Homework 12

Topology II

Winter 2016/17

Review in tutorial on 13.2. and in class on 15.2. if requested

Problem 1

Compute homology and cohomology with various coefficients of the following pairs of spaces and show that they are not homotopy equivalent:

(a) $\mathbb{R}P^2 \vee S^3, \mathbb{R}P^3$

(b) $\mathbb{C}P^3, S^4 \times S^2$

Problem 2

Show that any continuous map $f: S^{k+\ell} \to S^k \times S^\ell$ induces a tryial map $f_*: H_{k+\ell}(S^{k+\ell}) \to H_{k+\ell}(S^k \times S^\ell)$ as long as $k, \ell > 0$. Is the same true for all continuous maps $g: S^k \times S^\ell \to S^{k+\ell}$?

Problem 3

Let $d \in \mathbb{N}$. d > 0. For the map $f_d : \mathbb{C}P^n \to \mathbb{C}P^n$ given by $f_d([z_0 : ... : z_n]) := [z_0^d : ... : z_n^d]$ compute $f_d^* : H^*(\mathbb{C}P^n; \mathbb{Z}) \to H^*(\mathbb{C}P^n; \mathbb{Z})$.

Problem 4

(a) Repeat the statement of Seifert and van Kampens Theorem as formulated in Hatchers book (several open sets covering X).

(b) Hatcher pg. 52,53: problems 2.,3.,4.,9

(c) Compute fundamental groups of a surface of genus $g = 1, 2, ..., \mathbb{R}P^2$, Klein bottle, finite connected sums of $\mathbb{R}P^2$.

(d) Hatcher pg. 54,55: problems 17.,20.

(e) fundamental groups of knot complements: Hatcher pg. 55, problem 22.