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Abstract

The aim of this article is to present the category of bounded Fréchet manifolds in respect to which we

will review the geometry of Fréchet manifolds with a stronger accent on its metric aspect. An inverse

function theorem in the sense of Nash and Moser in this category is proved, and some applications to

Riemannian geometry are given.

1 Introduction

The celebrated Nash-Moser inverse function theorem is one of the most powerful tools linking infinite-
dimensional geometry with global analysis when dealing with smooth objects lacking a Banach structure.
However, the usual description of the tame category uses the notion of a series of seminorms which is
intuitively not very well-accessible, also it delivers not much geometric insight in these infinite-dimensional
spaces (in most cases spaces of smooth sections). So an idea to remedy this gap could be to fix natural
metrics on these spaces of sections which can encode the crucial properties of tameness. This will be done
in the following article. Instead of tame maps (a notion that will refer to a metric instead of to a series of
seminorms) we will often as well consider maps which are bounded w.r.t. the metrics used. For maps of
finite differentiability this procedure would not be well-applicable as fundamental operators like covariant
derivatives are unbounded, meanwhile in spaces of smooth maps with the usual metrics they are bounded.
One reason to consider metrics instead of series of seminorms is certainly that they are geometrucally more
demonstrative. A second reason to be interested in concrete metrics on these spaces comes from applications
in the geometric quantization of field theories. A third advantage consists in the existence of many fix
point theorems for metric spaces. Thus the basic question of this article is: How metric can an exhaustive
description of the properties of Fréchet spaces be?

The article, apart of presenting new results, is thought to serve as an introduction to Fréchet spaces from the
metric point of view; in order to keep it as self-contained as possible, several well-known results (indicated
as such) were included as well. It is structured as follows: In section 2 we review some basic results for
connections in fiber bundles. The treatment of vector bundle connections as Levi-Civita connections on the
total space does not seem to be mentionned in the literature so far. Likewise, some technical definitions and
results about bounded geometry are established. In section 3, the category of bounded Fréchet manifolds
is presented and applied to spaces of sections of fiber bundles. Finally, in section 4 we prove an inverse
function theorem fitting to this category, right along the lines of the proof of the inverse function theorem
for maps between Banach space. The last sections treats the question whether the notion of length structure
is applicable in the present context.

I would like to express my gratitude towards Helge Glöckner who drew my attention to a crucial mistake in
the first versions of this article and made me familiar with a special class of metrics.

∗Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM) Campus Morelia, C. P. 58190, Morelia,
Michoacán, Mexico. email: olaf@matmor.unam.mx
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2 Preliminaries: Connections in fiber bundles and bounded ge-

ometry

2.1 General fiber bundles

As a preparation, we review some facts from the theory of connections.

Definition 2.1 Let a fibre bundle π : N →M be given, m = dim(M). A connection on π is a smooth m-
dimensional horizontal distribution in τN , i.e. an m-dimensional subbundle D of τN with ker(dπ|D) = {0}
at each point.

Definition 2.2 Let π : N → M be a fibre bundle with a connection D. Let a curve c : [0, 1] →M be given.
Let p ∈ π−1(c(0)) be given. Then a horizontal lift of c starting at p is the curve LD

c,p : [0, 1] → N which

is given by LD
c,p(0) := p and L̇D

c,p(t) := (dπ|D)−1(ċ(t)). By definition, LD
c,p projects to c under π.

Horizontal lifts are unique, but they do not exist always. If a connection gives rise to a horizontal lift for
every curve in the base manifold, the connection is said to be Ehresmann-complete or an Ehresmann-
connection.
It is easy to see by considering inverse curves that in the case of an Ehresmann connection each curve
c : [0, 1] → M in the base manifold induces a diffeomorphism Dc from π−1(c(0)) to π−1(c(1)) which we call
parallel transport along c. In the same manner, a curve of diffeomorphisms Hλ of M starting at the
identity induces a curve of fiber bundle isomorphisms DH

λ . If we have a metric fiber bundle with a connection
for which the parallel transports along all curves are isometries of the fibers we call the connection metric.

Definition 2.3 (Pull-back of connections by immersions) Let π : N → M be a fiber bundle with a
connection D. Let f : S → M be an immersion of a manifold S into M . Then we can equip the pull-
back bundle f∗π with the pull-back connection which is denoted by f∗D := T (f∗N) ∩ D where f∗N is
understood as a submanifold of N .

It is easy to check that this is really a connection: First note that because of the finite-dimensional inverse
function theorem around each point p ∈ S there is a neighborhood U whose image is a submanifold of
M . Then, by considering a locally trivial submanifold chart neighborhood of f(U) ⊂ M we show that
f∗N = π−1(f(U)) is a submanifold. Then, for κ being the submanifold chart and for t being the trivialization,
by considering the chart (κ × 1) ◦ t for π−1(U) we see that T (f∗N) = {v ∈ TN |dπ(v) ∈ T (f(U))}. As
rang(D) = m and corang(T (f∗N)) = m− s, we get rang(f∗D) ≥ s. On the other hand, dπ(v) ∈ T (f(U))
for v ∈ T (f∗N), and dπ(v) 6= 0 for v ∈ (D ∩ π−1(m)) \ {0}. Therefore ker(d(f∗π)|f∗D = {0}, and the claim
follows.

Proposition 2.4 Between the parallel transports of a connection and its pull-back connection under an
immersion f we have the simple relation f∗Dc = Df◦c.

Definition 2.5 Let π : N → M be a fiber bundle with a connection D. A vector field X on N is called
projectable iff π∗(X(p)) = π∗(X(q)) for all p, q ∈ π−1(m). It is called basic if it is projectable and
horizontal.

Proposition 2.6 Let π be a fiber bundle with a connection. If X is a projectable vector field and Y is a
vertical vector field, then [X,Y ] is again vertical.

Proof. This follows from [X,Y ] = LXY = d
dt |t=0(Fl

X
−t ◦Y ◦FlXt ) and from the fact that the local flow of X

(which is a lift of the local flow of π∗X and hence is defined on the whole fiber) translates fibers into fibers.
2

Let a fiber bundle π : E → M be given with a pseudo-Riemannian metric h on the fibres, a pseudo-
Riemannian metric g on the base manifold M , and a connection D. Then we can use D to equip the total
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space with the total metric G = Gg,h,D which makes the projection a pseudo-Riemannian submersion.
Then we can consider the Levi-Civita connection ∇E on the total space.
Now in the case that the metrics are Riemannian, the total Riemannian metric Gg,h,D provides us with
convenient criteria to determine whether a given connection is Ehresmann:

Theorem 2.7 Let π : E → M be a bundle with a connection D. If, for some appropriately chosen Rie-
mannian metrics g, h on M resp. on the fibers, (E,Gg,h,D) is complete, then D is Ehresmann. Likewise, if
we can find complete metrics g and h such that the distortion of Dc as a map between the fibers is locally
bounded with respect to the fiber metrics h, then D is Ehresmann.

Proof in [4], 9.42 and 9.46 2

2.2 Vector bundle connections

For vector bundle connections we require additionally to the previous that they respect the linear structure:

Definition 2.8 (cf. [4], 9.51 1) Let π : E → M be a vector bundle. A vector bundle connection on π
is a connection on π as a fiber bundle whose parallel transports are linear maps of the corresponding fibers.

Remark. In particular the definition above says that the parallel transport is defined overall, i.e. that the
connection is Ehresmann.

A vector bundle connection gives rise to a covariant derivative in the following way: First, vector addition
provides us with a map ι : TpE → π−1(m) for all p ∈ π−1(m). Then for a vector X ∈ TpM and a section γ
of π : E →M its covariant derivative ∇Xγ is the section of π defined by

∇Xγ(p) := ι(
d

ds
(D−1

c[s](γ ◦ c(s)))|s=0) = ι(lim
s→0

D−1
c[s](γ(c(s))) − γ(c(0))

s
) = ι(lim

s→0

γ(c(s)) −Dc[s](γ(c(0)))

s
)

in which c is a curve with c(0) = (p, t), ċ(0) = X and c[s] := c|[0,s]. One immediately checks that this
independent of the choice of c.

Proposition 2.9 Let D be a metric connection on the Pseudo-Riemannian vector bundle (π : E → M, g),
let f : S →M be an embedding, then f∗D is metric on (f∗π, f∗g).

Proof by Proposition 2.4 2

We have a correspondance ˜ (inverse to ι as above) between a point v in the total space and a vertical
translational-invariant vector field ṽ on the fiber. Translational-invariant vector fields are always vertical.
Translational-invariant vector fields form a maximal center in the algebra of vector fields in the total space.

Proposition 2.10 Let π : N → M be a vector bundle with vector bundle connection and arbitrary (not
necessarily translational-invariant) metric on the fibers, let s be a section of π which is parallel along a
vector field X on M , let X̂ the associated basic vector field to X, then [X̂, s̃] is translational-invariant.

Proof. This is because the finitesimal commutator of the flow of X̂ (which is parallel transport along the
flow of X and hence linear) and the flow of s̃ (a translation in every fiber) is an affine map. 2

In the following we examine the relation between a vector bundle connection and the Levi-Civita connection
on the total space to the metric Gg,h,D as in the previous section.

1Note, however, that contrary to the claim of this otherwise excellent reference it is not sufficient that the stucture group
be conjugate to Gl(n); it has to be Gl(n) itself which is a distinguished subgroup of the diffeomorphisms in the fibre as soon as
we have a vector bundle.
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Proposition 2.11 Let π be a fiber bundle with a Riemannian metric on the base space and the fibers and
with a connection D as above, let ∇E denote the Levi-Civita connection as above. Let X be a horizontal
vector field and Y a vertical vector field. Then ∇E

XY is vertical.

Proof. Consider one point p in the total space. Because of tensoriality, to calculate ∇XY at p, we can
assume that X is projectable. Let V be another projectable vector field and show 〈∇E

XY, V 〉 = 0 by using
Lemma 2.6. 2

Proposition 2.12 Let a vector bundle π be given with a vector bundle connection and a translational-
invariant metric. Let X be basic and V be translational-invariant. Then ∇XV is translational-invariant.

Proof. First recall that, as V is vertical and because of Proposition 2.11, ∇XV is vertical. We show that it
is invariant under horizontal translations, that means, under addition of vector fields of the form Ỹ where
Y is a horizontal section of π. Now let Ỹ be as above and Z be another translational-invariant vector field,
then

Ỹ (〈∇XV, Z〉) =
1

2
Ỹ (X〈V, Z〉 − 〈X, [V, Z]〉 + 〈Z, [X,V ]〉 + 〈V, [Z,X ]〉)

=
1

2
(XỸ 〈V, Z〉 − [X, Ỹ ] − 0 + 〈Z, [Ỹ , [X,V ]]〉 + 〈V, [Ỹ , [X,Z]]〉)

=
1

2
(〈Z, [Ỹ , [X,V ]]〉 + 〈V, [Ỹ , [X,Z]]〉)

=
1

2
(〈−Z, [X,−[V, Ỹ ]] − [V, [Ỹ , X ]]〉 + 〈V,−[Z, [X, Ỹ ]] − [X, [Ỹ , Z]]〉)

= 0

where the first step is the Koszul formula, the second step is the definition of the Lie derivative resp. the
translational invariance of the fiber metric, the third step uses Proposition 2.6, the fourth step is the Jacobi
identity, and the last step uses Proposition 2.6 again and the fact that translations commute. 2

Proposition 2.13 Let a vector bundle π be given with a metric vector bundle connection and a translational-
invariant metric. Let X̂ be the basic vector field on E to a vector field X on M . Let Y be an X-parallel
section of π, then ∇X̂ Ỹ = 0.

