Stochastic Processes I

(Stochastik II)
Prof. Dr. Uwe Küchler
Dipl. Math. Irina Penner

Exercises, 21st November

6.1 (4 points) Assume that some box contains b black and w white balls $(b, w \geq 1)$. The content of the box is changed as follows: One ball is drawn randomly, its color is denoted, and this ball is placed back into the box together with c other balls of the same color ($c \in \mathbb{N}_{0}$ fixed). This procedure is repeated infinitely often. We denote by X_{n} the number of the black and by Y_{n} the number of the white balls in the box after the n-th turn $\left(n \in \mathbb{N}_{0}\right)$. Let further $\mathfrak{A}_{n}=\sigma\left(X_{0}, X_{1}, \ldots, X_{n}\right)$.
Show that the proportions

$$
V_{n}:=\frac{X_{n}}{X_{n}+Y_{n}}, \quad n=0,1, \ldots
$$

of the black balls in the box form a martingale w.r.t. $\left(\mathfrak{A}_{n}\right)_{n \in \mathbb{N}_{0}}$. Can V_{n} be represented as a sum of mutually independent random variables?
6.2 (2 points) Let $X_{n}(n \in \mathbb{N})$ be a sequence of i. i. d. random variables on some probability space $(\Omega, \mathfrak{A}, P)$. We define

$$
S_{n}:=\sum_{k=1}^{n} X_{k}, \quad \text { and } \quad \mathfrak{A}_{n}:=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), \quad n=1,2, \ldots
$$

Assume further that $Z(\lambda):=E\left[\mathrm{e}^{\lambda X_{1}}\right]<\infty$ for some $\lambda \in \mathbb{R}$ and consider

$$
M_{n}:=\frac{\exp \left[\lambda S_{n}\right]}{Z(\lambda)^{n}}, \quad n=1,2, \ldots
$$

Prove that the sequence $\left(M_{n}, \mathfrak{A}_{n}\right)_{n \in \mathbb{N}}$ is a martingale.
6.3 a) (2 points) Let $\left(B_{t}\right)_{t \geq 0}$ be a stochastic process on some probability space $(\Omega, \mathfrak{A}, P)$. Show that the following conditions are equivalent:
i) $\left(B_{t}\right)_{t \geq 0}$ is a standard Brownian motion.
ii) $B_{0}=0$ and for all $n \in \mathbb{N}$ and all $0<t_{1}<t_{2}<\ldots<t_{n}<\infty$ the vector $\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ has a Gaussian distribution with the expectation 0 and the covariance matrix $\Sigma=\left(t_{i} \wedge t_{j}\right)_{1 \leq i, j \leq n}$. (That means $\left(B_{t}\right)_{t \geq 0}$ is a Gaussian process.)
b) (3 points) Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion on some probability space $(\Omega, \mathfrak{A}, P)$. Show that the following stochastic process are also standard Brownian motions:
i) For $s \geq 0$:

$$
\tilde{B}_{t}:=B_{t+s}-B_{s}, \quad t \geq 0
$$

ii) For $c \in \mathbb{R} \backslash 0$:

$$
\tilde{B}_{t}:=c B_{\frac{t}{c^{2}}}, \quad t \geq 0
$$

("Scaling property")
iii)

$$
\tilde{B}_{t}:=-B_{t}, \quad t \geq 0 .
$$

("Reflection")
6.4 (4 points) Assume that $S=\left(\tau_{k}, k \in \mathbb{N}\right)$ is a sequence of independent identically exponentially distributed random variables with parameter $\lambda>0$. Let further

$$
\sigma_{n}:=\sum_{k=1}^{n} \tau_{k}, \quad n \geq 1, \quad \sigma_{0}:=0
$$

and consider the Poisson process

$$
N_{t}=\sum_{k=1}^{\infty} \mathbb{1}_{[0, t]}\left(\sigma_{k}\right), \quad t \geq 0
$$

and the sequence $S_{n}:=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right), n \geq 1$. Prove that

$$
P\left(S_{n} \in B \mid N_{t}=n\right)=\frac{n!}{t^{n}} \int_{B} \mathbb{1}_{\Delta_{t}^{(n)}}\left(t_{1}, t_{2}, \ldots, t_{n}\right) d t_{1} \ldots d t_{n}
$$

holds for every $n \geq 1, t>0$ and for all $B \in \mathcal{B}_{n}$. Here we use the notation

$$
\triangle_{t}^{(n)}=\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in R_{n}: 0<t_{1}<\ldots<t_{n}<t\right\} .
$$

The problems 6.1-6.4. should be solved at home and delivered at Wednesday, the 28th November, before the beginning of the tutorial.

