Stochastic Processes I

(Stochastik II)
Prof. Dr. Uwe Küchler
Dipl. Math. Irina Penner

Exercises, 5th December

8.1 (5 points) Let τ be a random variable on (Ω, \mathcal{A}, P) with values in \mathbb{N}_{0}. We define

$$
X_{n}:=\mathbb{1}_{[0, n]}(\tau) \quad \text { and } \quad \mathcal{A}_{n}:=\sigma\left(X_{0}, \ldots, X_{n}\right), \quad n \in \mathbb{N}_{0}
$$

Then $\left(X_{n}, \mathcal{A}_{n}\right)_{n \in \mathbb{N}_{0}}$ is a submartingale due to the lecture. We denote by $A_{n}\left(n \in \mathbb{N}_{0}\right)$ the predictable increasing process from the Doob decomposition of $\left(X_{n}\right)$. Show that

$$
A_{n}=\sum_{k=1}^{\tau \wedge n} P[\tau=k \mid \tau>k-1], \quad n \in \mathbb{N}_{0}
$$

8.2 Let $X_{n}, n \in \mathbb{N}$, be i.i.d. random variables on (Ω, \mathcal{A}, P) and let $\mathcal{A}_{n}:=$ $\sigma\left(X_{1}, \ldots, X_{n}\right), n \in \mathbb{N}_{0}$. We define

$$
S_{0}:=0, \quad S_{n}:=X_{1}+\ldots+X_{n}, \quad n \in \mathbb{N} .
$$

a) (2 points) Show that if $E\left[X_{1}\right]=0$ and $\sigma^{2}:=\operatorname{var}\left[X_{1}\right]<\infty$, then the process

$$
M_{n}:=S_{n}^{2}-n \sigma^{2}, \quad n=0,1, \ldots,
$$

is a martingale with respect to $\left(\mathcal{A}_{n}\right)_{n=0,1, \ldots}$.
b) (2 points) Let $\left(S_{n}\right)_{n \in \mathbb{N}_{0}}$ be a random walk with $p=\frac{1}{2}$, i.e.

$$
X_{n}=\left\{\begin{array}{clc}
1 & \text { with probability } & \frac{1}{2} \\
-1 & \text { with probability } & \frac{1}{2} .
\end{array}\right.
$$

Then $M_{n}=S_{n}^{2}-n \sigma^{2}, n=0,1, \ldots$ is a martingale due to part a). For $a \in\{0,1, \ldots\}$ we define the stopping time

$$
T:=\min \left\{n \geq 0| | S_{n} \mid=a\right\} .
$$

Use the stopping theorem to compute the expected value $E[T]$.
8.3 Let $\left(S_{n}, \mathcal{A}_{n}\right)_{n \in \mathbb{N}_{0}}$ be a random walk with $p=\frac{1}{2}$ as in problem 8.2 b).
a) (2 points) For a given $\lambda \geq 0$ determine a value $\alpha \in \mathbb{R}$ such that the process

$$
M_{n}^{\lambda}:=\exp \left(\alpha S_{n}-\lambda n\right), \quad n=0,1, \ldots,
$$

is a martingale.
b) (2 points) Use ($\left.M_{n}^{\lambda}\right)_{n \in \mathbb{N}_{0}}$ to compute for $a \in \mathbb{N}$ the Laplace-transform $E\left[e^{-\lambda T}\right]$ of the stopping time $T:=\min \left\{n \geq 0| | S_{n} \mid=a\right\}$.
8.4 (4 points) We denote by V_{n} the capital of some insurance company at the end of the year $n, n=0,1, \ldots$ and assume that $V_{0}>0$. During the year n the company receives premium c and has to pay out a random value Y_{n} for insured losses, i.e.

$$
V_{n}=V_{n-1}+c-Y_{n}, \quad n=1,2 \ldots
$$

We assume that $Y_{n}, n=1,2, \ldots$ are i.i.d random variables with expected value $m \in(0, c)$ and define $Z(\lambda):=E\left[e^{\lambda Y_{1}}\right]$. Let R be the event "Ruin of the insurance company", i.e. $R:=\{T<\infty\}$ with

$$
T:=\min \left\{n \geq 0 \mid V_{n}<0\right\}
$$

Show that if λ_{0} is a nontrivial solution of $Z(\lambda)=e^{\lambda c}$, then we have $\lambda_{0}>0$ and the probability of ruin satisfies the inequality

$$
P[R] \leq e^{-\lambda_{0} V_{0}}
$$

The problems 8.1 -8.4. should be solved at home and delivered at Wednesday, the 12th December, before the beginning of the tutorial.

