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Looking at the lifework of Richard von Mises, one might be baffled by the diverse range
of topics that he left his footprint on. Among others, he contributed greatly to aero-
and hydrodynamics, plasticity, probability theory and statistics but also the philosophy
of sciences. Much of his mathematical contribution was influenced by his mechanical
works; always striving to connect applied mathematics to real-world problems. In this
talk, we want to celebrate the diversity of von Mises’ work by addressing mathematically
a problem from engineering science using a wide array of tools from different mathemat-
ical fields such as nonsmooth analysis, variational regularization theory and statistical
inference, [3].
The recovery of an unknown signal µ† comprising finitely many point sources lies at the
heart of challenging applications such as acoustic or seismic inversion, optical imaging,
signal processing and initial value identification. A popular mathematical model for the
recovery of the locations y†

n ∈ Ωs and amplitudes q†
n of its N †

s individual point sources
is given by integral equations

zd
j =

∫
Ωs

k(xj , y) dµ†(y) + εj =
N†

s∑
n=1

q†
nk(xj , y†

n) for j = 1, . . . , No. (0.1)

Here, k ∈ C2(Ωo × Ωs) and xj ∈ Ωo denote a given integral kernel and measurement
locations, respectively.
This type of ill-posed inverse problem is challenging for a variety of reasons. First and
foremost, we neither assume knowledge on the amplitudes and positions of the sources
nor on their number. This adds a combinatorial component to the, potentially highly
nonlinear, problem. Second, inference on µ† is only possible through a finite number
of indirect measurements zd. Additional problems are posed by the appearance of
unobservable, deterministic or random, measurement noise ε, in the problem. A recently
popularized approach to alleviating many of these difficulties is to identify µ† with a
finite linear combination of Dirac Delta functionals

µ† =
Ns∑

n=1
q†

nδyγ
n

where
∫

Ω
k(xj , y) dδ

y†
n
(y) = k(xj , y†

n). (0.2)

Subsequently, we try to recover µ† by the stable solution of the linear, ill-posed, operator
equation

find µ ∈ M(Ωs) : zd = Kµ where Kµ =
(∫

Ω
k(x1, y) dµ(y), . . . ,

∫
Ω

k(xNo , y) dµ(y)
)

over the space of Radon measures M(Ωs) on Ωs. At first glance, this might seem
counter-intuitive: The space M(Ω) is way larger than the set of “sparse” signals of
the form (0.2). Thus, this lifting should contribute to the ill-posedness of the problem.
However, it also bypasses the nonlinear dependency of k(xj , ·) onto the location of the
sources and enables the use of powerful tools from variational regularization theory for
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the reconstruction of µ†. Central objects in this context, are the (noiseless) minimum
Radon norm problem

min
µ∈M(Ωs)

∥µ∥M(Ωs) s.t. Kµ = Kµ† (P0)

as well as the question whether µ† is identifiable, i.e. its unique solution. A sufficient
condition for the latter, is the injectivity of the restricted operator K| supp µ† as well
as the existence of a, in some sense minimal, dual certificate η̄ ∈ C2(Ωs) satisfying
a strengthened source condition
|η†(y)| ≤ 1 for all y ∈ Ωs, η†(y†

n) = sign(q†
n), |η†(y)| < 1 for all y ∈ Ωs \ {y†}Ns

n=1.

For example, for a specific kernel k, the groundbreaking paper [1] shows that µ† is
identifiable if the source locations y†

n are sufficiently well separated.
However, measurements stemming from experiments are always affected by errors, either
due to external influences, imperfectness of the measurement devices or human failure.
These have to be taken into account in order to guarantee a stable recovery of µ†. Despite
the popularity of sparse inverse problems, all existing work, to the best of our knowledge,
focuses on deterministic noise ε. In this context, several manuscripts, see e.g. [2], study
the approximation of an identifiable µ† by solutions to the Tikhonov-regularized problem

µ̄(ε) ∈ M(ε) := arg min
µ∈M(Ωs)

[1
2∥Kµ − zd(ε)∥2

Σ−1
0

+ β∥µ∥M(Ωs)

]
, (Pβ,ε)

where Σ0 is positive definite and the regularization parameter β = β(∥ε∥) is adapted to
the strength of the noise. This represents a challenging nonsmooth minimization problem
over the infinite dimensional, non-reflexive, space of Borel measures. Moreover, due to
its lack of strict convexity, its solutions are typically non-unique. Under mild conditions
on the choice of β, arbitrary solutions µ̄(ε) approximate µ† in the weak*-sense, i.e.∫

