s \quad \text{and} \quad \int_0^t (B_s + s)^2 dB_s \quad (t, p \ge 0)$$

for a standard Brownian motion B.

The problems 9.1 -9.4 should be solved at home and delivered at Wednesday, the 18th June, before the beginning of the tutorial.