Exercises, 24th October

2.1 (4 points) Assume X and Z are independent random variables, where X is standard Gaussian distributed and $P(Z=1)=P(Z=-1)=\frac{1}{2}$. Define $Y:=Z \cdot X$.
a) Calculate the distribution function of Y.
b) Show that X and Y are uncorrelated.
c) Calculate the characteristic function of the random vector (X, Y).
d) Discuss the assertion, that "uncorrelated Gaussian random variables are independent".
2.2 (4 points) Assume $X=\left(X_{1}, \ldots X_{n}\right)^{T}$ is an n-dimensional standard Gaussian vector. Which distribution has $Y=\|X\|^{2}=\sum_{k=1}^{n} X_{k}^{2}$?
If $X \sim N_{n}(0, \Sigma)$ with Σ regular, calculate the distribution of $Y=$ $X^{T} \Sigma^{-1} X$.
2.3 (2 points) Show, that every symmetric nonnegative definite 2×2-matrix Σ can be written as

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)
$$

with $\sigma_{1}, \sigma_{2} \geq 0$ and $\rho \in[-1,1]$.
2.4 (6 points) Let $n \in \mathbb{N}$ with $n \geq 2$ and let $X_{1}, X_{2}, \ldots, X_{n}$ be an i.i.d. sequence of random variables such that

$$
P\left[X_{j}=l\right]=p_{l}, \quad l=1, \ldots, k .
$$

a) Show that the vector $N:=\left(N_{1}, \ldots, N_{k}\right)$ with

$$
N_{j}:=\sum_{m=1}^{n} \mathbb{1}_{\{j\}}\left(X_{m}\right), \quad j=1, \ldots, k
$$

has the multinomial distribution with

$$
P\left[N=\left(n_{1}, \ldots, n_{k}\right)\right]=\frac{n!}{n_{1}!\cdots n_{k}!} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}
$$

if $n_{j} \geq 0, \sum_{j=1}^{k} n_{j}=n$, and $P\left[N=\left(n_{1}, \ldots, n_{k}\right)\right]=0$ otherwise.
b) Prove that the characteristic function of N is given by

$$
\varphi(u)=\left(\sum_{j=1}^{k} p_{j} e^{i u_{j}}\right)^{n}, \quad u=\left(u_{1}, \ldots, u_{k}\right)^{T} \in \mathbb{R}_{k}
$$

c) Calculate $E\left[N_{j}\right], \operatorname{Var}\left(N_{j}\right)$ and $\operatorname{Cov}\left(N_{j}, N_{l}\right)$ for $j, l \in\{1, \ldots, k\}$.
d) Determine the covariance martix Σ of

$$
\frac{N}{\sqrt{p}}:=\left(\frac{N_{1}}{\sqrt{n p_{1}}}, \ldots, \frac{N_{k}}{\sqrt{n p_{k}}}\right) .
$$

e) Construct a vector $v:=\left(v_{1}, \ldots, v_{k}\right)^{T}$ such that $\Sigma v=0$ and verify that

$$
\left\langle\frac{N}{\sqrt{p}}-E\left[\frac{N}{\sqrt{p}}\right], v\right\rangle=0 \quad P \text {-a.s.. }
$$

The problems $2.1-2.4$. should be solved at home and delivered at Thursday, the 1st November, before the beginning of the lecture.

