NEWTON's METHOD FOR NON-DIFFERENTIABLE FUNCTIONS

Bernd Kummerl)

Abstract _

The paper discusses extensions of Newton's method for solving equations'
with non-differentiable functions. Sufficient conditions of convergence,
estimations for the speed as well as the range of convergence, and
partial classes of functions allowing such extension are given. An
example shows the difficulties which may arise in relation to regular
zeros of Lipschitz -equations.
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0. Introduction

The main objective of this paper is the study of Newton's method for
solving the equation

F(x) = O ' o (2)

where f: X—>Y is a (not necessarily differentiable) Function, and X as
well as Y are real Banach spaces. In order to extend Newton's idea to
this case let G be some upper semicontinuous multifunction which assigns
to each x€ X some non-empty bounded subset G(x) of the space L(X,Y)

of all linear, continuous operators A from X into Y., Let, further, X be
a solution of (1) such that for all A€G(X), a-1 €l(YpX) exists and

that sup na~1n is finite.
AeG(X)

Then, the following algorithm may be considered

ALG 1
step 1 x% X (near X)
step k - select any A< 6(x*) and solve f(xk) + A(x- xk) = 0

k+1

to obtain x 7, put k = k+1, go to step k.,

Obviously, ALG 1 coincides with Newton's method if both f is continuously

(Freché&t-) differentiable and G(x) = {Df(x)} . The aim of our paper is
twofuld. At the one hand some sufficient condition for ALG 1 being
(locally, superlinearly) converging will be derived. This condition
shows, particularly, the convergence of ALG 1 in the following cases:
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I f=f(x) is a continuous selection of finftely many functions f¥: X-»vY
being continuously differentiable (Frechét-), briefly f=cs(fl,...,¢"),
f’c.cl. The mapping G is then defined as

GO = {0 £°(x)/ £(x) = £(x)}.

II f: R R" is locally Lipschitz, G(x) = 9f(x), the Clarke Jacobian
of f at x, and card 2f(X) = 1,

At the other hand we present some example of a Lipschitz function
f: R—R with the following properties:

9f(x)<c [a,b] , a»0
DF(X) exists
For G = 3f, ALG 1 do not converge with almost all x° (though f is
continuously differentiable at all x* attained).

Concerning case I some remarks are appropriate. First, that case has
been discussed in the paper M. Kojima and S, Susumu (1986).
There, the following assumptions are imposed

(I.1) X =y = R"
(1.2)  x = c1(in€x)) with X, = {x / £7(x) = £(x)].

I.1 implies (by W.W. Hager's famous theorem 1979) that f is locally
Lipschitz and that, consequently, the Clarke-Jacobiens QJFf(x) always
exist. By 1.2, then the inclusion G(x)c f(x) is ensured.

The main advantage of the present approach consists less in considering
Banach spaces instead of R" thean in the fact that mappings G of a large
class may be used in ALG 1 not supposing the existence of I f(x). At the
same time, the main difficulty is to find, for given £, such a mapping

G which makes ALG 1 converging and allows to determine AGG(xk) in

an efficient way,

The paper is organized as follows.

In section 1 the basic results will be formulated, They allow to study
the equation (1) as well as the complementory problem

0 € f(x) + N(x) (2)
where N is a given multifunction.

In section 2 we specify these results for (1) and (2) and discuss
sufficient conditions of convergence.

Finally, in section 3, some numerical topics in view of concrete rea-
lizations are added.

Notations: For subsets Al' Az of a Banach space X, for elements x ¢ X
and re R, we use the (Minkovski-) notations.

