Prof. Klaus Mohnke Institut für Mathematik Rudower Chaussee 25 Haus 1 Raum 306

Übungsblatt 11

Analysis III WS 2016/17

Musterlösung

Aufgabe 1

(1) Sei $U \subset \mathbb{R}^n$ eine offene Teilmenge, $p \in U$ und $\omega \in \Omega^{n-1}(U \setminus \{p\})$ eine stetig differenzierbare geschlossene Differentialform, d.h. $d\omega = 0$. Seien $A, B \subset U$ Gebiete mit glatten Rändern, die auch in U liegen und die p enthalten. Zeigen Sie mithilfe des Satzes von Stokes

$$\int_{\partial A} \omega = \int_{\partial B} \omega$$

Hinweis: Betrachten Sie eine hinreichend kleine Kugel um p. Ein "Gebiet $A \subset \mathbb{R}^n$ mit glattem Rand" ist eine n-dimensionale Untermannigfaltigkeit, deren Rand, ∂A , mit dem topologischen Rand bereinstimmt.

- (2) Das Integral einer Funktion über Jordanmessbare Teilmengen ist das Integral ber Real- plus i-mal das Integral ber den Imaginärteil. Analoges gilt für komplex-wertige Differentialformen. Die 1-Form dz ist außerdem definiert als dz=dx+idy. Sei $U\subset \mathbb{C}$ offen und $f:U\to \mathbb{C}$ stetig differenzierbar und holomorph, d.h. $\frac{\partial f}{\partial x}+i\frac{\partial f}{\partial y}=0$. Zeigen Sie mithilfe des Satzes von Stokes für jedes beschränkte Gebiet $\Omega\subset \Gamma$ mit glattem Rand $\partial\Omega=\Gamma$
- (a) $\int_{\Gamma} f dz = 0$,
- (b) für jedes $z \in \Omega$ ist $f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta z} d\zeta$, 1
- (c) für jedes $z \in U \setminus \overline{\Omega}$ ist $\frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta z} d\zeta = 0$.

Hinweis: (1) ist nützlich für (b): Drücken Sie das Integral für $\Omega' = \Delta(z, r)$, d.h. die Kreisscheibe um z_0 und die Parametrisierung $\gamma : [0, 1] \to \partial \Delta(z; r)$ gegeben durch $\gamma(t) = re^{2\pi i t}$ aus. Betrachten Sie dann den Grenzwert für $r \to 0$.

Lösung

(1) Sei $\epsilon > 0$ klein genug, damit der offene Ball $B_{\epsilon}(p)$ um p in beiden Mengen enthalten ist. Dann ist $A' = \overline{A} \backslash B_{\epsilon}(p)$ wieder eine Untermannigfaltigkeit mit Rand, wobei der Rand von A' die disjunkte Vereinigung von dem Rand von A und dem Rand von $B_{\epsilon}(p)$ ist. Nun ist die von A' auf $\partial B_{\epsilon}(p)$ induzierte Orientierung genau die Negation der gewöhnlichen von $\overline{B}_{\epsilon}(p)$ induzierten. Dies kann man leicht einsehen, in dem z.B. die außeren Normalenvektoren betrachtet. Also gilt $\partial A' = \partial A \cup (-\partial B_{\epsilon}(p))$. Aus dem Satz von Stokes und $d\omega = 0$ auf A' folgt:

$$0 = \int_{A'} d\omega = \int_{\partial A} \omega + \int_{-\partial B_{\epsilon}(p)} \omega = \int_{\partial A} \omega - \int_{\partial B_{\epsilon}(p)} \omega.$$

¹Die urspüngliche Aufgabenstellung hatte hier einen Tippfehler.

Das analoge Argument für B ergibt dann

$$\int_{\partial A} \omega = \int_{\partial B_{\epsilon}(p)} \omega = \int_{\partial B} \omega.$$

(2) Die (komplexe) 1-Form f(z)dz ist geschlossen, da gilt

$$d(fdz) = \frac{\partial f}{\partial x}(dx \wedge dx + idx \wedge dy) + \frac{\partial f}{\partial y}(dy \wedge dx + idy \wedge dy)$$
$$= (i\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y})dx \wedge dy = i(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y})dx \wedge dy$$
$$= 0.$$

Aus dem Satz von Stokes folgt damit sofort

$$\int_{\Gamma} f dz = \int_{\Omega} d(f dz) = 0,$$

für jedes beschränkte Gebiet $\Omega \subset U$ mit glattem Rand $\Gamma.$

Sei nun $z \in U$. Dann ist $\frac{f(\zeta)}{z-\zeta}$ eine holomorphe Funktion auf $U \setminus \{z\}$. Falls $z \notin \overline{\Omega}$ folgt daraus wie oben, dass

$$\int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{\Omega} d(\frac{f(\zeta)}{\zeta - z} d\zeta) = 0.$$

