Stochastic Processes II

Exercises, 11th June

$9.1(1+1+1$ points) Prove the following propeties of the covariation $\langle M, N\rangle$ of two continuous local martingales M and N :
a) $\langle M, N\rangle=\langle N, M\rangle$,
b) $\langle\alpha M, N\rangle=\alpha\langle M, N\rangle, \quad \alpha \in \mathbb{R}$.
c) If N_{1} and N_{2} are two continuous local martingales, then $\left\langle M, N_{1}+N_{2}\right\rangle=\left\langle M, N_{1}\right\rangle+\left\langle M, N_{2}\right\rangle$.
9.2 (8 points) Let M be a continuous local martingale. Prove that the sets

$$
\left\{\lim _{t \rightarrow \infty} M_{t} \text { exists and is finite }\right\} \quad \text { and } \quad\left\{\langle M\rangle_{\infty}<\infty\right\}
$$

coincide P-a.s..
9.3 (3 points) Let $M, N \in \mathcal{H}^{2}$ with $M_{0}=N_{0}=0$. The martingales M and N are called weakly orthogonal if $E\left[M_{s} N_{t}\right]=0$ for every s and $t \geq 0$. Prove that the following properties are equivalent:
a) M and N are weakly orthogonal,
b) $E\left[M_{s} N_{s}\right]=0$ for every $s \geq 0$,
c) $E\left[\langle M N\rangle_{s}\right]=0$ for every $s \geq 0$,
d) $E\left[M_{\tau} N_{s}\right]=0$ for every $s \geq 0$ and every stopping time $\tau \geq s$.
9.4 (4 points) Use the Itô-isometry to compute the variance of

$$
\int_{0}^{t}\left|B_{s}\right|^{p} d B_{s} \quad \text { and } \quad \int_{0}^{t}\left(B_{s}+s\right)^{2} d B_{s} \quad(t, p \geq 0)
$$

for a standard Brownian motion B.

The problems 9.1-9.4 should be solved at home and delivered at Wednesday, the 18th June, before the beginning of the tutorial.

