Exercises, 17th October

1.1 (4 points) Assume that Q is a probability measure on $\left(\mathbb{R}^{n}, \mathscr{B}_{n}\right)$. Then the function \hat{Q}, defined by

$$
\hat{Q}(u):=\int_{\mathbb{R}^{n}} \mathrm{e}^{i<u, x>} Q(d x), \quad u \in \mathbb{R}^{n}, \quad i=\sqrt{-1}
$$

is called the characteristic function (shortly: c.f.) of the measure Q. The characteristic function of an n-dimensional random vector X is defined to be the c.f. of its distribution P^{X}.
a) Prove that \hat{Q} is a bounded, continuous function with $\hat{Q}(0)=1$.
b) Let X be an n-dimensional random vector, A an $n \times m$-matrix and a an m-dimensional vector. Calculate the c.f. of $A X+a$ in terms of the c.f. of X.
c) Show that every c.f. is nonnegative definite, i.e.

$$
\sum_{k, l=1}^{m} \lambda_{k} \overline{\lambda_{l}} \hat{Q}\left(u_{k}-u_{l}\right) \geq 0
$$

holds for all $m \geq 1$, all complex $\lambda_{1}, \ldots, \lambda_{m}$ and all $u_{1}, \ldots, u_{m} \in \mathbb{R}^{n}$.
d) Prove that the function

$$
\varphi(u)=\mathrm{e}^{-|u|}, u \in \mathbb{R}^{1}
$$

is nonnegative definite.
1.2 (4 points) Let f be the density of a $\Gamma(\alpha, \lambda)$-distribution $(\alpha, \lambda>0)$, i.e.

$$
f(x)=\frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} \mathrm{e}^{-\lambda x} \mathbb{1}_{(0, \infty)}(x), \quad x \in \mathbb{R}^{1}
$$

Calculate the Laplace transform

$$
\hat{F}(u):=\int_{0}^{\infty} \mathrm{e}^{-u x} f(x) d x, \quad u \geq 0
$$

of the $\Gamma(\alpha, \lambda)$-distribution and show, that

$$
\ln \hat{F}(u)=\alpha \int_{0}^{\infty}\left(\mathrm{e}^{-u y}-1\right) \frac{\mathrm{e}^{-\lambda y}}{y} d y
$$

holds for all $u \geq 0$.
1.3 (6 points) Let $T=[0, \infty)$. We say that a subset D of $R^{T}=\left\{x_{t}\right.$: $\left.x_{t} \in \mathbb{R}^{1}, t \in T\right\}$ has the property C, if there exists a countable set $M_{D}:=\left\{t_{1}, t_{2}, \ldots\right\} \subset T$ such that

$$
x \in D \Longleftrightarrow \exists y \in D: \forall t_{k} \in M_{D}, x_{t_{k}}=y_{t_{k}}, k \geq 1 .
$$

a) Show that the subsets D of R^{T} with the property C form a σ-algebra \mathfrak{A}.
b) Check the assertion that for all $B \in \mathscr{B}_{1}, t \in T$ the set $D(t, B):=$ $\left\{x \in R^{T}: x_{t} \in B\right\}$ belongs to \mathfrak{A}.
c) Prove, that $C([0, \infty))=\left\{y \in R^{T} \mid t \rightarrow y_{t} \quad\right.$ is continuous $\}$ does not belong to \mathfrak{A}.

The problems 1.1-1.3 should be solved at home and delivered at Thursday, the 25th October, before the beginning of the lecture.