Für $z \in \Omega$ sei $\epsilon > 0$ klein genug, sodass die offene Kreisscheibe $\Delta(z, \epsilon)$ in Ω enthalten ist. Dann ist $\frac{f(\zeta)}{z-\zeta}$ holomorph in einer Umgebung von $\overline{\Omega}_{\epsilon} = \overline{\Omega} \backslash \Delta(z, \epsilon)$ und wie in (1) folgt, dass

$$\int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{\partial \Delta(z, \epsilon)} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Die Abbildung

$$\gamma_{\epsilon}: (0,1) \to \partial \Delta(z,\epsilon) - \{z + \epsilon\}$$

 $\gamma_{\epsilon}(t) = z + \epsilon e^{2\pi i t}$

ist eine Parametrisierung von $\partial \Delta(z, \epsilon)$, die nur eine Nullmenge auslässt. Also können wir das Integral berechnen als

$$\begin{split} \int_{\partial\Delta(z,\epsilon)} \frac{f(\zeta)}{\zeta - z} d\zeta &= \int_0^1 \frac{f(\gamma_\epsilon(t))}{\gamma_\epsilon(t) - z} \gamma_\epsilon'(t) dt \\ &= \int_0^1 \frac{f(z + \epsilon e^{2\pi i t})}{\epsilon e^{2\pi i t}} \epsilon(2\pi i) e^{2\pi t} dt \\ &= 2\pi i \int_0^1 f(z + \epsilon e^{2\pi i t}) dt. \end{split}$$

Nach dem Mittelwertsatz der Integralrechnung gibt es ein $t_{\epsilon} \in [0, 1]$, sodass

$$\int_0^1 f(z + \epsilon e^{2\pi i t}) dt = f(z + \epsilon e^{2\pi i t_{\epsilon}}).$$

Also folgt im Grenzwert $\epsilon \to 0$, dass

$$\int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = 2\pi i f(z).$$

Aufgabe 2

- (a) Beweisen Sie die Existenz der Zerlegung der Eins einer kompakten Untermannigfaltigkeit $M \subset \mathbb{R}^N$. Sie können dabei wie folgt vorgehen: (i) Zeigen Sie, dass es ein r > 0 gibt, so dass für jeden Punkt $x \in M$ für den euklidischen Ball in \mathbb{R}^N , $B(x;2r) \cap M$ in einer Koordinatenumgebung enthalten ist. Zeigen Sie dann, dass es endlich viele solche Bälle, $B(x_i, 2r)$ gibt, so dass die Bälle vom Radius r, $B(x_i, r)$, M überdecken. (ii) Seien $\tilde{\mu}_i$ glatte Funktionen auf \mathbb{R}^N , die außerhalb von $B(x_i, 2r)$ verschwinden und auf $B(x_i, r)$ konstant 1 sind. Konstruieren Sie daraus die Zerlegung der Eins und weisen Sie alle geforderten Eigenschaften nach.
- (b) Zeigen Sie für eine k-Form α auf einer Untermannigfaltigkeit $M \subset \mathbb{R}^N$: α ist genau dann C^l , wenn es eine offene Umgebung $W \subset \mathbb{R}^N$ von M und eine C^k -Form $\tilde{\alpha}$ auf W gibt mit $i^*\tilde{\alpha} = \alpha$ für die Einbettung $i: M \to W$. Hinweis: Benutzen Sie eine geeignete Zerlegung der Eins.

Lösung:

(a) Sei $M = \bigcup_{i \in I} U_i$ eine Überdeckung durch Koordinatenumgebungen und $\delta > 0$ die Lebesguezahl zu dieser Überdeckung. Dann folgt für $r < \frac{\delta}{2}$, dass alle Mengen von der Form $B(x, 2r) \cap M$ für $x \in M$ vollständig in einer dieser Koordinatenumgebung enthalten ist. Da M kompakt ist, gibt es $x_1, \ldots, x_l \in M$, sodass $\bigcup B(x_i, r) \cap M$ eine offene Überdeckung von M ist.

In Aufgabe 8.1 wurde eine glatte Funktion $\phi: \mathbb{R}^N \to [0, \infty)$ mit Träger in B(0, 2) konstruiert, sodass $\phi|_{B(0,1)} = 1$. Sei dann

$$\phi_i(x) = \phi(\frac{x - x_i}{r})$$
 und $\psi_i(x) = \frac{\phi_i(x)}{\sum_{i=1}^l \phi_i(x)}$.

Die ψ_i sind wohldefiniert und glatt auf $\bigcup_{i=1}^l B(x_i,r)$. Außerdem folgt unmittelbar aus der Konstruktion, dass

- i) $0 \le \psi_i(x) \le 1$.
- ii) $\psi_i(x) = 0$ für $x \notin B(x_i, 2r)$
- iii) $\sum_{i=1}^{l} \psi_i(x) = 1$ für alle $x \in \bigcup_{i=1}^{l} B(x_i, r)$.

Da $M \subset \bigcup_{i=1}^l B(x_i, r)$ und jede Menge $B(x_i, 2r) \cap M$ in einer der obigen Koodinatenumgebungen U_j enthalten ist, bilden die Funktionen $\psi_i|_M$ eine glatte Zerlegung der Eins bezüglich der Überdeckung $(U_i)_{i \in I}$.