Proof. Choose another translational-invariant vector field Ẑ, w.r.o.g. ∇XZ = 0 at the point p in question,
then the Koszul formula gives at p

〈∇X̂ Ỹ , Ẑ〉 = X̂〈Ỹ , Z̃〉 − 〈X̂, [Ỹ , Z̃]〉 + 〈Z̃, [X̂, Ỹ ]〉 + 〈Ỹ , [X̂, Z̃]〉

= X〈Y, Z〉+ 〈Z̃, lim
t→0

(PX
t ◦ ˜tY − ˜tY ◦ PX

t )〉 + 〈Ỹ , lim
t→0

(PX
t ◦ ˜tZ − ˜tZ ◦ PX

t )〉

= 〈Z̃, lim
t→0

P̃X
t (Y )〉 + 〈Ỹ , lim

t→0
P̃X

t (Z)〉 = 0

where the second equation is due to the fact that 〈Ỹ , Z̃〉 constant on the fiber and the last equation is
due to the fact that parallel transport of a metric connection is an orthogonal map and its derivative is a
skew-symmetric map. 2

Now we can relate the connections by the following

Theorem 2.14 Let a vector bundle π be given with a metric vector bundle connection and a translational-

invariant metric. Then we have ∇̃π
Xv = ∇E

X̂
ṽ, where X̂ is the basic vector field corresponding to X.
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Proof. We have

∇̃π
Xv = lim

t→0

˜P t
Xv − v ◦ FltX

t

= lim
t→0

P̃ t
Xv −

˜v ◦ FltX
t

= lim
t→0

P t
X̂
ṽ − ṽ ◦ Flt

X̂

t

= ∇X̂ ṽ

where the first equation is a consequence continuity of the map ,̃ the second one of its linearity, the third
one of Proposition 2.13. 2

Theorem 2.15 Let a vector bundle π be given with a vector bundle connection and a translational-invariant
metric. Then, if w̃ is translational-invariant and v is vertical, ∇vw̃ is horizontal. If additionally the vector
bundle connection is metric, then ∇vw̃ = 0.

Proof. Because of tensoriality we can assume that v is translational-invariant as well. Then the Koszul
formula gives immediately 〈∇vw̃, z〉 = 0 for any vertical vector z which, again by tensoriality, we can assume
to be the value of a translational-invariant vector field as well. On the other hand, the application of the
same Koszul formula to a horizontal vector z gives

g(∇vw̃, z) =
1

2
(−Lz(g(v, w̃)) + g(v,Lzw̃) + g(w̃,Lzv) = (Lzg)(v, w)

which vanishes if the connection is metric, i.e. if the horizontal flow preserves the metric on the fibers. 2

Furthermore, there is also a correspondence for basic vector fields:

Theorem 2.16 Let a vector bundle π : E → M be given with a metric vector bundle connection and a
translational-invariant metric. Then for any vector fields X,Y on M , for their horizontal lifts X̂, Ŷ we have

∇X̂ Ŷ = ∇̂XY .

Proof. This is because ∇V̂ is horizontal:

〈∇V̂ Ŵ , X̃〉 = V̂ 〈Ŵ , X̃〉 − 〈Ŵ ,∇V̂ X̃〉 = 0

and because of the corresponding formula controlling the horizontal part in general Riemannian submersions
that can be found in [11], p. 212 (Lemma 45.3) which is proven using the Koszul formula. 2

Finally, the last possible combination in the covariant derivative vanishes:

Theorem 2.17 Let a vector bundle π : E → M be given with a metric vector bundle connection and a
translational-invariant metric. Then for any two vector fields X,V on M we have

∇X̃ V̂ = 0.

Proof. First show that ∇X̃ V̂ is horizontal picking a translational-invariant vector field Ỹ and using Theorem

2.15. On the other hand, ∇X̃ V̂ = ∇V̂ X̃− [V̂ , X̃] must be translational-invariant following the theorems 2.15
and 2.10. This leaves us with the zero vector at every point. 2

So, for an arbitrary vector bundle π : E → M with translational-invariant metric and metric vector-bundle
connection, and for any curve c : I → E with k := π ◦ c, k̇ 6= 0, we have
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ċ(t) = ċvert(t) + ċhor(t), ċvert(t) =
1

||k̇||
˜∇LC
k(t)c(t) (1)

while ċhor = k̂.. This is because by definition ∇
LC(E)

k̂(t)
c̃(t) = 0 if and only if ċ is horizontal along k̇ by

Theorem 2.14.

2.3 Bounded geometry

Definition 2.18 Let F : π → π′ be a vector bundle homomorphism between two Riemannian vector bundles
π, π′ over manifolds M,N . The upper resp. lower distortion δ resp. δ of F is defined as the quantities

δ(F ) := sup
X∈SE

||F (X)|| = sup
X∈E\n

||F (X)||

||X ||
,

δ(F ) := sup
X∈SE

(||F (X)||−1)} = sup
X∈E\n

||X ||

||F (X)||

where Sπ : SE → M is the sphere bundle of π and n its zero section, and the total distortion δ of F as
δ(F ) := max{δ(F ), δ(F )}.

Definition 2.19 Let (N, h) be a Riemannian manifold, let V ⊂ M be open. We call (N, h) of bounded
geometry (in V ) if for the Levi-Civita connection on (N, h) holds: The injectivity radius ιM is bounded
from zero on M (resp. on V ), and ||∇(k)RM (p)||(τ∗

M )3⊗τM
≤ Ck for all k ∈ N∪{0} and for all p ∈M (resp.

p ∈ V ). Let π : E → M be a fibre bundle (E, h) → (M, g) over a Riemannian manifold (M, g) with a fibre
bundle connection D and a fiber metric. Let U ⊂ E be open. We call π of strongly bounded geometry
(in U) if the natural Riemannian metric on E is of bounded geometry (in U). We call it of bounded
geometry if for every section γ there is an ǫ > 0 such that for the ǫ-neighborhood Uǫ of γ(M) ⊂ E, the
bundle π is of strongly bounded geometry in Uǫ.

Every bundle with compact fibers and compact base is of strongly bounded geometry, every bundle with
compact base is of bounded geometry.
We can reformulate the conditions in the case of vector bundles:

Theorem 2.20 A vector bundle π : E → M is of bounded geometry if and only if the injectivity radius of

the base is bounded from zero, if the curvature of the base satisfies |(∇(M))(k)RM | ≤ C
(M)
k for all k ∈ N∪{0},

and if the vector bundle curvature satisfies |(∇(π))(k)R(π)| ≤ Ck for all k ∈ N ∪ {0}.

Proof. First we treat the curvature conditions: The tensoriality of ∇(k) and of R allows us to choose
all horizontal fields basic and all vertical fields translation-invariant. Then we use the theorem 2.15, 2.14
and 2.16 to show that the bounds of |∇(k)R| in the definition above is equivalent to the existence of such
bounds for the curvature terms of the corresponding vector bundle connections respectively bounds of the
corresponding terms in the base. The geodesics split in two cases. Either ċ(0) is vertical; then c stays in
the fibre and ċ(t) = ċ(0) modulo translation. Or it has a horizontal part in which case the geodesic lies over
the geodesic k : I → M given by k(0) = π(c(0)) and k̇(0) = dπ(ċ(0)), and one can easily check by means of
Theorems 2.14 and 2.15 that the geodesic equations for c are equivalent to the ordinary differential system
∇kι(ċ

vert) = 0 where ι is the usual isomorphism between the vertical space at a section and the total space of
a bundle. One only needs to cover the image of k by convex neighborhoods and extend the vertical part of ċ
translational-invariant. Thus c is defined as long as k is defined. Therefore around c(0) there is a cylindrical
neighborhood π−1(BR(π(c(0)))) which contains a ball of radius R around c(0). 2

There are some useful embedding theorems for sections of bundles of bounded geometry. For example, the
compact supported smooth sections Γ∞0 (π) are dense in the space of Lp-sections, for 1 ≤ p < ∞; and for
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s > k + n
p there is an embedding of W s,p sections into the space Ck

b (π) of k times differentiable sections of

finite Ck-norm, cf. [2].

Another useful property of bounded geometry is the following beautiful theorem which ensures the existence
of a bounded atlas:

Theorem 2.21 Let (M, g) be a Riemannian manifold of dimension n which is of bounded geometry. Then
there is a ball B around 0 in the Euclidean space Rn such that

(i) expp|B is a diffeomorphism at every p ∈M ,
(ii) The distortion δ(expp|B) is a bounded function on M ,

(iii) There is a bound Kl independent of p ∈ M such that all Christoffel symbols Γk
ij with respect to the

normal neighborhood around all points p ∈M have Ci-norm smaller than Kl on B ⊂ Rn.

For the proof cf. [12], Lemma (2.2) and Proposition (2.4) as well as the proof in [1], Appendix 2. 2

Theorem 2.22 Let (M, g) and (N, h) be two Riemannian manifolds and F : M → N be a smooth map.
Then for every compact subset K ⊂M there are constants κK,i, κ̂K,i such that

〈(∇N )i−1(F∗V ), (∇N )i−1(F∗V )〉(τ∗
N

)i⊗τN
≤ κ̂K,i · 〈(∇

M )iV, (∇M )iV 〉(τ∗
M )(k)⊗τN

and

〈∇N
F∗X1

∇N
F∗X2

...∇N
F∗Xi

(F∗V ),∇N
F∗X1

∇N
F∗X2

...∇N
F∗Xi

(F∗V )〉τN

≤ κK,i · 〈∇
M
X1

∇M
X2
...∇M

Xi
V,∇M

X1
∇M

X2
...∇M

Xi
V 〉τM

for any vector fields V,X1...Xi on K where the covariant derivatives are the Levi-Civita ones.

Proof. First we take a covering of every compact region Kn by coordinate neighborhoods as in Theorem
(2.21). Then we pick arbitrary coordinates (x1...xm−1, t = xm) at a given point (p, τ) ∈ M × I. Then we
show the second claim first: Show inductively that ∇M

X1
∇M

X2
...∇M

Xk
V is a sum of at most k! ·4k ·m2k+1 terms

of the form

f1
i,j1

1 ...j1
q(1)

· ... · fn
i,jn

1 ...jn
q(n)

· Γk1

i1j1,J1
1 ...J1

Q(1)

· ... · Γ
kp

ipjp,Jp
1 ...Jp

Q(p)

Vj,k1...kr
∂xn

(where Xi =
∑

j f
j
i ∂j with q(i), Q(i), p, r ≤ n; this can be done by the observation that each factor in front

of ∂xn
can be derived producing m terms of one factor more and ∂xn

can be derived producing m2 terms of
two factors more). Then consider the pushed-forward coordinate system and apply the coordinate formula
for the Christoffel symbols in partial derivatives of the metric. The partial derivatives of the coefficients f j

i

stay the same on both sides.
For the first part of the claim note that

∇n+1(X1, ...Xn+1)V = ∇Xn+1(∇
n(X1, ...Xn)V ) −

n∑

i=1

∇n(X1, ...∇Xn+1Xi...Xn)V

and show, again by induction, that ∇n(X1, ...Xn)V is a sum of n! terms of the form

∇∇V (1,1)...∇V (I(1),1)V (1)...∇∇V (1,m)...∇V (I(m),m)V (m)V

where V (i, j), V (l) ∈ {X1, ...Xn} and if k denotes the index we have
k(V (i, j)) > k(V (i+ 1, j)) > k(V (j)) > k(V (j + 1)). Thus κ̂k := (n! maxi∈0,...k κi)

2 does the job. 2

7



3 Spaces of smooth sections and Fréchet geometry

In this section we provide the foundations of Fréchet spaces and Fréchet manifolds, thus the material pre-
sented is novel only when dealing with concrete metrics. The non-metric aspects might be found in [8] or in
[3], however, we will include some of their proofs here.

3.1 Fréchet spaces

A motivation for generalizing the notion of Banach spaces is the fact that there is no Banach space structure
on the space of smooth sections of a vector bundle such that the covariant derivative in the direction of any
nonzero vector field on the base be continuous. This is seen by noting that in Banach spaces continuity
is equivalent to boundedness, and by constructing sections which are arbitrarily high eigenvalues of the
derivative or its square (most easily seen in C∞(S 1,R) with fK(x) = K−1sin(K2x)).

