Stochastic Processes I (Stochastik II) Prof. Dr. Uwe Küchler Dipl. Math. Irina Penner

Exercises, 16th January 2008

12.1 (2 points) Let (X_n) be a Markov chain on $\{0, 1, \ldots, 5\}$ with transition matrix

	(0, 1)	0, 2	0	0	0	0,7
₽ =	0, 5	0, 1	0	0	0	0, 4
	0	0	0, 5	0,5	0	0
	0	0	0,7	0,3	0	0
	0	0	0	0	0, 4	0, 6
	$\setminus 0, 1$	0,9	0	0	0	0 /

Determine the irreducible and the closed subsets of recurrent states. Which states are transient?

12.2 (3 points) Assume $I\!\!P$ is a transition matrix, A, B are matrices with

AB = I(I = unit matrix)

and Λ is a diagonal matrix, such that

$$I\!\!P = B\Lambda A$$

(One says, $I\!\!P$ is diagonalizable).

a) Show that for all $n \ge 1$ it holds

$$I\!\!P^n = B\Lambda^n A$$

b) Prove that every stochastic matrix

$$I\!P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}, \quad (\alpha, \beta \in [0, 1])$$

is diagonalizable and calculate $I\!\!P^n$.

c) Under which conditions does $I\!\!P^n$ converge for $n \to \infty$? Compute the limit in this case.

12.3 (4 points) Let $(Z_n, n \ge 0)$ be a branching process with

$$P(Z_1 = k) = f_k, \quad k \ge 0, \text{ and } \sum_{k \ge 1} k f_k =: m < \infty.$$

Let π be the probability that $\lim_{n\to\infty} Z_n = 0$. Show that π is the smallest solution of

$$\varphi(s) = s, \quad 0 \le s \le 1,$$

where $\varphi(s) = \sum_{k=0}^{\infty} s^k f_k$ and prove that $\pi < 1$ if m > 1. Hint: Show first that

$$\pi_n := P(Z_n = 0) = \varphi^{(n)}(0),$$

where

$$\varphi^{(n)}(s) = E\left[s^{Z_n}\right] = \varphi^{(n-1)}(\varphi(s)), \quad \varphi^{(1)}(s) = \varphi(s), \quad s \ge 0.$$

Then prove that $\pi_n \uparrow \pi$, and $\varphi(\pi) = \pi$. Since φ is strictly convex, the equation $\varphi(s) = s$ has at most two real solutions, one of them is s = 1, the other is denoted by ξ . Show that $\varphi(0) = f_0 = \pi_1 < \xi \land 1$, and thus $\varphi^{(n)}(0) < \xi \land 1$ in virtue of $\varphi'(s) > 0, s \ge 0$. Finish the proof.

- 12.4 (2 points) Let $(X_n, n \ge 0)$ be a Markov chain with state space S. Define $T_i := \inf\{k \ge 1 | X_k = i\}$ with $\inf \emptyset := \infty$. Show that the following relations hold for all $i, j \in S$ with $i \ne j$:
 - (i) $T_j \leq T_i + T_j \circ \Theta_{T_i}$ on $\{T_i < \infty\}$,
 - (ii) $T_j = T_i + T_j \circ \Theta_{T_i}$ on $\{T_i < T_j \le \infty\}$.

The problems should be solved at home and delivered at Wednesday, January 23rd, before the beginning of the tutorial.