Ag+ ra, = {a1+r52 / aje A, azeAz}
x+ FA, =[x+ ra, / achz}
- Al = (-I)Alo

115



Further, Bx denotes the closed unit ball in X,

1. Basic results

Let X and Y be (real) Banach spdces and suppose F: X x X—Y

to be a multifunction assigning to each pair (x,t)e X x X some subset
F(x,t) of Y, We consider t as being some parameter and study the sets
s(t) of all x satisfying

OYe,F(x t). ' (1.1)
If we fix any x%€ X and solve, for givén xk, the inclusion

to obtain xk+1 (if such solution exists) we will call this procedure
ALG 2. Thus, ALG 2 is defined by

xk*+1lg S(xk), x? given
and covers ALG 1 where F is specified as

F(x,t) = £(t) + G(t)(x-t):=
= [F(t)sA(x-t) / AcG(t)], (1.2)
6(t)e L(X,Y). . '

The convergence of ALG 2 obviously depends on the behaviour of the
solution sets S(t) for t near to some parameter t of interest. We are
going now to investigate this crucial fact in a more detalled manner.

Let teX be arbitrarily fixed and suppose M to be some non-empty
subset of S(E). Depending on t and M, we define a function
t=T(£,t) as follows

T(E,t) = inf{é »0 / F(x,t+t) e F(x,t) + &8, }
for all xeM +eB
(e>0).
For given ye Y, let L(y) denote the set of all x satlsfylng
yé F(x, ). . :
we shall say that M is regular (related to t) if there are positive
reals € and 1 such that

M+ EBy)NL(Y) € M+1-lyll By VYyc&By ' - (1.3)
© and ' ’ : | "

lim T(Ept) = 0 S o : C (104)

t»0 :

hold. In the case M = {tl we will simply say that tis regular.

Proposition 1. If M is regular (related to t) then there is some & >0
luch that both

Df

x€ S(t+t), Atl<oc end r 2" dist(x,M) <& (1.5)
imply
r€1-Inf T(r',t) B ~ (1.6)

r's>r
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where € and 1 are from (1.3) and (1.4). Moreover, such « is defined by
the following conditions

04k <&

(1.7)
T(E,t)cE VYte «B

X

Proof. Let (1.5) and (1.7) be fulfilled, and let B belong to the open
interval (0,Z -7 (€,t)). Since 0 €F(x,t+t) and dist(x,M) = r, for
each r'> r, we have xe M+r'8,, By the definition of T one finds some
y such that  fyll < T(r’,t)+B and 0€F(x,T) + y. *
Obviously, we may assume that r'c £ what implies

(r',t) + B<E ,
In view of (1.3) we may then estimate

XEM ¢ 1(T(r*,t) B) By (¥YB>D).
This establishes the inequality (1.6).
As a particular result of the proposition we obtain that the solution
sets S(t+t), restricted to the neighbourhood M + g By of M, form an
upper semicontinuous (at t = 0) mappings (in Hausdorff's sense),
briefly u.s.c. (M).

It is very clear that several slmﬁle assumptions allow to replace the
estimation (1.6) by

P‘qu:(r,t). . (1.6).

Such assumptions are M compact or T(.,t) continuous.
Our main hypothesis for what follows is the estimation

T(E,t) € c- Utk » a ()€ + al(t) (1.8)
where we suppose ¢ ® 0 and '
8, = a (t) to be non-negative functions satisfying

lim 8 (t) NtU™® = 0 (k=0,ke1),

t+0, It 40 :
Since we aim at local statements only we shall seen (1.8) to be true .
this inequality holds for sufficiently small £ and Itll .

The motivation of the hypothesis (1.8) is given by

Proposition 2. Let F be defined via (1.2) where G: X~—>L(X,Y) is u.s.c.
(H) at T and G(t) is bounded. Let M = {t}. Then, the estimation (1.8)
holds (locally) whenever ¥ is locally Lipschitz near t.

Proof, Since G is u.s.c. (H) at t there is (by definition) some positive
functions & = d(t) satisfying G(tst)<c G(T) + % J(t)BL(x v)i

S(t)—0 as t—0. Therefore, to each Ate.G(i+t), corrésponds some

A:e G(t) such that '
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A -AL I < d(t).