(b) Wir beweisen die Behauptung für M kompakt. Der nichtkompakte Fall geht analog, falls man die Existenz von entsprechenden Zerlegungen der Eins vorraussetzt.

Die Richtung (\Leftarrow) ist trivial. Sei α eine l-mal stetig differenzierbare k-Form. In Ü3 wurde gezeigt, dass es offene Mengen W_i und C^l k-Formen $\tilde{\alpha}_i$ gibt, sodass $\tilde{a}_i|_{W_i\cap M}=\alpha|_{W_i\cap M}$ und $M\subset\bigcup_{i\in I}W_i$. Wie in (a) können wir nun glatte Funktionen $\psi_j:W\to[0,\infty), j=1\ldots,m$ konstruieren, die auf einer offenen Umgebung $W\subset\mathbb{R}^N$ von M definiert sind, sodass:

- (i) Der Träger von ψ_j ist kompakt und in einer der Mengen $W_{i_j} \cap W$ enthalten.
- (ii) Die $\psi_i|_M$ bilden eine Zerlegung der Eins.

Dann hat die k-Form $\psi_j \cdot \tilde{\alpha}_{i_j}$ Träger in $W_{i_j} \cap W$ und kann damit durch 0 auf ganz W fortgesetzt werden. Sei

$$\tilde{\alpha} = \sum_{j=1}^{m} \psi_j \cdot \tilde{\alpha}_{i_j} \in \Omega^k(W).$$

Nach Konstruktion ist $\tilde{\alpha}$ l-mal stetig differenzierbar und es gilt

$$\tilde{\alpha}|_{M} = \sum_{j=1}^{m} \psi_{j}|_{M} \cdot \tilde{\alpha}_{i_{j}}|_{M} = (\sum_{j=1}^{m} \psi_{j}|_{M}) \cdot \alpha = \alpha.$$

Aufgabe 3

Beweisen Sie die folgende Aussage: Ist $\varphi: B^n \to B^n$ eine stetig differenzierbare Abbildung des abgeschlossenen Einheitsballes im \mathbb{R}^n auf sich, so besitzt φ einen Fixpunkt. Gehen Sie dabei wie folgt vor:

- (a) Angenommen, es gibt keinen solchen Fixpunkt. Dann definieren wir $\Phi: B^n \to S^{n-1}$ wie folgt: $\Phi(x)$ ist der Schnittpunkt der Geraden durch x und $\varphi(x)$ mit der Sphäre, der x am nächsten liegt. Fertigen Sie eine Skizze an. Zeigen Sie, dass Φ stetig differenzierbar ist.
- (b) Sei $\mu \in \Omega^{n-1}(S^{n-1})$ die Volumenform bezüglich einer der beiden Orientierungen. Zeigen Sie, dass $\Phi^*\mu \in \Omega^{n-1}(B^n)$ geschlossen ist, d.h. $d\Phi^*\mu = 0$.
- (c) Wenden Sie nun den Satz von Stokes an und diskutieren Sie, warum dies einen Widerspruch zur Annahme ergibt.

Lösung:

(a) Nach Definition ist $\Phi(x) = x + tu$ für ein $t \in \mathbb{R}$ und $u = \frac{x - \varphi(x)}{\|x - \varphi(x)\|}$. Die Bedingung $\|\Phi(x)\| = 1$ gibt dann:

$$1 = ||x||^2 + 2tx \cdot u + t^2 = (t + x \cdot u)^2 + ||x||^2 - (x \cdot u)^2$$

d.h.

$$(t+x\cdot u)^2 = 1 + (x\cdot u)^2 - ||x||^2$$

Die Rechte Seite ist streng positiv, da aus $||x||^2 = 1$ und $x \cdot u = 0$ folgt, dass $\varphi(x) \cdot x = 1$ und damit $\varphi(x) = x$. Aus der Bedingung, dass $\Phi(x)$ näher an x liegen soll, folgt dann $t \ge 0$ und somit

$$t = -x \cdot u + \sqrt{1 + (x \cdot u)^2 - \|x\|^2}.$$

Da der Ausdruck unter der Wurzel nie verschwindet ist t und somit auch Φ eine stetig differenzierbare Funktion von x.

(b) Es gilt $d\mu=0$, da $d\mu$ eine n-Form auf einer n-1-dimensionalen Mannigfaltigkeit ist. Dann folgt

$$d\Phi^*\mu = \Phi^*d\mu = 0.$$

(c) Nach Konstruktion von Φ gilt $\Phi(x)=x$ für alle $x\in S^{n-1}$. Der Satz von Stokes und (b) ergeben dann den Widerspruch

$$0 = \int_{B^n} d\Phi^* \mu = \int_{S^{n-1}} \Phi^* \mu = \int_{S^{n-1}} \mu = vol(S^{n-1}) \neq 0.$$

Also muss φ einen Fixpunkt haben.