Stochastic Processes I (Stochastik II) Prof. Dr. Uwe Küchler Dipl. Math. Irina Penner

Exercises, 5th December

8.1 (5 points) Let τ be a random variable on (Ω, \mathcal{A}, P) with values in \mathbb{N}_0 . We define

$$X_n := \mathbb{1}_{[0,n]}(\tau)$$
 and $\mathcal{A}_n := \sigma(X_0, \dots, X_n), \quad n \in \mathbb{N}_0.$

Then $(X_n, \mathcal{A}_n)_{n \in \mathbb{N}_0}$ is a submartingale due to the lecture. We denote by $A_n \ (n \in \mathbb{N}_0)$ the predictable increasing process from the Doob decomposition of (X_n) . Show that

$$A_n = \sum_{k=1}^{\tau \wedge n} P[\tau = k | \tau > k - 1], \qquad n \in \mathbb{N}_0.$$

8.2 Let $X_n, n \in \mathbb{N}$, be i.i.d. random variables on (Ω, \mathcal{A}, P) and let $\mathcal{A}_n := \sigma(X_1, \ldots, X_n), n \in \mathbb{N}_0$. We define

 $S_0 := 0, \quad S_n := X_1 + \ldots + X_n, \quad n \in \mathbb{N}.$

a) (2 points) Show that if $E[X_1] = 0$ and $\sigma^2 := var[X_1] < \infty$, then the process

$$M_n := S_n^2 - n\sigma^2, \quad n = 0, 1, \dots$$

is a martingale with respect to $(\mathcal{A}_n)_{n=0,1,\dots}$.

b) (2 points) Let $(S_n)_{n \in \mathbb{N}_0}$ be a random walk with $p = \frac{1}{2}$, i.e.

$$X_n = \begin{cases} 1 & \text{with probability} & \frac{1}{2} \\ -1 & \text{with probability} & \frac{1}{2} \end{cases}$$

Then $M_n = S_n^2 - n\sigma^2$, n = 0, 1, ... is a martingale due to part a). For $a \in \{0, 1, ...\}$ we define the stopping time

$$T := \min\{n \ge 0 | |S_n| = a\}.$$

Use the stopping theorem to compute the expected value E[T].

8.3 Let $(S_n, \mathcal{A}_n)_{n \in \mathbb{N}_0}$ be a random walk with $p = \frac{1}{2}$ as in problem 8.2 b).

a) (2 points) For a given $\lambda \geq 0$ determine a value $\alpha \in \mathbb{R}$ such that the process

$$M_n^{\lambda} := \exp\left(\alpha S_n - \lambda n\right), \quad n = 0, 1, \dots,$$

is a martingale.

- b) (2 points) Use $(M_n^{\lambda})_{n \in \mathbb{N}_0}$ to compute for $a \in \mathbb{N}$ the Laplace-transform $E[e^{-\lambda T}]$ of the stopping time $T := \min\{n \ge 0 | |S_n| = a\}.$
- 8.4 (4 points) We denote by V_n the capital of some insurance company at the end of the year n, n = 0, 1, ... and assume that $V_0 > 0$. During the year n the company receives premium c and has to pay out a random value Y_n for insured losses, i.e.

$$V_n = V_{n-1} + c - Y_n, \quad n = 1, 2 \dots$$

We assume that Y_n , n = 1, 2, ... are i.i.d random variables with expected value $m \in (0, c)$ and define $Z(\lambda) := E[e^{\lambda Y_1}]$. Let R be the event "Ruin of the insurance company", i.e. $R := \{T < \infty\}$ with

$$T := \min\{n \ge 0 | V_n < 0\}.$$

Show that if λ_0 is a nontrivial solution of $Z(\lambda) = e^{\lambda c}$, then we have $\lambda_0 > 0$ and the probability of ruin satisfies the inequality

$$P[R] \le e^{-\lambda_0 V_0}.$$

The problems 8.1 -8.4. should be solved at home and delivered at Wednesday, the 12th December, before the beginning of the tutorial.