Consider any :
z ¢ F(x,t+t) where xe t+ £B,.

In view of (1.2) we may write
z = f(tet) + At(x-(E+t)).
Setting y = F(E)+A2(x-T) we obtain

yeF(x,'i:)
and : . .
hz-yll § RE(Eet)=F(t)-A L] + S(2) Nx-EL.

Consequently (with a (t) = d(t)), the estimation
T(E,t) £ NF(Et)-F(E)-A N+ o (t)-¢

is true.
Finally, since HA ll is bounded for sufficiently small { til and since f-

is Lipschitzian near t, there is some ¢ such that (1.8) holds true
(with a, F 0).

Note that the assumption M = {t} is needed anyway in order to ensure
the convergence of the sequence {xk} in ALG 2 to t.

At the same time one sees that, if F Is given by (1.2) and t is regular,

the mappings A €G(t) are injective and £(t) = O. Let us, additionally,

assume that fF(t+ £B) contains some neighbourhood of 0y in Y (for each
£50). If nothing more is known about f and if we want to guarantee

the existence of xX*1 40 ALG 1 for X near T we have to impose that all
AgG(t) (for t near t) ere also surjective.

Therefore, our assumptions

G(x) bounded, G u.s.c. (H) at X, A" C.L(Y X) exists for all *)
AeG(X) end sup [IA e oo
) AeG(X)

which have been imposed in relation to ALG 1 (see introduction) are
natural and ensure that the assumptions of the Proposition 1 and 2 are
satisfied. ‘ ' ' ' -

We proceed now to study the convergence of ALG 2 under the following
hypothesis. - ) s

t is a regular solution of 0, e;F(x,t) (see 1.3, 1.4) - (1.9)

There exists & >0 such that
B £ S(Tet) e Tr S(L) - 8, for lit 1<d where : . (1r.10)
§(t)—=0 es t—>0,. "

Theorem 1. Let (1.9) and (1.10) be fulfilled, and let (1.8) be true for

€& , lth P Suppose, additionally that the numbers € and 1 in (1.3)
and (1.4) satisfy
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E<d and cle 1.

Then, there exists & »0 such that ALG 2 generates an infinite sequence
x* satisfying

kel = 1 k - . k =
I x -t € 2 '1-‘1'-%: Ix -tl+;§kal(x -t) (%x)

whenever | x?-t <o .
The number & shows the property above if

Ocx¢ £,
and if ltli<a implies

S(t) e & ) (1.11)

cllth + a ()& + a (t)<& (1.12)

Ta(t) < % (1-1c). . (1.13)
and -

a (t) « %.lglc. nea. (1.14)

Proof. Since cl1 <1, the existence of « >0 such that litil<or fmplies
(1.11)....,(1.14) is ensured.

Let ot be choosen in the given way, and let, for some fixed t, Nt <o .
We consider any solution x of 0e& F(x,t+t), i.e. xe€S(t+t), and put

r = dx-tl . Because of (1.10) and (1.11) such solution x exists, end

re d(t)e i ,

By (1.8) and (1.12) we obtain T(E,t)< € . Therefore, proposition 1 may
be applied with M = {t} . This leads to the inequality

r £ -l-'il:if' T(r,t) € -l.(clltll+ao(t)r+al(t)). (1.15)

r'>r
Viewing (1.13) we may continue

r € 1cltil +% (1-1c)r + 1 a, (t)
r.(:_l_ELEB € Iclth + Eal(t)
1c 21

Finally, recalling (1.14), the right-hand side in (1.16) 1s bounded

above by 1=
Py 21‘:“ cz "Elc

= . Bt =
l+lc

2° TegeS  BEl mope el
with -5‘41. Hence

rgplel 7 <1. ' o (1.17)

Setting t = x*_% (k=0,1,2,...) and x = x**! the inequallity (1.17) shows
both that ALG 2 is converging for Ix°-tllzct and that S(xX) is non-eapty,
The inequality (1.16) gives the estimation (=+),