Definition 3.1 A Fréchet space is a locally convex topological vector space V whose topology can be
induced by a complete translational-invariant metric d on V . If we keep track of its metric we call the pair
(V, d) metric Fréchet space. For a real number K, a Fréchet space is called scalar-bounded by K iff
d(ρ · v, 0) ≤ Kρd(v, 0) for every ρ ≥ 1.

Remark. The triangle inequality implies that every Fréchet space with star-shaped balls is scalar-bounded
by 2. However, even in finite-dimensional metric vector spaces, balls do not have to be star-shaped. As
an example, consider the real line with the metric d(r, s) := Φ(|r − s|) with Φ(x) := x for 0 ≤ x ≤ 1,
Φ(x) := 1 − (x− 1)/2 for 1 ≤ x ≤ 2 and Φ(x) := 1/2 + (x− 2)/3 for x ≥ 2. as Φ(x± y) ≤ Φ(x) + Φ(y), the
metric d satisfies the triangle inequality, but the balls with radius 1/2 ≤ r ≤ 1 are not starshaped and not
even connected in this example.

Example 1: Every Banach space (V, || · ||) is a metric Fréchet space scalar-bounded by 1, e.g. finite-
dimensional vector spaces, W k,p and Cp, with d(v, w) := ||v − w||.

Example 2: The vector space FN of sequences in a fixed metric Fréchet space (F, d) can be made a metric
Fréchet space (FN, D) scalar-bounded by 1 by setting

δn((vi)i∈N, (wi)i∈N) :=

n∑

i=1

d(vi, wi)

picking, for a D > 0, a concave monotonously increasing continuous function Φ : [0,∞) with Φ(0) = 0
(from now on we will take the special choice Φ : [0,∞) → [0, 1),Φ(x) = x/(1 − x).), a positive sequence α
converging to 0, and defining the standard α-metric

Dα((vi)i∈N, (wi)i∈N) :=
∑

n∈N

αnΦ(δn((vi)i∈N, (wi)i∈N))

as well as the supremum α-metric

dα((vi)i∈N, (wi)i∈N) := supn∈Nαn · Φ(δn((vi)i∈N, (wi)i∈N)).

Each of these choices defines a natural family of metrics for the adequate category of Riemannian fiber bundles
with connection. The supremum metrics have the advantage to have convex balls while they are nowhere
differentiable. In contrast, as Φ is differentiable on [0,∞), the standard metrics have better differentiability
properties but none of their balls is convex. An interesting open question is whether there is a metric with
both advantages. In contrast to Glöckner ([7]) we choose the name standard metric for the first one as
the usual metric appearing in the literature is Dα for αn := 2n. For r > 0 let l(r) be the sequence with
l(r)n = rn, then we have the estimate
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Dl(r2) < dl(r) < Dl(r) (2)

which allows us to translate results obtained in the supremum metrics into the context of standard metrics
and vice versa. The second one of these inequalities is obvious, for the first one note that as l(r) tends to
zero and the range of Φ is bounded, the supremum s is attained by, say, rnΦ(an). Then for all j ∈ N we
have Φ(aj) ≤ r−n+js and therefore

Dl(r2)(a) =
∞∑

i=1

r−2iΦ(ai) ≤
∞∑

i=1

r−2ir−n+is ≤ r−ns
∞∑

i=1

r−i = r−ns.

Note, however, that the inverse estimates Dl(r) ≤ Cdl(r) or dl(r) ≤ CDl(r2) that would complete (2) to
equivalences between metrics, are wrong.

Example 3:
Let (M, g) be a Riemannian manifold and π : E → M a vector bundle over (M, g) equipped with a Rie-
mannian vector bundle metric 〈·, ·〉 and a metric covariant derivative. Now we define metrics on Γp(π) by
pull-back of the above standard and Glöckner metrics applied on the series of Lp norms in the case of a
compact base (by convention, put L∞ = C0):

||γ||(p,n) := ||
√
〈∇(n)γ,∇(n)γ〉(τ∗

M)⊗n⊗π||Lp(M)

||γ||p,n :=
n∑

i=1

||γ||(p,i)

〈γ〉p,α := Dα((||γ||p,n)n∈N, 0), (3)

〈γ〉sp,α := dα((||γ||p,n)n∈N, 0) (4)

giving rise to Dp,α and dp,α, respectively, by applying 〈γ〉p,α and 〈γ〉sp,α to differences. Likewise, if M is
noncompact, we define in a similar way standard and supremum metrics on Γ(π) using an increasing series
Cn ⊂ Cn+1 of compacta whose union is M . As we assume M to be Riemannian and complete, we restrict
ourselves to the choice Cn := Bn(x) where x is an arbitrarily fixed point in M . Then we define

dx,p,α(γ, δ) :=

∞∑

i=1

2−idi
x,p,α(γ, δ) , di

x,p,α(γ, δ) := dα{|(γ − δ)|Kj
||W i,p}j∈N, 0), (5)

Dx,p,α(γ, δ) :=

∞∑

i=1

2−iDi
x,p,α(γ, δ) , Di

x,p,α(γ, δ) := Dα{|(γ − δ)|Kj
||W i,p}j∈N, 0). (6)

The estimates (2) immediately carry over to this case.
Remark. We could have made Definition (3) instead of (5) also in the case of M noncompact, if we assume
that π bounded and if we restrict ourselves to the spaces of sections all of whose Sobolev norms are finite.
These are metric Fréchet spaces as well, natural in the class of (bundles over) Riemannian manifolds and
isometries without base points; but as the restriction to these subspaces has some disadvantages we stick to
(5) in the noncompact case.

Theorem 3.2 Let π : E → M be a vector bundle, then the space of its smooth sections Γp(π) with the
metrics dp,α or Dp,α (in the compact case) resp. dx,p,α or Dx,p,α is a metric Fréchet space scalar-bounded
by 1. The resulting topology is the same for all these metrics and is finer than the compact-open topology, it
equals the inverse limit topology of the Banach spaces of W k,p sections in the compact case. The supremum
metrics have convex balls, while none of the balls of the standard metrics is convex.
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Proof. It is enough to show that the metrics (i) are translation-invariant, (ii) are complete and has (iii) the
balls in the supremum metrics are convex (then the topology is locally convex in either case).

Property (i) is clear by definition. For (iii), we have to show that for each two sections γ, γ′ we have
〈γ + t(γ′ − γ)〉sp,α ≤ max{〈γ〉sp,α, 〈γ

′〉sp,α} for all t ∈ [0, 1]. By continuity of the metric it is sufficient to
restrict ourselves to the case t = 1/2, and the rest is then done by nesting by intervals. By concavity of the
arithmetic sum and monotonicity of Φ we have

Φ(
an + bn

2
) ≤ max{Φ(an),Φ(bn)}

and therefore, for ds
α,p,

αnΦ(
an + bn

2
) ≤ max{Φ(an), αnΦ(bn)}

and thus

sup(αnΦ(
an + bn

2
)) ≤ max{sup(αnΦ(an)), sup(αnΦ(bn))}.

For Property (ii), consider a Cauchy sequence of smooth sections. Then we have to show that there is a
limit in Γ(π). But

〈δ〉 ≥
k∑

n=0

Φ(αn||δ||n,p) · 2
−n ≥ 2−k

k∑

n=0

Φ(α0||δ||n,p)

Therefore a Cauchy sequence γn in Γ(π) is a Cauchy sequence in the Banach space W k,2 as well (put
δ = γk − γl and use the continuity of Φ at 0 and the invertibility of Φ in the positive semiaxis) and has
therefore a limit γ in this Banach space. Because of uniqueness this limit is the same in all these Banach
spaces. As we can use the Sobolev embedding theorems in every Cn, it is smooth. For the statement about
the compact-open topology note that the form of the standard metric shows that a set A is open in the
Fréchet space if it is open in every Γk

p(π). The metrics Dp,α and Dx,p,α are scalar-bounded by 1 as every
of its additive terms is. The metrics dp,α and dx,p,α are scalar-bounded by 1 as well because if for fixed
v ∈ Γ(π) we consider the real function L : t 7→ dp,α(tv, 0). As this function consists piecewise of concave
functions which vanish in 0, it is easy to see that L(s · t) ≤ sL(t). 2

In all the examples the metric could be constructed by a countable family of seminorms. This is a general
feature of Fréchet spaces as shown by the following definition and the following theorem that can be found
in [8], [3]:

Definition 3.3 A seminorm || · || on a vector space F is a real-valued, nonnegative function which is
subadditive and satisfies ||cf || = |c| · ||f || for all scalars c and vectors f .

Theorem 3.4 (cf. [8], eg.) Let F be a Fréchet space. Then there is a N-family of continuous seminorms
|| · ||i on F whose balls Bi

ǫ(x) := {y ∈ X : ||y − x||i < ǫ} are a basis of the topology of F . Therefore the
topology of F can be generated by the metric

Dα(f, g) :=
∞∑

i=1

αnΦ(||f − g||i) (7)

where α is an arbitrary positive sequence converging to 0, and as well by

dα(f, g) := sup
i∈N

αnΦ(||f − g||i). (8)
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Proof. Choose a Fréchet metric d, consider Bd
1
i

(0) and define the seminorms as the so-called Minkowski

functionals

||v||i := inf{λ > 0|
1

λ
· v ∈ Ui}.

where we choose convex subsets Ui ⊂ Bd
1
i

(0). These Minkowski functionals are subadditive, as for 1
λf,

1
µg ∈ Ui

we have also 1
λ+µ (f + g) ∈ Ui as a convex combination. Continuity is an easy consequence of subadditivity.

Finally, Cauchy sequences w.r.t. all || · ||i are Cauchy sequences for the metric. 2

It should be stated, however, that if the metric d was already given as a sum of seminorms as in Equation (7),
the Minkowski functionals will not give us back the original seminorms (although the tame equivalence class
stays the same as we will see in Theorem 3.6). One reason why the description by seminorms is important is
that it appears in the Nash-Moser inverse function theorem which is valid only in the case of tame Fréchet
spaces and tame operators which in turn are defined in terms of the seminorms. Thus let us recall some
definitions from the tame category:

Definition 3.5 A linear map A between Fréchet spaces F,G with sequences of seminorms || · ||i and || · ||′i,
respectively, is called tame (from (F, || · ||i) to (G, || · ||′i)) if there are natural numbers b, r such that A
satisfies estimates ||v||′n < Cn||v||n+r for n > b. Two different sequences of seminorms || · || and || · ||′ on one
and the same Fréchet space F are called tamely equivalent if there is a linear isomorphism A : F → F
which is tame from (F, || · ||i) to (F, || · ||′i) and whose inverse is tame from (F, || · ||′i) to (F, || · ||i).

Theorem 3.6 Let F be a Fréchet space with a metric defined by Equation 7 or Equation 8. Then the
sequence of norms defining the metric is tamely equivalent to the sequence of 2i-Minkowski functionals.

This theorem (whose straightforward proof shall be skipped) may sound quite technical, but it implies that
tameness of maps does not depend on the choice of a special sequence of seminorms but only on the metric
as the latter one gives rise to the sequence of Minkowski functionals. Thus tameness is an inherent notion of
the metric category and will be related to the sequence of 2i−Minkowski functionals from now on. It even
only depends on the equivalence class of a metric which is shown by the following theorem whose proof will
be omitted as well:

Theorem 3.7 Let A : (F, d) → (G, d′) be bounded by C, then A is tame with grade r ∈ N whenever 2r > C,
base 0 and Cn = 1 for all n ∈ N.

Let us come back to our examples. Comparing Example 2 and Example 3 we notice that in Example 2 none
of the seminorms we used is a norm while in Example 3 any of the seminorms is a norm. The question could
arise whether there is any continuous norm on FN. This question is answered negatively in the following
theorem.

