The following 3 problems are your homework assignment.

Problem 1
Consider the following map $\Phi : K^2 \to \mathbb{R}^4$ where $K^2 = [0,1] \times [0,1]/\sim$ is the Klein bottle (defined in the lecture):

$$\Phi(x, y) := ((r \cos(2\pi y) + a) \cos(2\pi x), (r \cos(2\pi y) + a) \sin(2\pi x), r \sin(2\pi y) \cos(\pi x), r \sin(2\pi y) \sin(\pi x)).$$

Here $a > r > 0$ are real parameters. Show that Φ is differentiable and an injective immersion. Explain why this implies that its image is a submanifold and Φ is a diffeomorphism onto its image.

Problem 2
(1) Let $F : \mathbb{R}^n \to \mathbb{R}^k$ be a differentiable map and let $a \in \mathbb{R}^k$ be a regular value of F. Describe the tangent space to the submanifold $M := F^{-1}(a)$ in terms of the map F.

(2) Let X, Y be differentiable vector fields on a differentiable manifold N which are tangent to a submanifold $M \subset N$ in all points of M. Show that:

\begin{enumerate}
 \item[(a)] The Lie bracket $[X, Y]$ is also tangent to M in all points of M
 \item[(b)] Any flow line of X as above starting at a point in M lies completely in M.
\end{enumerate}

(3) Show that the differentiable vector field on \mathbb{R}^3 is tangent to the unit sphere S^2:

$$X(x, y, z) := xz \frac{\partial}{\partial x} + yz \frac{\partial}{\partial y} + (z^2 - 1) \frac{\partial}{\partial z}$$

Explain why the flow exists for all times and compute it. Determine the long-time behaviour of the flow Φ_t for X, i.e.

$$\lim_{t \to \pm \infty} \Phi_t$$

Problem 3
Do not use the statement of Satz 1.9. for the following two problems since they are part of the proof of this statement.

(1) Let $f : M \to N$ be a bijective immersion of differentiable manifolds of the same dimension. Show that f is a diffeomorphism.

(2) Let $f : M \to N$ be an injective immersion without the assumption on the dimension from (1). Suppose that $f(M) \subset N$ is a submanifold. Show that f is an embedding of topological spaces.

(\textit{Hint: You may make use of the part (1) of this problem}).

Bitte wenden...
The following problem will be discussed in the tutorials.

Problem 4

Let \(O(n) := \{ A \in M(n, \mathbb{R}) \mid A^T A = E \} \) be the set of orthogonal matrices.

1. Show that \(O(n) \) is compact, differentiable submanifold.

2. Show that it is a group, where the group operation is given by the matrix multiplication. Show that \((A, B) \in O(n) \times O(n) \mapsto AB \) and \(A \in O(n) \mapsto A^{-1} \) are differentiable maps. Explain why for any \(A \in O(n) \) the map \(L_A : X \in O(n) \mapsto AX \in O(n) \) is a diffeomorphism.

3. Show that the tangent space \(T_E O(n) \cong \mathfrak{o}(n) := \{ X \in M(n, \mathbb{R}) \mid X^T + X = 0 \} \). Verify that for \(X, Y \in \mathfrak{o}(n) \) the commutator \([[X, Y]] := XY - YX \) given by matrix multiplication defines an element in \(\mathfrak{o}(n) \).

4. Verify that by \(\tilde{X}(A) := d_E L_A(X) \) for a given \(X \in \mathfrak{o}(n) \) we obtain a differentiable vector field, the fundamental vector field corresponding to \(X \). Show that

\[
[[\tilde{X}, \tilde{Y}]] = [\tilde{X}, \tilde{Y}],
\]

where the bracket on the right hand side denotes the Lie bracket on vector fields.

5. For a matrix \(X \in M(n, \mathbb{R}) \) denote by \(\exp(X) := \sum_{i=0}^{\infty} \frac{X^i}{i!} \). Show that \(\exp(X) \in O(n) \) for any \(X \in \mathfrak{o}(n) \) and \(\exp : \mathfrak{o}(N) \to O(n) \) is a diffeomorphism onto its image. Show that for \(X \in \mathfrak{o}(n) \) the flow \(\Phi_t \) generated by \(X \) is given by \(L_{\exp(tX)} \).