To discuss the theorem let us assume (1.9) and (1.10) to be satisfied
(These are, of course, no trivial assumptions). According to the theorea
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we have then to estimate

T(g,t) = inf{d>0 / F(x,tet) e F(x,t)+ 48,
fm‘allxei+58x

in the form (1.8) where the constant ¢ is as small as possible. If
c < é the local convergence of ALG 2 is ensured.
1
In the case O< c<_-‘-;- this convergence is a linear one (or better).
A

In the case ¢ = O it is of the order ay and, consequently, better than
linear, '

Finally, 1f such estimation for T is impossible or is only possible
with ¢ 2 % , we cannot say anything.

As a simple consequence of the“inequality (1.15) one observes, for the
case O £ cc.}i— , that

kel
1im sup -Ilf-k--—t"- $ cl

K ~» DO ix*=Tll
xk#'t: whenever [REl <ot .

2, Special types of multifunctions f

2.1, F is given by (1.2)

Let us suppose the multifunction G in (1.2) to satisfy the conditions

(*) with X = T and f(X) = 0. Let f be locally Lipschitzian.

Then, we already know that (1.9) is true and that (1.8) holds with some
c, a, and a,;. To verify (1.10) 1s an elementary task of functional
analysis which we can omit here. :

Thus, the number ¢ in (1.8) becomes the key for applying Theorem 1.

Proposition 3: Let G satisfy the condition (*) with X = t, and let

f(;) = 0,
Then, the estimation (1.8) holds with ¢ = 0 if

1 -— -
tig':;g T Hf(t+t)-f(t)-Attll= 0. (2.1)
Ate.G(brt)

Proof. The statement immediately follows from the estimation

T(E,t) 6 NIF(Eat)-F(t)-A tll+ o (L)-€

derived In the proof of Proposition 2.

Let us discusa the condition (2.1) for the cases I and II in the intro-
duction. ‘ B :
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1 f=cs(rl,.... ™, rlecl(x,v)
.1 60D = [0r7(x) 7 #7(x) = £(x)].
Since, for each p, f‘, is continuously Frechét differentiable there is

some function ai’ - a;(t) satisfying ’
lim a)(t)-4td~1 = o

t=0, t40

and

1eP(Ree)-F7()-DFV(DIL N € (L)
Defining the finite sets
1) =§v/ #7(x) = £(x)]

and teking into account that f is continuous we obtain the existence of
some d>0 such that

I(t+t)c 1(1) for [|tll<d.

Thus, if Qtll<d, for each ¥ such that
DF7(T+t) € G(Est)

we have f?(i) =f(t). This yields the estimation

UF(Eet)-F(E)-A tha F(T+t)-FY(E)-0F(Tot)tl
€ 8{(t) « [-DFV(tst) + DFYCDIN. Qtl

and shows (2.1).
In order to fulfil the remaining hypotheses of Proposition 3 we need:

f(t) = 0 and
[Df')(i)]-l : Y—5X exists and is bounded for each Ve I(0).
We consider now the case I under the assumptions
I.2 X =Y =R", 6(x) = If(x)
where OJf(x) denotes the Clarke-Jacobian of £ at x (see F.H. Clarke
1983)
of(x) = conv {A J A= 1im Df‘(x"), f is Frechét-differentiable

at xk, x5 — x}.

Since f is locally Lipschitz (see W.W. Hager, 1979) the mapping
G =3f fulfils (*) if (at X = t) all matrices in If(t) are reguler.
For proving (2.1) we need

Proposition 4. Let £ = ¢S(fl,...,F™), £’ c1(R",R"). Then it holds
BF(x) = conv {DFY(x) /v € I(x)}

where J(x) is the set of ell  such that some sequence X

satisfying both

f"’(xk) = f(xk) and DF‘)(xk) = Df(xk).

k—+ X exists
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Proof. Let C be the convex hull of these Df‘)(x). Since f“"e,c1 the in-
clusion Ccc @f(x) is trivial. To verify If(x)< C we firstly consider
any point x where Df(x) exists. Without loss of generality, let Df(x)=0,
We fix any ue R? , u £ 0. Since ¥ = cs(f ,...,fm) there are some
sequence of posltive A, —>0 and some v such that

f(xed u) = f (x+ 2 K f‘or all k.