Theorem 3.8 (cf. [8]) The Fréchet space FN does not have a continuous norm.

Proof. Let us assume the existence of a continuous norm ν. Then we consider a ball Bν
R(0). On one

hand, this ball cannot contain any nontrivial subspace of FN, as ν is homogeneous w.r.t. the multiplication
by positive numbers. But on the other hand, the ball is open because of continuity of ν, so it contains a

finite intersection of elements B
||·||i
R (0) of the basis of the topology. But an intersection of the balls for the

seminorms || · ||i1 , ...|| · ||in
contains the subspace {x ∈ FN|x1 = ... = xm = 0} where m = max{i1, ...in}, a

contradiction. 2

Example 4: Spaces of maps (Ck, W k,p or smoothly finite) from a Riemannian manifold to a metric Fréchet
space F can be made metric Fréchet spaces (with the same scalar bound). This example can be generalized
to sections of Fréchet vector bundles.

A theorem which provides us with still more examples for metric Fréchet spaces (and whose non-metric
variant can be found in [8] or [3]) is:
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Theorem 3.9 (1) A closed subspace of a metric Fréchet space is again a metric Fréchet space, scalar-
bounded by the same constant.

(2) A quotient of of a metric Fréchet space by a closed subspace is again a metric Fréchet space, scalar-
bounded by the same constant.

(3) The direct sum of finitely many metric Fréchet spaces is again a metric Fréchet space, scalar-bounded
by the maximum of the bounds.

Proof. (i) Restrict the metric to the subspace and consider the relative topology of the closed subspace.
Convex sets stay convex as intersected with a linear subspace. The scalar bound is trivial.
(ii) Let us call the closed subspace U and the surrounding Fréchet space X . Define the new metric d′ by
d′(v, w) := minc∈Ud(v+ c, w) = minc,d∈Ud(v+ c, w+ d) (the last equation is valid because of the invariance
of d under translations). This metric generates the quotient topology. Now for every Cauchy sequence in
X/U we have to find a Cauchy sequence of representatives in X . Thus choose a Mǫ ∈ N s.t. for all m,n > M
we have d′([vm], [vn]) = minc∈Ud(vm, vn + c) < ǫ

3 . Then choose a m(0) > M , a representative vm(o) and a
sequence of vectors cn ∈ U with d(vm(0), vn + cn) < ǫ

2 . Then using the triangle inequality we see that for
ṽn := vn + cn we have d(ṽk, ṽl) < ǫ. Now modify the sequence of representatives successively this way for
ǫ = 1

n for all n ∈ N. this converges and leaves us with a Cauchy sequence in X . For the scalar bound and
for ρ ≥ 1 take c̃ := ρ · c in the definition of the distance.
(iii) Let d1, d2 the two metrics, we choose a continuous concave function ∆ : R2 → R (e.g. x1 + x2 or√
x2

1 + x2
2) and define the new metric d′ := ∆ ◦ (d1, d2). For the scalar bound use concavity of ∆. 2

Theorem 3.10 (metric Hahn-Banach-theorem) Let F be a Fréchet space, G ⊂ F a subspace and λ :
G → R a continuous linear map. Then there is a continuation of λ to a continuous linear map F → R.
If we fix a Fréchet metric d with respect to which λ is bounded on G by R, we can choose a continuation
bounded by R as well. In particular, for every vector f ∈ F , there is a continuous linear functional λ on F
with λ(f) 6= 0.

Proof. The proof is in complete analogy to the Banach case, cf. [13], pp. 372-378. For the question of
boundedness take the Theorem of Hahn-Banach as quoted in cf. [13], pp.94-97: Let X be a real vector space,
U a subvector space of X , p : X → R sublinear, l : U → R linear with l(u) ≤ p(u), for all u ∈ U . Then
there is a linear continuation L : X → R, L|U = l, with L(x) ≤ p(x), for all x ∈ X . To apply this, take

p(x) = supu∈U
||l(u)||
d(u,0) · d(x, 0). 2

Theorem 3.11 (Open-mapping-theorem) Let F,G be Fréchet spaces. If T : F → G is a linear map
which is continuous and surjective, then T is an open map. In particular, if T is continuous and bijective,
T is a homeomorphism.

Proof analogously to the Banach case, cf. [15], p.75 2

Definition 3.12 A subspace G of a Fréchet space F is called topologically complemented in F if there
is another subspace H of F such that the map Φ : G×H → F,Φ((g, h)) := g+h is a homeomorphism, i.e. if
F is homeomorphic to the topological direct sum G⊕H. In this case we call H a topological complement
of G in F .

As there is a homeomorphism from G to G⊕ {0} ⊂ G⊕H , a topological complemented subspace is always
closed. Likewise, it is easy to see that G is topologically complemented in F if and only if there is a continuous
projection π : F → G.

Example: Hamilton ([8]) gives an example of a closed subspace of a Fréchet space which is not topologically
complemented. So take F := C∞([0, 1]) which contains the space G of 1-periodic real functions on the real
line, C∞1 (R) by the restriction ρ on the unit interval. If we define
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p : C∞([0, 1]) → RN, f 7→ Djf(2π) −Djf(0)

we get the short exact sequence

{0} → C∞1 (R) →ρ C∞([0, 1]) →p RN → {0}

Thus the quotient of C∞([0, 1]) by C∞1 (R) is homeomorphic to RN. As the latter one does not have any
continuous norm, there cannot be a continuous linear isomorphism between RN and any closed subspace of
F . Therefore the above sequence does not split, and G is not topologically complemented in F .

This behaviour is not exceptional which is shown by the following theorem:

Theorem 3.13 (cf. [10], p. 435) Let F be a Fréchet space with a continuous norm which is not Banach.
Then there is a closed subspace H ⊂ F with F/H ∼= RN, thus H is not topologically complemented in F .

But at least simple subspaces of Fréchet spaces are topologically complemented:

Theorem 3.14 ([10]) Let F be a Fréchet space. Then
(1) Every finite-dimensional subspace of F is closed.
(2) Every closed subspace G ⊂ F with codim(G) = dim(F/G) <∞ is topologically complemented in F .
(3) Every finite-dimensional subspace of F is topologically complemented.
(4) Every linear isomorphism between the direct sum of two closed subspaces and F , G ⊕H → F , is a

homeomorphism.

3.2 Differentiation and integration of Fréchet maps

Contrary to the case of Banach spaces we will have several different notions of differentiability of maps
between Fréchet spaces. First define the spaces L(F,G) of set-theoretic linear maps and CL(F,G) of con-
tinuous linear maps between Fréchet spaces F,G. Then we note that CL(F,G) can be made a topological
vector space by the compact-open topology.

Theorem 3.15 Let F,G be topological vector spaces, let G be locally convex and metrizable. Then the set
CL(F,G) of continuous linear maps topologized by the compact-open topology is a topological vector space.

Proof. Choose a metric d inducing the topology of G. Let A+B = C in CL(F,G), let C ⊂ (K,O). Then for
M := A(K), N := B(K) we know that M,N and therefore also M +N compact and M +N ⊂ O. Now let
ǫ := d(M+N, ∂O) > 0. Then B ǫ

2
(M)+B ǫ

2
(N) ⊂ O by the triangle inequality, and (K,B ǫ

2
(M))×(K,B ǫ

2
(N))

is an open neighborhood of (A,B) which is mapped in (K,O) under +. Thus + is continuous. Now let us
prove that the scalar multiplication is continuous as well. Let r ∈ R, A ∈ CL(F,G) be given as well as an
open neighborhood of rA of the form (K,O). We have to find a positive number s and an open neighborhood
U of A with (r− s, r+ s)×U mapped into (K,O) by scalar multiplication. First note that there is an ǫ > 0
with Bǫ(rA(K)) ⊂ O. Now consider the continuous function R : B 7→ supx∈K d(A(x), B(x)) on CL(F,G)
and define U := R−1([0, ǫ

8r )). Choose a symmetric convex open neighborhood W of 0 contained in Bǫ/2(0)
and consider the continuous Minkowski functional ρ(v) := inf{t ∈ R| ± t−1v ∈ W} on the compact set AK
where it attains a finite maximum which we call s′. Put s := min{s′, r}. Now (r − s, r + s) × U has the
desired property: Let (τ, B) ∈ (r − s, r + s) × U , let k ∈ K, then

d(τBk, rAk) ≤ d(τBk, τAk) + d(τAk, rAk)

≤ Sτd(Bk,Ak) + d((τ − r)Ak, 0)

<
ǫ

2
+
ǫ

2
= ǫ
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where S is a bound of scalar multiplication which can be chosen smaller or equal to 2. This concludes the
proof. 2

At a first glance, this looks good: Why not define differentiability between Fréchet spaces by means of the
spaces CL(F,G)? The overnext theorem will tell us that this concept would not be very far-reaching as it
does not allow for the iterative definition of higher differentiability. As a preparation for its proof we define
certain subsets of Γ(π) which will turn out to be compact and generic for compact subsets in the sense of
the next theorem. For γ ∈ Γ(π) and an a ∈ RN we set

Kγ,α = {s ∈ Γ(π)| ||β − γ||n ≤ an for all β ∈ B and all n ∈ N.
As an intersection of closed sets, every Kγ,α is closed. The following theorem shows that it is compact as
well.

Theorem 3.16 A closed set B ⊂ Γ(π) is compact if and only if there is a γ ∈ Γ(π) and an a ∈ RN with
B ⊂ Kγ,α.

Proof. Assume the condition fails, then there is an n ∈ N such that B is unbounded w.r.t. || · ||n and,
consequently, contains a sequence βn which in turn does not contain any Cauchy subsequences in this
norm. Therefore none of its subsequences converges in || · ||n and thus neither in the Fréchet space Γ(π).
On the other hand, it is easy to check that each Kγ,α is closed in Γ(π). Now, for a given Kγ,α, define

Kγ,α
l := {δ ∈ Γl+1| ||δ−γ||i ≤ αi∀i = 1, ...l+1}. The closureKγ,α

l of Kγ,α
l in Γl(π) is compact because of the

Arzela-Ascoli Theorem. The series Kγ,α converges to Kγ,α = Kγ,α in the inverse limit Γ(π) = lim← Γl(π),
thus by the compatibility of compactness of Hausdorff spaces and inverse limits the latter one is compact
in Γ(π) (this fact can be looked up in [6] or [5], App.2, 2.4., or seen by the fact that the inverse limit is
defined as a subset of the Tychonoff product which is compact in this case and it is a closed subset by the
constituents of the limit being Hausdorff). 2

Theorem 3.17 CL(F,G) is not metrizable.

Proof. Recall that every metric space is first-countable, i.e. every point has a countable neighborhood base.
Now take 0 ∈ CL(F,G) and assume that 0 has a countable neighborhood base Un. Every Un is the union
of finite intersections of sets of the form (Ki, Oi) where the Oi are open neighborhoods of 0 ∈ G. So for
every n we pick one finite intersection of the union and put Ũn := (

⋃
Ki,

⋂
Oi). Note that Ũn 6= as

⋂
Oi

is an open neighborhood of 0. If {Un}n∈N was a neighborhood base so is {Ũn}n∈N as Ũn ⊂ Un for every n.
Now put U ′n := (Kγn,αn ,

⋂
Oi) where Kγi,αi contains

⋃
Ki. W.r.o.g. we can choose γi = 0 for all i. Then,

following Cantor’s diagonal procedure, define ωk := 2(αk)k and K := Kγ,ω. This is a neighborhood of 0
which contains none of the system above. This concludes the proof by contradiction. 2

Definition 3.18 Let F,G be two Fréchet spaces, U ∈ F open. A map Q : U → G is called differentiable
at p ∈ U iff there is a linear map Ap : F → G with

Ap(v) = lim
t→0

Q(p+ tv) −Q(p)

t

for all v ∈ F . If Q is differentiable at all points p ∈ U , if dQ(P ) is continuous for all p ∈ U and if the
induced map dQ : U → CL(F,G) is continuous, we call Q c-differentiable. The space of all c-differentiable
maps from U to G is denoted by C1(U,G).

