Stochastic Processes I (Stochastik II) Prof. Dr. Uwe Küchler Dipl. Math. Irina Penner

Exercises, 31st October

- 3.1 (4 points) Assume that X_1 and X_2 are independent random variables, both having a Poisson distribution with parameter $\lambda > 0$. Let further $Y := X_1 + X_2$. Compute $P[X_1 = i | Y]$ for i = 0, 1, ...
- 3.2 (5 points) Let $n \in \mathbb{N}$ and let \mathfrak{Z}_n be the partition

$$\left\{ \left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right) \mid k = 0, 1, \dots, 2^{n} - 1 \right\}$$

of $\Omega := [0, 1)$. We denote by $\mathfrak{B}_{[0,1)}$ the σ -algebra of Borel subsets of Ω and by λ the Lebesgue measure on $\mathfrak{B}_{[0,1)}$. Consider a random variable Xon $(\Omega, \mathfrak{B}_{[0,1)}, \lambda)$ defined by $X(\omega) = \omega, \omega \in \Omega$.

- a) Calculate $X_n := E[X|\mathfrak{B}_n]$, where $\mathfrak{B}_n := \sigma(\mathfrak{Z}_n), n = 1, 2, \dots$
- b) Show that

$$E[X_{n+1}|\mathfrak{B}_n] = X_n$$
 P-a.s.

for all n = 1, 2, ...

3.3 (4 points) For a random variable $X \in L^2(\Omega, \mathcal{A}, P)$ and a σ -algebra $\mathcal{A}_0 \subseteq \mathcal{A}$ we define the conditional variance of X w.r.t. \mathcal{A}_0 as

$$\operatorname{var}(X|\mathcal{A}_0) := E\left[\left(X - E[X|\mathcal{A}_0]\right)^2 \,|\, \mathcal{A}_0\right].$$

Show that

$$\operatorname{var}(X|\mathcal{A}_0) = E[X^2|\mathcal{A}_0] - (E[X|\mathcal{A}_0])^2$$

and

$$\operatorname{var}(X) = E[\operatorname{var}(X|\mathcal{A}_0)] + \operatorname{var}\left(E[X|\mathcal{A}_0]\right).$$

3.4 (3 points) Assume that X_i , i = 1, 2, 3, ... are independent identically distributed random variables with $P[X_1 = 1] = \frac{1}{2} + \alpha$ and $P[X_1 = -1] = \frac{1}{2} - \alpha$ for some $\alpha \in [0, \frac{1}{2}]$. Let further \mathcal{A}_n be the σ -algebra generated by X_1, \ldots, X_n and $S_n := X_1 + \cdots + X_n$, $n = 1, 2, \ldots$ Show that

$$E[S_n|\mathcal{A}_k] = S_k + 2\alpha(n-k)$$

for k = 1, ..., n.

The problems 3.1 -3.4. should be solved at home and delivered at Wednesday, the 7th November, before the beginning of the tutorial.