Ωs

φ(y) dµ̄(ε)(y) →
∫

Ωs

φ(y) dµ†(y) for all φ ∈ C(Ω)

as ε goes to zero. Moreover, if the minimal dual certificate η̄ associated to Prob-
lem (P0) satisfies the strengthened source condition and its curvature does not degenerate
around y†

n, µ̄(ε) is unique and of the form

µ̄(ε) =
N†

s∑
n=1

q̄n(ε)δȳn(ε) with |q̄n(ε) − q†
n| + |ȳn(ε) − y†

n| = O(∥ε∥)

provided that ∥ε∥ and β are small enough. Such non-degeneracy conditions for dual
certificates have proven to be a key point in the analysis of sparse minimization problems,
from their numerical solution, [6], to their optimal discrete approximation, [4].
While the literature on the deterministic case is rich, assuming knowledge on the norm
of the error is very restrictive or even unrealistic from a practical point of view. In this
talk, we therefore adopt a frequentistic viewpoint on sparse inverse problems and assume
that the measurement noise follows a known Gaussian distribution ε ∼ N (0, p−1Σ0)
where Σ0 is as above with tr(Σ−1

0 ) = 1 and p > 0 denotes the overall precision of
the measurement error. Similar to the deterministic case, we rely on a Tikhonov-type
estimator µ̄(ε) ∈ M(ε) and investigate its “closedness” to the ground truth µ†. However,
the randomness of the noise poses various new challenges but also offers previously
unknown possibilities. First and foremost, we have to define a notion of “distance”
between the estimator µ̄ and the ground truth µ†. In this context, different to the
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deterministic setting, our analysis cannot rely on smallness assumptions on the euclidean
norm of the noise: Albeit with small probability, some realizations of ε might be very large.
In this situation, solutions to (Pβ,ε) can exhibit undesirable features such as clustering
phenomena around y†

n or spurious sources far away from the true support. In particular,
the reconstructed signal may not consist of exactly N †

s Dirac Delta functionals. Thus,
we require a suitable distance d(·, ·) on M(Ωs) to compare two measures of, potentially,
different support size. Note that the naive choice of d(·, ·) = ∥ · − · ∥M(Ωs) is not suitable
since

∥q1δy1 − q2δy2∥M(Ωs) = |q1| + |q2| whenever y1 ̸= y2.

Secondly, any measure of closedness between µ̄ and µ† should respect the random nature
of the noise as well as its distribution. For this purpose, we advocate the use of the
mean-squared error

MSE[µ̄] = Eε

[
sup

µ̄(ε)∈M(ε)
dHK(µ̄(ε), µ†)2

]
where dHK(·, ·) denotes a generalization of the Hellinger-Kantorovich distance, [5], to
signed measures. In contrast to the Radon norm, dHK(·, ·) is compatible with the weak*
topology on bounded subsets of M(Ωs).
Within this talk, we try to answer two questions. On the one hand, we discuss the
asymptotic behavior of µ̄ in the high precision limit, i.e.:

1. If p > 0 is large enough and β is chosen appropriately, is MSE[µ̄] small?

Secondly, recall that we are given the whole distribution of the measurement data, not
only one realization. Hence, we can try to mitigate the influence of the measurement
errors on the estimator, a priori, i.e. before any measurements are taken, by optimizing
the measurement setups:

2. For fixed p > 0 large enough, can we choose xj and Σ0 such that MSE[µ̄] is as
small as possible?

Note that the motivation behind this second question, similar to von Mises work, is
not a purely mathematical one but stems from the underlying application. Collecting
experimental data is often associated to a substantial financial cost. Moreover, some
experiments can only be carried out once since, e.g., some of the involved materials
are destroyed irreversibly. Hence, planning the experiment a priori to ensure good
results, and to save money, is greatly desired. Of course, formulating 2. directly as
mathematical program leads to a computationally prohibitive problem, first, due to the
difficult definition of dHK and, second, due to the involved expectation. However, we still
answer both questions, positively, showing that for some β0 large enough and β(p) =
β0/

√
p, there holds

Eε

[
sup

µ̄(ε)∈M(ε)
dHK(µ̄(ε), µ†)2

]
≤ C1

Ψ(x, Σ0)
p

+ C2 exp(−β2
0/No).

for some C1, C2 > 0, which are essentially independent of x and Σ0, and an easy-to-
optimize design criterion Ψ(x, Σ0) depending on the measurement setup. The latter
dominates the overall error for β0 and p large enough and thus provides a useful way to
optimize the sensor setup.
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The talk is accompanied by extensive numerical examples which, on the one hand,
show the sharpness of the estimate and provide a justification for considering the easy-to-
compute surrogate instead of the mean-squared-error based on the Hellinger-Kantorovich
distance. On the other hand, we also provide some counterexamples which highlight the
necessity of a proper choice for the measurement setup.
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