Theorem 3.19 For an open set U ∈ F a map Q : U → G is c-differentiable iff it is differentiable at every
point and if the map Q′ : U × F → G, (u, f) 7→ dQ(u)f is continuous in the product topology.

Proof. Continuity of df at every point is trivial. Let df : U → CL(F,G) be given, and without restriction
of generality let df(p) = 0. Let an element of the basis V = (K,O) ∋ 0 be given. We have to show that there
is an open neighborhood U of p with df(U) ⊂ V or equivalently f ′(u,K) ⊂ O for all u ∈ U . By continuity
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of f ′, around every point q ∈ K we can find an open neighborhood Wq of q and an open neighborhood Uq

of p with f ′(Uq ×Wq) ⊂ O. Let W1, ...Wn be a finite subcovering of K, then for U :=
⋂n

i=1 Ui we have

f ′(U ×K) = f ′(

n⋂

i=1

Ui ×K) ⊂ f ′(

n⋂

i=1

Ui ×
n⋃

i=1

Wq) ⊂ O,

thus U has the required property. The other direction is easily seen as well e.g. in the treatment of the
exponential law in [5]. 2

The last result allows us to extend the notion of c-differentiability to the notion of Keller differentiability
or k-differentiability for short, which will allow for iterative definitions of higher derivatives:

Definition 3.20 Let F,G be two Fréchet spaces, U ∈ F open. If Q : U → G is differentiable at all points
p ∈ U , if dQ(P ) is continuous for all p ∈ U and if the induced map Q′ : U × F → G is continuous, we call
Q k-differentiable. The space of all k-differentiable maps from U to G is denoted by K(U,G). Inductively
we can define Q(k+1) : U × F k+1 → G by Q(k+1)(u, f1, ...fk+1) = d

dtQ
(k)(u + tfk+1, f1, ...fk, for every k as

this consists of continuous maps and is continuous. The space of maps Q : U → G for which Q(i) exists is
denoted by Ki(U,G).

Definition 3.21 Let (F, d), (G, d′) be two metric Fréchet spaces, r ∈ (0,∞]. The space Br(F, d,G, d
′) is the

space of all r-bounded linear maps between F and G, that means, all maps f for which

d
(r)
F,G(f, 0) := 〈f〉r := sup

p∈Br(0)\{0}

d(f(p), 0)

d(p, 0)

is finite. If no confusion can occur, we will denote this space also by Br(F,G).

Remark. Of course always r ≤ R ⇒ BR(F,G) ⊂ Br(F,G). If dG is finite, for every ǫ > 0, any given map
is bounded on F \ Bǫ(0) by ǫ−1, thus Br(F,G) = BR(F,G) as subsets of CL(F,G) for all r,R ∈ R ∪ {∞},
as for A ∈ Br(F,G) we have 〈A〉R ≤ max{〈A〉r, r−1}. Nevertheless, although for dG finite they coincide
as subsets of CL(F,G), the spaces Br(F,G) carry different topologies. Note that Br(F,G) can be made
a (locally convex, if (G, d′) has arbitrarily small convex balls) complete metric vector group with metric
δ(f, g) := 〈f − g〉; it is, however, in general not a Fréchet space and not even a topological vector space as
was pointed out in [7] where it was proven that the obvious (pointwise) scalar multiplication is not continuous
in B∞(F,G) at t = 0 if F or G contains a line through 0 on which the metric is bounded. Actually one can
formulate an even more saddening result:

Proposition 3.22 Let F , G be Fréchet spaces. Let d1 be a metric on F and d2 be a metric on G which
generate the respective topologies. Then for every r ∈ (0,∞], if G is not Banachable and Br(F, d1, G, d2)
is a topological vector space, it does not contain any surjective map with a bounded right inverse. If F is
not Banachable and Br(F, d1, G, d2) is a topological vector space, it does not contain any map bounded away
from zero. In the particular case of (F, d1) = (G, d2), Br(F, d, F, d) is not a topological vector space, unless
F is Banachable.

Proof. First we show that for a non-Banachable metric Fréchet space H , for every real numbers K, r there
are vectors h ∈ Br(0) with lK(h) := d(Kh)/d(h) arbitrarily close to one. Namely, if we could bound lK from
1 by, say, ǫ > 0, take U0 a convex reflection-symmetric open neighborhood of 0 contained in B1(0) and (let
w.r.o.g. K > 1) Un := {h ∈ H |Kn · h ∈ U0}. As Un ⊂ B(1−ǫ)n(0), this would be a neighborhood base for
0, and it is easy to check that the norm ||v|| := inf{λ ∈ R|λ−1 · v ∈ U0} would generate the topology of H .
Therefore we cannot bound lK from 1, and there are vn ∈ Br(0) with lK(vn) < 1+ 1

n . Now consider first the
case that Br(F,G) contains a surjective map f with bounded right inverse g. Then C := im(g) is a Fréchet
subspace of F and f |C is an isomorphism bounded both from ∞ and 0. But λf does not converge to 0 as
λ→ 0, because
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supx∈Br(0)\{0}
d(λf(x), 0)

d(x, 0)
= supx∈Br(0)\{0}(

d2(λf(x), 0)

d2(f(x), 0)
·
d2(f(x), 0)

d1(x, 0)
)

≥ supx∈Br(0)\{0}(
d2(λf(x), 0)

d2(f(x), 0)
) · infx∈Br(0)\{0}(

d2(f(x), 0)

d1(x, 0)
)

in which expression the first factor is 1 and the second one independent of λ. So Br(F,G) is not a topological
vector space in this case.

In the other case observe

supx∈Br(0)\{0}
d(λf2(x), 0)

d1(x, 0)
= supx∈Br(0)\{0}

d2(f(x), 0)

d1(λ−1x, 0)

= supx∈Br(0)\{0}(
d2(f(x), 0)

d1(x, 0)
·

d1(x, 0)

d1(λ−1x, 0)
)

≤ supx∈Br(0)\{0}(
d2(f(x), 0)

d1(x, 0)
) · infx∈Br(0)\{0}(

d1(x, 0)

d1(λ−1x, 0)
)

and then proceed as above. For the statement about the case F = G note that the identity is surjective and
bounded from zero, independently of the metric used. 2

Now, as in general Br(F,G) is not a topological vector space, again we face the problem how to define higher
derivatives. Br(F,G) is an algebraic subspace of L(F,G). But as its topology is finer than the one induced
from L(F,G) it is a nontrivial question whether it is open or closed in L(F,G). It turns out that in general
it is never open nor closed: Take F = RN with a standard metric, and for all j ∈ N consider fj : F → F
with fj(vi) = ivi for all i ≤ j and zero on the complement Cj of the canonical embedded Rj ⊂ RN. Clearly
in L(F, F ) the sequence converges to f with f(vi) = ivi for all i ∈ N and zero on C. But all fj are contained
in Br(F, F ) while f is not. Thus Br(F, F ) is not closed in L(F, F ). On the other hand, 0 is contained in
Br(F, F ), and Fj := f − fj converges to 0 in L(F, F ) while all Fj are unbounded. Therefore B(F, F ) is not
open in L(F, F ), either.

We recall that, following Glöckner’s result, for Fréchet spaces F,G, the space Br(F,G) is not a topological
vector space in general, but a complete metric vector group with absolutely convex balls (if we consider
real Fréchet spaces, this means that the balls are invariant under reflections x 7→ −x. In the complex case,
they have to be invariant under multiplication with a complex unit). We call such a vector group a strong
vector group. It is easy to see that if F,H are strong vector groups then Br(F,H) is again a strong
vector group. Although we cannot really use Br(F,G) in order to define higher derivatives as this requires
a topological scalar product, we can use the Keller derivatives and reinterpret them in the bounded sense:

Define inductively strong vector groups B
(i+1)
r (F,G) := Br(F,B

(i)
r (F,G)) and spaces of set-theoretic linear

maps Li+1(F,G) := L(F,Li(F,G)). Then, for PL(U×F k, G) denoting the space of maps which are linear in
every argument except the first one, consider natural maps T k : PL(U ×F k, G) → Lk(F,G)U . This enables
us to make the following definition:

Definition 3.23 Let F,G be Fréchet spaces, let U ⊂ F be open, and let Q : U 7→ G be a map. Q is called
bounded-differentiable or b-differentiable with radius R if it is differentiable at every point, if all
maps dQ(p), p ∈ U , are bounded within the ball around 0 of radius R and if the map dQ : U → BR(F,G) is
continuous. For i ∈ N ∪ {∞}, we define Q to be i times b-differentiable with radius r in U if Q ∈ Ki(U,G)

we have that all T k(Q(k)) : U → Lk(F,G) take their image in B
(k)
r (F,G) for k ≤ i and are continuous w.r.t.

the strong vector group topology. The space of all i times b-differentiable maps with radius R we denote by
Bi

R(U,G).
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Of course the notion of b-differentiability is the strongest one and implies k-differentiability in very much
the same way as uniform continuity implies continuity. A trivial corollary from the definition is

Theorem 3.24 Let A : F → G be an affine map, A(f) = Lf + g for all f ∈ F where L is a linear map and
g ∈ G. Then A ∈ K∞(F,G) and A′f = L for all f ∈ F . Consequently, the map A is b-differentiable with
radius r if and only if L is r-bounded. 2

H.Glöckner proved in [7] that the topology of B∞(F,G) is totally disconnected. The connectivity properties
of Br(F,G) for finite r is a little bit better:

Theorem 3.25 The connected component Br,0(F,G) of 0 in Br(F,G) contains all maps in Br(F,G) which
map Br(0) into a compact set. If G = Γ(π) with a metric of the form 7 or 8, Br,0(F,G) equals the set of all
maps in Br(F,G) which map Br(0) into a compact set.

Proof. From [7], Prop. 2.10, we recall that A ∈ Br,0(F,G) if and only if limt→0 d(tA, 0) = 0. If A(Br(0))
is precompact, all Minkowski functionals are bounded on A(Br(0)), thus it is easy to see that the limit is
0. If G = Γ(π), then there is a Ck norm which is unbounded on A(Br(0)). Therefore the corresponding
Minkowski functional is unbounded as well, so the limit is not zero. 2

Theorem 3.26 For a vector v ∈ Γ(π), the curve c : t 7→ t · v is b-differentiable if and only if there is a real
number M such that ||v||k ≤M for all k ∈ N.

Proof. The derivative of c is ċ(t)(s∂t) := s · v, and one finds

sup〈sv〉/s = lim
s→0

〈sv〉/s = d/ds|s=0〈sv〉.

The corresponding sum converges exactly if the sequence of seminorms is bounded. 2

As in [8] explained, for any Fréchet space F , the Riemannian integral along curves can be defined by its
universal property that it commute with linear functionals; it has similar proprties as in finite-dimensional
or Banach analysis, e.g. the fundamental theorem of calculus carries over to the Fréchet case. Likewise one
can establish many of the usual theorems like the chain rule for differentials. For more on this, see [8].
H. Glöckner proved a useful estimate linking the distances dF , dG and dF,G. The assumptions of this theorem
contains the requirement that dG have absolutely convex balls.

Theorem 3.27 ([7], Lemma 1.11) Let (F, dF ) and (G, dG) be metric Fréchet spaces such that dG has
absolutely convex balls. Let U ⊂ BR(x0) ⊂ F be a convex subset with non-empty interior and f ∈ C1(U,G).
Then for all x, y ∈ U we have

dG(f(x), f(y)) ≤ dF (x, y) · sup
t∈[0,1]

〈f ′(x+ t(y − x))〉R.

