Exercises, 31st October

3.1 (4 points) Assume that X_{1} and X_{2} are independent random variables, both having a Poisson distribution with parameter $\lambda>0$. Let further $Y:=X_{1}+X_{2}$. Compute $P\left[X_{1}=i \mid Y\right]$ for $i=0,1, \ldots$.
3.2 (5 points) Let $n \in \mathbb{N}$ and let \mathfrak{Z}_{n} be the partition

$$
\left\{\left.\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right) \right\rvert\, k=0,1, \ldots, 2^{n}-1\right\}
$$

of $\Omega:=[0,1)$. We denote by $\mathfrak{B}_{[0,1)}$ the σ-algebra of Borel subsets of Ω and by λ the Lebesgue measure on $\mathfrak{B}_{[0,1)}$. Consider a random variable X on $\left(\Omega, \mathfrak{B}_{[0,1)}, \lambda\right)$ defined by $X(\omega)=\omega, \omega \in \Omega$.
a) Calculate $X_{n}:=E\left[X \mid \mathfrak{B}_{n}\right]$, where $\mathfrak{B}_{n}:=\sigma\left(\mathfrak{Z}_{n}\right), n=1,2, \ldots$..
b) Show that

$$
E\left[X_{n+1} \mid \mathfrak{B}_{n}\right]=X_{n} \quad P \text {-a.s. }
$$

for all $n=1,2, \ldots$.
3.3 (4 points) For a random variable $X \in L^{2}(\Omega, \mathcal{A}, P)$ and a σ-algebra $\mathcal{A}_{0} \subseteq$ \mathcal{A} we define the conditional variance of X w.r.t. \mathcal{A}_{0} as

$$
\operatorname{var}\left(X \mid \mathcal{A}_{0}\right):=E\left[\left(X-E\left[X \mid \mathcal{A}_{0}\right]\right)^{2} \mid \mathcal{A}_{0}\right] .
$$

Show that

$$
\operatorname{var}\left(X \mid \mathcal{A}_{0}\right)=E\left[X^{2} \mid \mathcal{A}_{0}\right]-\left(E\left[X \mid \mathcal{A}_{0}\right]\right)^{2}
$$

and

$$
\operatorname{var}(X)=E\left[\operatorname{var}\left(X \mid \mathcal{A}_{0}\right)\right]+\operatorname{var}\left(E\left[X \mid \mathcal{A}_{0}\right]\right) .
$$

3.4 (3 points) Assume that $X_{i}, i=1,2,3, \ldots$ are independent identically distributed random variables with $P\left[X_{1}=1\right]=\frac{1}{2}+\alpha$ and $P\left[X_{1}=-1\right]=$ $\frac{1}{2}-\alpha$ for some $\alpha \in\left[0, \frac{1}{2}\right]$. Let further \mathcal{A}_{n} be the σ-algebra generated by X_{1}, \ldots, X_{n} and $S_{n}:=X_{1}+\cdots+X_{n}, n=1,2, \ldots$ Show that

$$
E\left[S_{n} \mid \mathcal{A}_{k}\right]=S_{k}+2 \alpha(n-k)
$$

for $k=1, \ldots, n$.

The problems 3.1 -3.4. should be solved at home and delivered at Wednesday, the 7 th November, before the beginning of the tutorial.