One then obtains

0= 1lim i% (F(x+ A, v)}-F(x)) = linm a"-k.(f"(wl kU)-f‘P(x))-

Hence DFY(x)u = O.
Setting T {u / Df"(x)u- 0} this means

e U | (2.2)
vev(x)

with v(x) = {»/ £9(x*) = £(x*) for some sequence x*—» x} .
If DFY(x) # O the subspace uY ts a proper one. Since V(x) iIs finite
the inclusion (2.2) ylelds

dim UY = n for at least one V€ v(x)

and, consequently, Df')(x) = 0 = DF(x).

Now, let A€ Of(x) where x is arbitrarily fixed and, A is any extremal
point of the compact convex set Of(x). Then, some sequence xX —» x
exists such that f is differentiable at each x* and

A= 1im DF(xX).

Recalling the first part of the proof one can assign to each k some
v (k) such that '

F7(x%) = £(x*) and DFP(xX) = DF(x¥)

for v = J(k). After selecting some subsequence satisfying v (k) = v (for
all k) this shows AE€C and leads to 2f(x)cC.

Knowing proposition 4 the proof of (2,1), in the case I.2, can be or-
ganized as in the case 1.1. before. We have only to note that it is
enough to consider extremal points A& G(t+t) in (2.1) and we must re-
place the set I(x) by J(x).

Finally, let us look at the case II in the introduction, 1.e.

f: R"—R" ldcally Lipschitz, G(x) = 9f(x)
card of(x) = 1.

The verification of (2.1), for t = X, then follows via
Ur(tet) - F(E)-OFC(EILN € a ()
and

lim sup BAt-Df(E)ll =0 ' (2.3)
AG.Bf(ta-t) t~0
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by the standard estimation
UF(Eet)-F(R)-A tll € &, (t)+ HA -DF(EIL- NEU.

The condition (*) means nothing else than that DF(X) is a regular
matrix.

It should be mentioned that, in each of these cases, ALG 1 locally
superlinear converges where the estimations are given by the theorenm,

2.2. Compleméntarity problems

Let F be given by the formula
F(x,t) = F(t)+6(t)(x-t) + N(x). (2.4)

This mapping differs from (1.2)vby the fFixed multifunction N not de-
pending on t, and it is related to the complementarity problem (2)

0c £(x) + N(x).

The mapping N, most often, is a normal cone mapping essociated with
*

some closed convex set, In this case we have Y = X ,

If we modify ALG 1 by solving, in step k,

Oﬁf(xk) + A(x—xk) + N(x), (2.5)

-~

then the results above may be applied. Particularly, the function ©T
will not depend on N. However, it becomes now more difficult to ensure
regularity (see 1.3) as well as solvability of each inclusion (2.5) for
X~ near to some solution X of (2) and for any A'eG(xk). In this context,
we refer to B. Kummer 1987, 1984 and to the basic paper S.M. Robinson
1979, For the case that (2) describes a Kuhn-Tucker-system, the papers
D. Klatte/K. Tammer (1987) and D. Klatte(1988. in the present volume)
are very interesting.

2.3. A pathological example

In this section, we define a real Lipschitz function f having the
following properties.