Now, an easy consequence of the established terminology which can be proved in complete analogy to the
finite-dimensional case with the usual 3ǫ-arguments is the following theorem:

Theorem 3.28 Let F , G be Fréchet spaces, let U ⊂ F be open, let fn : F → G be a pointwise convergent
sequence of B1

r (U,G) maps with one and the same bound B and let all dfn be Lipschitz functions with one
and the same Lipschitz constant B. Then the map f of pointwise limits is bounded-differentiable in U with
the same bound B, and limn→∞f

′
n = f ′. 2

Remark. If all fn are B2
r (U,G) with the same bound B, the Lipschitz condition is satisfied automatically.

Now we want to show that there are interesting examples of smooth bounded maps between Fréchet spaces:

Example 1:
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Theorem 3.29 Let π : E → M be a vector bundle with a metric and a metric connection. For a parallel
vector field X on M , the map ∇X : Γ(π) → Γ(π) is bounded by 2||X ||0 in both standard and supremum
metrics.

Proof. As 〈∇(k)(∇Xγ)〉 ≤ 〈∇(k+1)γ〉, the problem reduces to the boundedness of the shift σ, (σ(a))n := an+1

in Rn which is easily shown to be bounded by 2. 2

Theorem 3.30 For every unbounded metric generating the standard Fréchet topology on RN the shift is
unbounded as well.

Proof. Let d be the metric in question. The sequence of onen subsets Un := {a ∈ RN|ai < 1/n for all i ≤ n}
is a neighborhood basis of 0. Therefore there is an m ∈ N with Um ∈ Bd

1 (0). Choose v ∈ RN with
d(v, 0) > σm. But

(
1

2m
,

1

2m
, ...

1

2m
, v1, v2, ...) ∈ Um ⊂ Bd

1 (0)

(where the first m coordinates are meant to be 1/2m) which is a contradiction. 2

Example 2: Let π, ψ be vector bundles over M and let A ∈ Γ((π∗)n × ψ) (a polynomial with values in ψ).
If A is parallel w.r.t. the canonical connection in the tensor product, then for every collection of parallel
vector fields Xj

i on M the map

CA : γ 7→ A(∇X1
1
...∇

X
n(1)
1

γ, ...,∇X1
m
∇

X
n(m)
m

γ)

is B∞r for every radius r. This is easily seen from the facts that polynomials are bounded in every ball, that
the covariant derivative is bounded as above, and that the contraction with a parallel tensor A is bounded as
∇X(A(γ)) = A(∇Xγ), therefore ∇nA(γ) = A(∇nγ), and 〈CA〉 ≤ ||A||0. One example for this construction
is γ 7→ 〈γ,∇Xγ〉 for a parallel vector field X .

Counterexample: The most striking counterexample for boundedness is the composition of maps. Let
f : Rn → Rm a smooth map, let M be a compact manifold and let Cf : C∞(M,Rn) → C∞(M,Rm) be
the composition with f . It is well-known that Cf is a smooth tame map, but even in the case of f having
compact support it is in general wrong that Cf is b-differentiable in standard or supremum metrics. This can
easily be seen by taking f := Φ · sin(Mx1) where Φ is a compactly supported function which is identically
1 in a neighborhood of the origin.

3.3 Fréchet manifolds

Due to its better differentiability we will perform the following steps only for standard metrics although they
can in principle also be done for Glöckner metrics.

Definition 3.31 A Hausdorff topological space M is called a Fréchet manifold if M has an open covering
Uα, α ∈ A such that for every α ∈ A there exists a homeomorphism Φα : Uα → Va to an open subset Va of a
Fréchet space Fα such that for any α, β ∈ A with Uα ∩ Uβ 6= ∅ the map

Φα ◦ Φβ |Φβ(Uα∩Uβ) : Φβ(Uα ∩ Uβ) → Φα(Uα ∩ Uβ)

is a smooth map between two open sets of Fréchet spaces. If there is a Fréchet metric in each of these Fréchet
spaces and if we require additionally the maps Φα ◦Φβ |Φβ(Uα∩Uβ) to be bounded w.r.t. these metrics, we will
speak of a bounded Fréchet manifold. If there is a uniform bound for these chart transitions we speak of
a strongly bounded Fréchet manifold.
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Definition 3.32 A compatible metric on a Fréchet manifold M is a metric d on M such that there is a
Fréchet subatlas of M such that in each chart U , d is equivalent to the Fréchet metric dU , that is, there are
constants bU , BU with bU ·dU (p, q) ≤ d(p, q) ≤ BU ·dU (p, q) for any two points in U , and if d is scalar-bounded
in every chart. If there is a choice of bU , BU independent of U we speak of a strong compatible metric.

This definition implies that the metric d generates the topology of M . Moreover, an important property of d
implied by the definition is that for every point of M there is a real number Rp such that Cauchy sequences
in a ball Br(p) have a limit in the closure of the ball as long as r ≤ Rp. An easy consequence of the definition
of a compatible metric is the following theorem:

Theorem 3.33 If a Fréchet manifold carries a (strong) compatible metric, then it is (strongly) bounded.

To make use of the notion of Fréchet manifolds (which we want to model also the spaces of sections of bundles
over non-compact manifolds), we have to make sure that the bundles we are working with are geometrically
not too wild. To this purpose we use the notion of bounded geometry introduced in section 2.3.

Theorem 3.34 Let (M, g) be a Riemannian manifold and π : E → M a fiber bundle over (M, g) equipped
with a Riemannian fiber bundle metric 〈·, ·〉 and a fibre bundle connection D such that the bundle is of
(strongly) bounded geometry. Then the space of smooth sections Γ(π) can be given the structure of a bounded
Fréchet manifold with a (strong) compatible metric.

Proof. First we define a metric on Γ(π) whose values are bounded by 1. For two sections γ, δ ∈ Γ(π) which
are homotopic to each other by a smooth homotopy H ∈ Γ(π× [0, T ]) of sections γt = H(·, t) of π, we define

Hm(p, t) := 〈∇(m)∂tH(p, t),∇(m)∂tH(p, t)〉(τ∗
M )⊗m⊗τ(π)

in which formula ∇ = ∇γ∗
t τE which is well-defined as all γt are immersions into E being sections of π.

Having defined Hm(p, t), we define

H(n,k) :=
n∑

m=0

||
√

||Hm||Lk(Mt)||L1([0,T ])

〈H〉(k,α) := 〈{H(i,k)}i∈N〉α

and finally

d(k,α)(γ0, γ1) := inf
H:γ;δ

{〈H(k)〉}

We will omit the indices (k, α) whenever this does not cause any confusion. Sometimes, if we refer to a special
metric g in the fibre, we will use the notion dg. Obviously, the function d(k) is symmetric by definition.
It is positive, as all its defining terms are positive and as the function Φ : x 7→ x

1+x maps the positive

semiaxis to itself. The vanishing of d(k) implies that γ = δ as H(0,k) ≥
∫
distf(γ(m), δ(m))dm where distf

denotes the fibrewise Riemannian distance. This quantity is greater than zero for γ 6= δ. The triangle
inequality follows by puzzling together two isometries: if two sections γ0, γ1 are homotopic to each other
by an homotopy H01 then we can find another homotopy H ′01 between them all of whose t-derivatives vanish
at t = 1 (by concatenating H01 with a diffeomorphism ψ01 of [0, 1] all of whose derivatives vanish at 1) and
still with 〈H ′01〉p = 〈H01〉p by reparametrization-invariance of the arc-length quantities H(n,k). The same
works for an homotopy H12 between γ1 and γ2; here the reparametrized homotopy H ′12 having vanishing
t-derivatives at t = 1. Now defining an homotopy H02 between γ0 and γ2 by the prescription H02 := H ′01
for t ∈ [0, 1] and H02 := H ′12 for t ∈ [1, 2], we can show by elementary calculus that H

(n)
02 = H

(n)
01 +H

(n)
12 for

all n, and the convexity of Φ : x 7→ x
1+x implies 〈H02〉 ≤ 〈H01〉+ 〈H12〉 which in turn by infimum arguments

implies the triangle inequality.
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The Fréchet manifold structure is provided by smoothly finite sections (w.r.t.dγ) of γ∗τv
M around a

section γ of π. The topology will be induced by U ∈ Γ̃(π) open if κ−1(U) open for all charts κ of the atlas.

We equip an open set of the pulled-back vertical bundle γ∗τv
E with two different metrics gγ resp. g by

pullback along γ resp. along the identification with an open set in Γ(π) by the exponential map in the fibre.
Then we have to prove the following proposition:

Proposition 3.35 The metric d and the translational-invariant pullback metric dgγ
=: d(γ) are topologically

equivalent as metrics on sufficiently small d(γ)-open subsets U of Γ̃d(γ)
(γ∗τv

M ), i.e. every d(γ)-ball around a
section in U contains a d-ball and vice versa.

Proof. First we need to prove a lemma which shows in the same time that in the case of π being a vector
bundle with translational-invariant metric and vector bundle connection the metric we define is the same as
the metric defined in the section about Fréchet spaces:

Lemma 3.36 If we equip γ∗τv
M with a vector bundle metric h (as e.g. the pullback metric gγ) and a metric

vector bundle connection (as e.g. the pullback connection) we have dgγ
(α, β) = 〈L〉h where L = (1− t)α+ tβ

is the affine homotopy joining α and β.

Proof. As by definition of a vector bundle metric every fibre is a flat vector space with a translational-
invariant metric, the minimizing homotopy has to be affine as one can see by decomposing the homotopy
in an affine part and one perpendicular to it: First we put w.r.o.g. p = 0. As l is a continuous convex
function it is enough to show that the straight line segment is a local minimum of l, therefore we can restrict
ourselves to the open space of curves c : 0 ; q with 〈q, ċ〉 > 0. Let ǫ > 0 be given. Then pick I,N ∈ N such
that 2−I2−N < ǫ. Consider the decomposition ċ = fq + s in the Hilbert space determined by the norms up
to I,N where s ⊥ q in this Hilbert space (and so in all scalar products taking part in it). As the length
functional is invariant under reparametrizations, we can parametrize these curves c such that f = 1. Then
we have 〈c〉 ≥ 〈g〉 − ǫ = d(0, q) − ǫ. 2

Proof of the proposition, continued. It is enough to show that for all sections α ∈ Γ̃gγ
(γ∗τv

M ) and for

all δ > 0, there is a ρ > 0 such that B
d(γ)
ρ (α) ⊂ Bd

δ (γ) and vice versa, i.e. with the roles of d and d(γ)

exchanged. First we show the inequalities between the metrics: For the charts we use Riemannian normal
coordinates restricted on the open subsets appearing in Theorem 2.21.

Lemma 3.37 Let π be of bounded geometry, pick one section γ. Then there are constants κn with Ii,k
gγ

≤

κiI
i,k
g and Ii,k

g ≤ κiI
i,k
gγ

for all isotopies I which satisfy disth(γ, I) ≤ β where β is the radius of the ball in
Theorem 2.21.

