Stochastic Processes I (Stochastik II) Prof. Dr. Uwe Küchler Dipl. Math. Irina Penner

Exercises, 21st November

6.1 (4 points) Assume that some box contains b black and w white balls $(b, w \ge 1)$. The content of the box is changed as follows: One ball is drawn randomly, its color is denoted, and this ball is placed back into the box together with c other balls of the same color ($c \in \mathbb{N}_0$ fixed). This procedure is repeated infinitely often. We denote by X_n the number of the black and by Y_n the number of the white balls in the box after the *n*-th turn ($n \in \mathbb{N}_0$). Let further $\mathfrak{A}_n = \sigma(X_0, X_1, \ldots, X_n)$. Show that the proportions

$$V_n := \frac{X_n}{X_n + Y_n} , \quad n = 0, 1, \dots$$

of the black balls in the box form a martingale w.r.t. $(\mathfrak{A}_n)_{n \in \mathbb{N}_0}$. Can V_n be represented as a sum of mutually independent random variables?

6.2 (2 points) Let $X_n (n \in \mathbb{N})$ be a sequence of i. i. d. random variables on some probability space $(\Omega, \mathfrak{A}, P)$. We define

$$S_n := \sum_{k=1}^n X_k$$
, and $\mathfrak{A}_n := \sigma(X_1, X_2, \dots, X_n)$, $n = 1, 2, \dots$

Assume further that $Z(\lambda) := E[e^{\lambda X_1}] < \infty$ for some $\lambda \in \mathbb{R}$ and consider

$$M_n := \frac{\exp[\lambda S_n]}{Z(\lambda)^n}, \quad n = 1, 2, \dots$$

Prove that the sequence $(M_n, \mathfrak{A}_n)_{n \in \mathbb{N}}$ is a martingale.

a) (2 points) Let (B_t)_{t≥0} be a stochastic process on some probability space (Ω, 𝔄, P). Show that the following conditions are equivalent:
i) (B_t)_{t>0} is a standard Brownian motion.

- ii) $B_0 = 0$ and for all $n \in \mathbb{N}$ and all $0 < t_1 < t_2 < \ldots < t_n < \infty$ the vector $(B_{t_1}, \ldots, B_{t_n})$ has a Gaussian distribution with the expectation 0 and the covariance matrix $\Sigma = (t_i \wedge t_j)_{1 \le i,j \le n}$. (That means $(B_t)_{t>0}$ is a Gaussian process.)
- b) (3 points) Let $(B_t)_{t\geq 0}$ be a standard Brownian motion on some probability space $(\Omega, \mathfrak{A}, P)$. Show that the following stochastic process are also standard Brownian motions:

i) For
$$s \ge 0$$
:
 $\tilde{B}_t := B_{t+s} - B_s, \quad t \ge 0$.
ii) For $c \in \mathbb{R} \setminus 0$:
 $\tilde{B}_t := cB_{\frac{t}{c^2}}, \quad t \ge 0$.
("Scaling property")
iii)
 $\tilde{B}_t := -B_t, \quad t \ge 0$.

("Reflection")

6.4 (4 points) Assume that $S = (\tau_k, k \in \mathbb{N})$ is a sequence of independent identically exponentially distributed random variables with parameter $\lambda > 0$. Let further

$$\sigma_n := \sum_{k=1}^n \tau_k, \quad n \ge 1, \quad \sigma_0 := 0,$$

and consider the Poisson process

$$N_t = \sum_{k=1}^{\infty} \mathbb{1}_{[0,t]}(\sigma_k), \quad t \ge 0$$

and the sequence $S_n := (\sigma_1, \sigma_2, \dots, \sigma_n), n \ge 1$. Prove that

$$P(S_n \in B | N_t = n) = \frac{n!}{t^n} \int_B \mathbb{1}_{\Delta_t^{(n)}}(t_1, t_2, \dots, t_n) dt_1 \dots dt_n$$

holds for every $n \ge 1, t > 0$ and for all $B \in \mathcal{B}_n$. Here we use the notation

$$\Delta_t^{(n)} = \{ (t_1, t_2, \dots, t_n) \in R_n : 0 < t_1 < \dots < t_n < t \}.$$

The problems 6.1 -6.4. should be solved at home and delivered at Wednesday, the 28th November, before the beginning of the tutorial.