£(0) = 0, DF(0) = 1, 3f(0) =[ 3,2]

™1 exists
ALG 1 (with G = 9f) fails to converge for each starting point
x? 40 provided that Of(x°®) exists. ~

For the equation f(x) -2 = 0, ALG 1 finds the solution x( 1) by one
step whenever A # 0 and ix%-x(A )l <& (2).
In order to construct f we fix any natural number n>1 and consider
the interval I, -[ 'ﬁ:IJ « Let m and m' be the middle points of

In and I,., respectively. Setting

8n-4

- = L v
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we define two linear functions by

£10x) = a(xem), £2(x) = b(x-m").
They fulf111 p1. 1
1,1 a 2
fn(ﬁ-:r) = vy i fn('ﬁ) n’

f'];(m)c frz'(n), ac<h.

The point z defined by fs‘(z) = f:‘:(z) then belongs to the open interval
(%.n). Note that a,b,m,m' and z depend on n. Now, we define f:

(1) f(@) =0 .
1
(1), F(x) = {fa¥) 2 ExEay
F2(x) R éx%z _
(111) £(x) = F3(x) x * 1
(iv) f(x) = -F(-x) x <0

For xCIn, we have

1 1
= € f(x) £ =T
and

n-1 f(x) n
1) ¢ X ‘n-l'

viewing (iv) that leads to Df(0) = 1. ;

Since, for n —» 00, one obtains lim a = %_,', lim b = 2 the equation

ar(0) =[ 7,2] 1is evident.

Let us apply ALG 1 (Gs 9Ff) with x°e(z,ﬁ-1_~f).

Then xls--, X" = m, x3 Ry - 7 .

1f x% (%,z), then the sequence x2 = m', X3 = -a', x? . m,... will be
generated. ,

1f x° belongs to the corresponding negative intervals or {x°1>1, then
the same situstion (alternating sequences) will appear.

Finally, the equation f(x) =2 (A #£0) will be solved by ALG 1 after one
step since f is linear between x(2) and x° (near to x( 1)).

It should be noted that, at 7; s 0, f does not satisfy the condition (2.3).

A

3. Some numerical topics

3.1, Approximation of G(x)

It is well-known from the ordinary Newton method that, in the case of
regulér‘lty. the matrices A = Df‘(xk) may approximatively be determined
up to some error E,. If g, —0 (k—>00) then the order of convergence
remains better than linear; if & ¢J and J is sufficiently small,
then this order 1s linear and the better as the upper bound J s
emaller. The same situation appears for ALG 1 provided that ‘

A€ G(x%) + € BL(x,Y) (in step k) and that the hypotheses of
Proposition 3 including (2.1) are fulfilled. Indeed, after assigning to
A, some A€ G(x") such that IAK-AH €2 €, one easily may estimate the
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distance d between the solutions y'“1 and x**1 of

f(xk) + Ak(x-xk) =0
and

r(xk) + A(x-xk) = 0,
respectively, i.e,

a ¢ 1A —atlpeel.

Since (*) ond (2.1) imply the existence of L< oo such that
BFCtst)-FCE)N & L L) For lt"<% an estimation of the type

ds é(e‘k)-L-!lxk-.tll ; 8(E)->0 as g->0

i1s true., Together with (®**) this gives the desired (local) convergence
of the sequence yk.

3.2. Difference quotients

Ltet X « ¥ = R", 1n the cases I.1, 1.2 and II being consldered In 2.1
one can try to approximate some elements of G(xk) by difference quotients.
As case II jis concerned the only question remaining is that of the
reasonable step-size. For case 1, however, an additionsl problem

arises which we discuss now in relation to I.1.

Let £ = cs(¢1,¢2) where £V: R%2—5 RZ, e cl. Assume ¢ = #1 for x, 2 x,
and f = fz for x, £ Xoe Finally, let xk s 0.

If A Is some approximation of Dfl(o) or sz(o) then it is an approxima-
tion of G(0), too.

But a direct difference approximation of f via

of 1
-5-)-(.12 -g (f(Eel)-f(O)).

where e, denotes the i~th unit vector, leads to a matrix D being near
to
1 2
af  of
(axltsx—;)
and, possible, far from G(0).
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