Proof of the lemma. First show that the parallel transport along fiber geodesics is uniformally bounded
using Theorem 2.21. Then note that I∗τv

E and γ∗τv
E are exactly related by this parallel transport (which

corresponds to radial translation in the exponential plane) and apply Theorem 2.14 and Theorem 2.22.
2

Now we have the inequalities (for L being the linear isometry in the chart linking α with β, with κi as above,
κ̄n := maxi∈{1,...n}κi)
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d(α, β) ≤ 〈L〉g

≤
n∑

i=1

2−iΦ(L(n)
g ) + 2−n (rest sum)

≤
n∑

i=1

2−iΦ(κiL
(i)
gγ

) + 2−n (monotonicity of Φ, Lemma 3.37)

≤ κ̄n

n∑

i=1

2−iΦ(L(i)
gγ

) + 2−n (scalar − boundedness)

≤ κ̄n

∞∑

i=1

2−iΦ(L(i)
gγ

) + 2−n

= κ̄n〈L〉gγ
+ 2−n (Lemma 3.36)

= κ̄ndγ(α, β) + 2−n

Likewise, for I being an isotopy between α and β with

〈I〉g < 2d(α, β) (9)

we get the inequality

dγ(α, β) ≤ 〈I〉gγ

<
n∑

i=1

2−iΦ(I(i)
gγ

) + 2−n (rest sum)

≤
n∑

i=1

2−iΦ(κnI
(i)
g ) + 2−n (monotonicity of Φ,Lemma 3.37)

≤ κ̄n

n∑

i=1

2−iΦ(I(i)
g ) + 2−n (convexity of Φ)

≤ κ̄n

∞∑

i=1

2−iΦ(I(i)
g ) + 2−n

≤ κ̄n〈I〉g + 2−n (Definition of 〈I〉g)

< 2κ̄nd(α, β) + 2−n (Condition (9))

Thus, the inequalities d(α, β) < 2κndγ(α, β)+2−n and dγ(α, β) < 2κnd(α, β)+2−n hold true for every given
natural number n. Thus let a ball Bd

R(γ) be given, then choose n with R > 2−n+1, then elementary calculus

shows that B
dγ

2−n−1κ−1
n

(α) ⊂ Bd
R(α) which proves the proposition. 2

Now the modelling vector space is locally convex as the topologies induced by the translational-invariant
metric dγ and the one induced by g in any chart are equivalent, as shown above.
The metric d is locally complete in the sense specified above because of the inequalities established above.
But the Fréchet manifold itself is in general not a complete metric space (see below). 2

Note that this construction would not be possible if in the definition of the notion of Fréchet manifold the
existence of a countable basis of the topology were required.
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Remark. We defined the metric d for spaces Γ(π) of sections of fiber bundles. What does happen if we
want to deal with maps f : M → N between manifolds? Of course, we would represent them as sections of
the trivial fiber bundle p1 : M × N → M . Now let us consider two sections γ, δ of Γ(π) and forget about
their property being sections, only considering them as maps from M to the total space N of π. If we denote
by dt the metric in the space of sections of the associated trivial bundle M × N , it is obvious that we get
dt(γ, δ) ≤ d(γ, δ) as every homotopy as a section can be seen as a homotopy as a map, and the metrics that

apply coincide. The converse is wrong in general which can be seen in the example of CS
1,R by considering

to sharp peaks centered at two points very close to each other but with disjoint supports : They are very
close as maps but can be arbitrarily distant as sections.

Theorem 3.38 Let π : E → M be a bounded bundle. If all fibers of π are complete, then the Fréchet
manifold Γ(π) with the metric dg is a complete metric space.

Proof. As dg contains the fiber distance as an additive term, if we evaluate a dg-Cauchy sequence γi

at a point p ∈ M , we get a Cauchy sequence in π−1(p) which converges to a point q. By the usual
estimates in uniform convergence one gets the continuity of the pointwise limit: By C1-convergence of the
γi we can conclude the uniform continuity of the sequence and for a sequence pi → p we can decompose
df (γ(pi), γ(p)) ≤ df (γ(pi), γj(pi)) + df (γj(pi), γj(p)) + df (γj(p), γ(p)) to show that the pointwise limit γ
is continuous. Then consider the sections γi of the Cauchy sequence now in a chart around γ with the
translational-invariant metric equivalent to dg. Now for every vector field V on M , the sequence of sections
∇V γi is Cauchy and converges pointwise. Its continuity can be proven by C2-convergence of γi. In this
manner we can proceed inductively to prove the smoothness of γ. 2

Definition 3.39 Let (M,d), (N, d′) be two Fréchet manifolds with compatible metric. The space Br(M,d,N, d′)
is the space of all r-bounded maps between M and N , that means, all maps f for which

〈f〉r := sup
p6=q∈M,d(p,q)<r

d(f(p), f(q))

d(p, q)

is finite. If no confusion can occur, we will denote this space also by B(M,N).

This is a generalization of the same notion in the case of Fréchet spaces.

Theorem 3.40 Let R > 0 be given. In the case (M,d) = (Γ(π), dg), (N, d′) = (Γ(π), dg′ ) and for a Fréchet
map f : M → N we have

〈f〉R := sup
q∈M,p∈Br(q)\{q}

d(f(p), f(q))

d(p, q)
.

for a r < R, i.e., we can restrict us to the case of pairs of points with any distance smaller than R.

Proof. Let ǫ > 0 be given. Define 〈f〉r := supq∈M,p6=q∈Br(q)
d(f(p),f(q))

d(p,q) . Let I be an isotopy between two

points A,B ∈ M with 〈I〉 < d(A,B) + ǫ. Then consider the function D(t) = 〈I|[0,t]〉 and split the isotopy
into finitely many parts Ii : ai ; ai+1 such that 〈Ii〉 < r for all i, in particular d(ai, ai+1) < r. Then we
have d′(f(ai), f(ai+1)) < 〈f〉rd(ai, ai+1), and the iterative application of the triangle inequality implies that

d′(f(A), f(B)) < 〈f〉r · 〈I〉 < 〈f〉r · (d(A,B) + ǫ),

for arbitrary ǫ > 0, and the claim follows. 2

Note that in the case of M,N being Fréchet spaces with fixed Fréchet metrics and f being linear, we have

〈f〉R := supp∈Br(0)
d(f(p),0)

d(p,0) for all r ≤ R.

Now let us rephrase the inverse function theorems of Nash and Moser in the language of the metric-tame
category:
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Theorem 3.41 (Left inverse function Theorem between Fréchet spaces) Let F and G be metric-
tame Fréchet spaces. Let U ⊂ F be open, f : U → G smooth metric-tame, let f ′(x) be injective in U with
left inverse L0 : U × G → F which is metric-tame in U as well. Then there is a real number r0 > 0 such
that there is a continuous left inverse of f |B(x0,r0) (thus in particular it is injective). 2

Theorem 3.42 (Right inverse function Theorem between Fréchet spaces) Let F and G be metric-
tame Fréchet spaces. Let U ⊂ F be open, f : U → G smooth metric-tame with surjective differential in
U and smooth metric-tame right inverse R0 : U × G → F . Then there is a real number r0 > 0 such that
V := f(B(x0, r0)) is open in G and there is a smooth right inverse of f |B(x0,r0) → V (thus in particular it
is surjective). 2

Theorem 3.43 (Full inverse function Theorem between Fréchet spaces) Let F and G be metric-
tame Fréchet spaces. Let U ⊂ F be open, f : U → G smooth metric-tame, let f ′ : U × F → G be a smooth
metric-tame map which is an isomorphism at every u ∈ U . Then there is a real number r0 > 0 such that
V := f(B(x0, r0)) is open in G and f |B(x0,r0) → V is a diffeomorphism. 2

As corollaries, we get the inverse function theorems for Fréchet manifolds with compatible metrics:

Theorem 3.44 (Left inverse function theorem between metric Fréchet manifolds) LetM resp. N
be Fréchet manifolds with compatible metrics dM resp. dN . Let x0 ∈ U , U ⊂M be open, f : U → N smooth
metric-tame, let T 1(f ′) be injective in U with left inverse L : U ×G→ F smooth metric-tame as well. Then
there is a real number r0 > 0 such that there is a continuous left inverse of f |B(x0,r0) (thus in particular it
is injective). 2

Theorem 3.45 (Right inverse function Theorem between metric Fréchet manifolds) Let M resp.
N be Fréchet manifolds with compatible metrics dM resp. dN . Let x0 ∈ U , U ⊂ M be open, f : U → G
smooth metric-tame with surjective differential in U and right inverse R : U × G → F which is smooth
metric-tame as well. Then there is a real number r0 > 0 such that V := f(B(x0, r0)) is open in G and there
is a smooth metric-tame right inverse of f |B(x0,r0) → V (thus in particular it is surjective). 2

Theorem 3.46 (Full inverse function theorem between metric Fréchet manifolds) Let M resp. N
be Fréchet manifolds with compatible metrics dM resp. dN . Let U ⊂ M be an open set, f : U → N smooth
metric-tame w.r.t. dM and dN . Let T 1(f ′) be an isomorphism in U with an inverse I : U ×G→ F which is
smooth metric-tame as well. Then there is a real number r0 > 0 such that V := f(B(x0, r0)) is open in N
and f |B(x0,r0) → V is a diffeomorphism. 2

4 An inverse function theorem for bounded maps

In this section we want to state an inverse function theorem in the category of Fréchet spaces and bounded
maps. We will go very closely along the lines of a nice pedagogical introduction to the same subject in Banach
spaces written by Ralph Howard ([9]). The results are interesting due to the fact that unlike the Nash-Moser
theorem invertibility is required only in one point. An interesting extension of the inverse function theorems
given below was given by Helge Glöckner in [7], there only finite differentiability is required.

Theorem 4.1 (Von-Neumann series) Let (F, d) be a metric Fréchet space of finite metric and A ∈
BR(F, d, F, d) with 〈A− 1F 〉R = r < 1, r < R. Then A is invertible with inverse

A−1 =

∞∑

i=0

(1F −A)i

which satisfies the estimate
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〈A−1〉R ≤
1

1 − 〈1F −A〉R
.

Moreover for 0 < ρ < 1/2, 〈A−1〉 < 1, 〈1F−A〉R, 〈1F−B〉R ≤ ρ and 〈A−B〉R < 1/2 we have 〈A−1−B−1〉R ≤
1

(1−ρ)2 〈A−B〉2R.

Proof. Let B :=
∑∞

k=0(1F −A)k. Then 〈(1F −A)k〉R ≤ 〈1F −A〉kR = rk, so the series defining B converges
by comparison with the geometric series on BR(0) and by linear continuation on all of F , and

〈B〉R ≤
∞∑

k=0

〈1F −A〉kR =
1

1 − 〈1F −A〉R
.

Now compute

AB =
∑∞

k=0 A(1F −A)k =
∑∞

k=0(1F − (1F −A))(1f −A)k

=
∑∞

k=0(1F −A)k −
∑∞

k=0(1F −A)k+1 = 1F .

Likewise one can show BA = 1F or simply use that A and B commute.
Now if 〈1F −A〉R, 〈1F −B〉R ≤ ρ, the preceeding shows 〈A−1〉R, 〈B−1〉R ≤ 1

1−ρ < 2, and

〈B−1 −A−1〉R = 〈B−1(B −A)A−1〉R ≤ 〈B−1〉R〈B −A〉R〈A−1〉R

≤ 1
(1−ρ)2 〈A−B〉R

which completes the proof. 2

Theorem 4.2 Let F and G be metric Fréchet spaces and let A,B ∈ B(F,G) and A be invertible, A−1 ∈
Br(G,F ) with 〈A〉r ≤ 1. Then if 〈A−B〉r <

1
2〈A−1〉r

, 1, then B is invertible as well and

〈B−1〉r ≤
〈A−1〉r

1 − 〈A−1〉r〈A−B〉r

and

〈B−1 −A−1〉r ≤
〈A−1〉2r〈B −A〉r

1 − 〈A−1〉r〈A−B〉r
.

Thus the set U of r-bounded-invertible maps r-bounded by 1 from F to G is open in {A ∈ Br(F,G)|〈A〉r < 1},
and the map A 7→ A−1 is continuous on U .

Proof. As B = A(1F −A−1(A−B)) and 〈A−1(A− B)〉r ≤ 〈A−1〉r〈A −B〉r < 1 by assumption, Theorem
4.1 shows that 1F −A−1(A−B) is invertible and that

〈(1F −A−1(A−B))−1〉r ≤
1

1 − 〈A−1(A−B)〉r
≤

1

1 − 〈A−1〉r〈A−B〉r
.

As we assumed A to be invertible, B = A(1F −A−1(A−B)) is invertible as well with
B−1 = (1F −A−1(A−B))−1A−1 and

〈B−1〉r ≤ 〈(1F −A−1(A−B))−1〉r〈A
−1〉r ≤

〈A−1〉r
1 − 〈A−1〉r〈A−B〉r

.

