Stochastic Processes I

(Stochastik II)
Prof. Dr. Uwe Küchler
Dipl. Math. Irina Penner

Exercises, 19th December

10.1 Let $\left(X_{n}, \mathcal{A}_{n}\right)_{n \in \mathbb{N}_{0}}$ be a martingale on (Ω, \mathcal{A}, P) with $X_{n} \in L^{2}(P)$ for all n.
a) (1 point) Show that the increments $\Delta X_{n}:=X_{n}-X_{n-1}$ are pairwise uncorrelated.
b) (3 ponits) Prove that the sequence $\left(\frac{1}{n} X_{n}\right)_{n \in \mathbb{N}}$ converges in probability and in $L^{2}(P)$ if $\sup _{n} E\left[X_{n}^{2}\right]<\infty$.
10.2 a) (2 points) Let $\left(X_{n}, \mathcal{A}_{n}\right)_{n \in \mathbb{N}_{0}}$ be a martingale on (Ω, \mathcal{A}, P) with $X_{0}=$ 0 and $X_{n} \in L^{2}(P)$ for all n, and let $\Delta X_{n}:=X_{n}-X_{n-1}$. Assume further that

$$
\sum_{n=0}^{\infty} E\left[\left(\Delta X_{n}\right)^{2}\right]<\infty
$$

Show that the martingale $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ converges in probability and in $L^{2}(P)$ to some random variable X_{∞}. Compute the expectation and the variance of X_{∞}.
b) (2 ponits) Consider the geometric series with random sign, i.e. the sequence

$$
X_{0}:=0, \quad X_{n}:=\sum_{k=1}^{n} \frac{1}{k} Y_{k}, \quad n=1,2, \ldots
$$

where $Y_{n}, n \in \mathbb{N}$ are independent with

$$
Y_{n}=\left\{\begin{array}{clc}
1 & \text { with probability } & \frac{1}{2} \\
-1 & \text { with probability } & \frac{1}{2} .
\end{array}\right.
$$

Is this series convergent?
10.3 Let $D_{k}(k=1,2, \ldots)$ be an adapted process and $\pi_{k}(k=1,2, \ldots)$ a predictable process on $\left(\Omega,\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}_{0}}, \mathcal{A}, P\right)$ such that

$$
\begin{equation*}
\pi_{k} \geq \frac{1}{\alpha} \log E\left[e^{\alpha D_{k}} \mid \mathcal{A}_{k-1}\right] \quad(k=1,2, \ldots) \tag{1}
\end{equation*}
$$

for some fixed $\alpha>0$. We interpret D_{k} as the payment for occured losses and π_{k} as the insurance premium in the period k of some portfolio consisting of insurance contracts. Then

$$
Y_{k}:=R+\sum_{k=1}^{n} \pi_{k}-\sum_{k=1}^{n} D_{k} \quad(n=0,1, \ldots)
$$

denotes the value process of the portfolio with initial value $Y_{0}=R>0$, and

$$
\rho:=\min \left\{n \geq 0 \mid Y_{n} \leq 0\right\}
$$

is the time of "ruin".
a) (3 ponits) Show that

$$
\begin{equation*}
P[\rho<\infty] \leq e^{-\alpha R} \tag{2}
\end{equation*}
$$

b) (2 points) Motivate the assumption that $D_{k}=c_{k} Z_{k}$ with

$$
P\left[Z_{k}=l \mid \mathcal{A}_{k-1}\right]=\frac{\lambda_{k}^{l}}{l!} e^{-\lambda_{k}} \quad(l=1,2, \ldots)
$$

where $\left(c_{k}\right)$ and $\left(\lambda_{k}\right)$ are predictable processes. Determine $\left(\pi_{k}\right)$ such that (1) holds with "=" (and thus also (2) holds).
10.4 Let $Y_{0}=R>0$, and let $Y_{n} \in L^{1} \quad(n=1,2, \ldots)$ be i.i.d. random variables. For $0<\beta<1$ define

$$
R_{n}:=\sum_{k=0}^{n} \beta^{k-n} Y_{k} \quad(n=0,1, \ldots), \quad X:=\sum_{k=1}^{\infty} \beta^{k} Y_{k}
$$

a) (1 point) Prove that $\left(R_{n}\right)_{n=0,1, \ldots .}$ solves the recursive equation

$$
R_{n+1}=\frac{1}{\beta} R_{n}+Y_{n+1} \quad n=0,1, \ldots
$$

with initial value $R_{0}=R$, and that $\lim _{n} \beta^{n} R_{n}=R+X$, i.e. $R_{n} \sim$ $\beta^{-n}(R+X)$ for large n.
b) (2 points) Let F be the distribution function of X and let $u(x):=$ $F(-x)$. Show that $\left(u\left(R_{n}\right)\right)_{n=0,1, \ldots}$ is a martingale, more precise

$$
u\left(R_{n}\right)=P\left[X \leq-R \mid \mathcal{A}_{n}\right] \quad n=0,1, \ldots
$$

c) (2 points) Show that for $\zeta:=\min \left\{n \geq 0 \mid R_{n} \leq 0\right\}$ the probability of ruin satisfies the inequality

$$
P[\zeta<\infty] \leq \frac{u(R)}{u(0)}
$$

The problems 10.1 -10.4. should be solved at home and delivered at Wednesday, the 9 th January, before the beginning of the tutorial.

We wish you a merry Christmas and a happy New Year!