Finally, B−1 −A−1 = B−1(A−B)A−1 gives

〈B−1 −A−1〉r ≤ 〈A−1〉r〈A−B〉r〈B
−1〉r ≤

〈A−1〉2r〈B −A〉r
1 − 〈A−1〉r〈A−B〉r

which completes the proof. 2
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Theorem 4.3 Let F and G be Fréchet spaces, let U ⊂ F be open. Let h ∈ B2
r (U,G), let dh(p) be bounded-

invertible, let I :→ B(G,F ) be defined by I(X) = X−1. Then J := I ◦ dh : V → B(G,F ) is b-differentiable
on a possibly smaller open neighborhood V of p, and for q ∈ V , the derivative dJ : V → Br(F,Br(G,F )) is
given by

dJ(v)f = −(dh(v))−1 ◦ dh′(v, f) ◦ (dh(v))−1.

Proof. As the set of bounded-invertible maps W is an open set in B(F,G) according to Theorem 4.2, and
as dh : U → B(F,G) is continuous, h is bounded-invertible in an open neighborhood of p. Let L : B(F,G) →
B(G,F ) be the linear map given by Lf := −A−1fA−1 which is continuous on W (Theorem 4.2 again). Now
we will show that this expression gives the derivative of the inversion in its domain of definition in CL(F,G).
So for X ∈W ,

I(X) − I(A) − L(X −A) = X−1 −A−1 +A−1(X −A)A−1

= X−1(A−X)A−1 +A−1(X −A)A−1

= (−X−1 +A−1)(X −A)A−1

= X−1(X − A)A−1(X −A)A−1,

thus for X = A+ tB we get

(I(X) − I(A) − L(X −A))/t = ((A+ tB)−1tBA−1tBA−1)/t

= t(A+ tB)−1BA−1BA−1

As I is continuous according to Theorem 4.2, we have limt→0(A+ tB)−1 = A−1 and

limt→0
I(X) − I(A) − L(X −A)

t
= limt→0t(A+ tB)−1BA−1BA−1 = 0,

thus for dJ we get pointwise the expression in the theorem (note that we could not have done the calculation
directly in Br(F,G) as it uses the topological vector space structure). This expression is bounded in f as
h ∈ B2

r (F,G), and continuous in v by the same reason. This completes the proof. 2

Theorem 4.4 (Banach’s fix point Theorem) Let (X, d) a complete metric space and f : X → X a
contraction with contraction factor ρ < 1. Then f has a unique fix point xf in X. It is the limit of the
recursive sequence x0 ∈ X arbitrary, xn+1 = f(xn). The distance to the solution decreases like

d(xn, xf ) ≤
ρn

1 − ρ
d(x0, x1).

2

Theorem 4.5 (Left inverse function Theorem between Fréchet spaces) Let F and G be metric Fréchet
spaces with a metric of the form (8). Let x0 ∈ U , U ⊂ F be open, f : U → G b-differentiable with radius R,
let f ′(x0) be injective with R-bounded left inverse L0 ∈ BR(G,F ). Then there is a real number r0 > 0 such
that there is a continuous left inverse of f |B(x0,r0) (thus in particular it is injective).

Proof. This is one of the rare occasions where we use local convexity: We choose a convex subset Uc ⊂ U
containing x0. We consider the map ξ : U → BR(F, F ), ξ : x 7→ L0◦f ′(x)−1F which is bounded-differentiable
on U and vanishes at x0. Fix ρ with 0 < ρ < 1, then by continuity of df we can find a convex U ′ ⊂ Uc

containing x0 such that for x ∈ U ′
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〈ξ(x)〉R = 〈L0f
′(x) − 1F 〉R ≤ ρ. (10)

thus in U ′, applying Theorem 3.27 we get

d(L0f(x2) − L0f(x1), x2 − x1) ≤ ρd(x1, x2). (11)

We compute for x1, x2 ∈ Br(x0), r < R,

dF (x1, x2) = dF (x2 − x1, 0)

≤ dF (x2 − x1, L0f(x2) − L0f(x1)) + dF (L0f(x2) − L0f(x1), 0)

≤ ρdF (x2 − x1, 0) + 〈L0〉RdG(f(x2) − f(x1), 0),

therefore

(1 − ρ)

〈L0〉R
dF (x1, x2) ≤ dG(f(x1), f(x2)) (12)

Therefore f |B(x0,r0) is injective and has an set-theoretic left inverse φ := f |−1
B(x0,r0)

which takes its image in

U ′ and for which holds dF (φ(y1), φ(y2)) ≤
〈L0〉R
1−ρ dG(y1, y2),

therefore both f |U and its left inverse are bounded, and φ is continuous. 2

Theorem 4.6 (Right inverse function Theorem between Fréchet spaces) Let F and G be metric
Fréchet spaces with a metric of the form (8). Let x0 ∈ U , U ⊂ F be open, f : U → G b-smooth of radius
r with surjective differential at x0 and bounded right inverse R0 : U ∈ B(G,F ) at x0. Then there is a real
number r0 > 0 such that V := f(B(x0, r0)) is open in G and there is a b-smooth (of radius r) right inverse
of f |B(x0,r0) → V (thus in particular it is surjective).

Proof. First, to simplify the notation, by concatenating with translations in F and G, let w.r.o.g. x0 =
0, f(x0) = 0. Rescale the metric dG such that 〈f ′(0)〉r < 1. Note that the image im(R0) of R0 is a Fréchet
subspace of F as f ′(0) is bounded and therefore R0 is bounded from 0; thus Cauchy sequences in im(R0) are
R0-images of Cauchy sequences in G. As in the previous proof, we use local convexity: We choose a convex
subset Uc ⊂ G containing f(0) = 0. We consider the map ξ : Uc → B(G,G), ξ : x 7→ (f ′(x)R(0)− 1G) which
is bounded-differentiable on U and vanishes at 0. Fix ρ with 0 < ρ < 1, then by continuity of df we can find
a U ′ ⊂ Uc ∩Br(x0) containing 0 with

〈ξ|U ′〉r = 〈f ′|U ′R0 − 1G〉r ≤ ρ. (13)

Likewise in U ′, as f ◦R0 fixes 0 and as (f ◦R0)
′ = f ′ ◦R0, we get

d((1 − f ◦R0)y2, (1 − f ◦R0)y1) = d(f ◦R0(y2) − f ◦R0(y1), y2 − y1) ≤ ρd(y1, y2) (14)

for y1, y2 ∈ U ′, again by applying Theorem 3.27. Now we choose a ball radius r0 such thatB(0, r0) ⊂ f−1(U ′).
Then for y ∈ G we define Φy : F ⊃ B(0, r0) → F by

Φy(x) = x− (R0(f(x) − y)).

Note that, up to a possible factor c > 0 in front of the last bracket, this is exactly the discretization of the
real family of operators used in the proof of the Nash-Moser Theorem in [8], p. 180. This expression is
b-differentiable, and, as R0 is injective, we have Φy(x) = x ⇔ f(x) = y.
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The theorem 3.27 ensures that for x1 = R0u1, x2 = R0u2 ∈ B(0, r0) ∩ im(R0) ⊂ f−1(U ′) we have
dF (Φy(x1),Φy(x1)) ≤ ρdF (x1, x2) (we use that by surjectivity of f ′(0) we know u1 = f ′(0)x1, u2 = f ′(0)x2):

d(Φy(x1),Φy(x2)) = d(x1 −R0f(x1), x2 − R0f(x2))

≤ 〈R0〉∞d(u1 − f(R0u1), u2 − f(R0u2))

= 〈R0〉∞d((1 − f ◦R0)u1, (1− f ◦R0)u2)

≤ 〈R0〉∞〈1 − f ◦R0〉rd(u1, u2)

= 〈R0〉∞〈1 − f ◦R0〉rd(f
′(0)x1, f

′(0)x2)

≤ 〈R0〉∞〈1− f ◦R0〉〈f ′(0)〉rd(x1, x2)

(note that for the third line we need d(u1, u2) < r which is guaranteed by d(u1, u2) < 〈f ′(0)〉r0 · r0, r0 < r
and 〈f ′(0)〉r < 1).Thus for appropriate chosen ρ, Φy is a contraction for every y ∈ G. We will show now
that it also leaves the ball B(0, r0) ∩ im(R0) invariant for appropriately chosen y. First of all, by means
of linearity of R0 one easily checks that it leaves the subspace im(R0) invariant. Now let β := 1−ρ

〈R0〉
and

r1 := βr0 = 1−ρ
〈R0〉

r0, then for R0(u) = x ∈ B(x0, r0) ∩ im(R0) and y ∈ B(f(x0), r1) we have

dF (0,Φy(x)) = d(R0u−R0f(R0u), R0y) ≤ 〈R0〉∞(d(u − f(R0u), 0) + d(y, 0))

Therefore if y ∈ B(f(x0), r1), then Φy : B(x0, r0) → B(x0, r0), and we can apply Banach’s fix point Theorem
4.4 showing that Φy has a unique fixed point in B(x0, r0), or, equivalently, that for every y ∈ B(f(x0), r1)
there is a unique x =: φ(y) ∈ B(x0, r0) with f(x) = y. Therefore B(f(x0), r1) ⊂ f(B(x0, r0)).

Finally we show that at each b ∈ V the map φ is differentiable at b with

φ′(b) = f ′(φ(b))−1

which implies inductively the smoothness of φ′ on V as a composition of the maps φ, f ′ and the inversion
of bounded-invertible linear maps (cf. Theorem 4.2) by help of the chain rule.
Differentiability of φ follows from φ(y) := limk→0 φ

k
y(x) for any x ∈ im(R0) and from Theorem 3.28: To this

aim, we observe

d

dt
φk

y+tv(x) =
∑

i+j=k−1

dφi
y(
d

dt
φy+tv(φ

j
y(x)))

and compute d
dtφy+tv(x) = R0v (independent of x) and dφy(x)R0v = R0v−R0f

′(R0v) = R0(1−f ′R0)(v) use
again the contraction property of φy and the estimate of 1− f ′ ◦R0 to prove the local uniform boundedness
of this expression. It is easy to see that the family (Φk

y)′ is uniformly Lipschitz in y. This enables us to use
Theorem 3.28.
Now, knowing differentiability of φ the equation φ′(b) = f ′(φ(b))−1 is an easy consequence from f ◦R = 1G

(although it is a nice exercise to show it using the limit above and the Neumann series: As Φk
y(x) ∈ im(R0)

for all k and all x ∈ im(R0), and as im(R0) is closed, we know that φ takes its image in im(R0) as well.
Therefore we can consider φR := R−1

0 ◦ Φ : G ⊃ B(0, r1) → G. As R0 is linear and injective, φ′R = R−1
0 ◦ φ′

which is sufficiently near the identity etc.). 2

A corollary of the two preceeding theorems is (as in this case right-inverse and left-inverse coincide)

Theorem 4.7 (Full inverse function Theorem between Fréchet spaces) Let F and G be metric Fréchet
spaces with the metric being a countable sum of continuous functions of seminorms as given by the equation
(7). Let x0 ∈ U , U ⊂ F be open, f : U → G b-smooth, let f ′(x0) be an isomorphism bounded from 0.
Then there is a real number r0 > 0 such that V := f(B(x0, r0)) is open in G and f |B(x0,r0) → V is a
diffeomorphism. 2
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As corollaries, we get the inverse function theorems for Fréchet manifolds with compatible metrics:

Theorem 4.8 (Left inverse function theorem between metric Fréchet manifolds) Let M resp. N
be Fréchet manifolds with compatible metrics dM resp. dN modelled on metric Fréchet spaces F,G with the
metric being a countable sum of continuous functions of seminorms as given by the equation (7). Let x0 ∈ U ,
U ⊂ M be open, f : U → N bounded-differentiable with f ′′ : U × F → B(F,G) bounded as well in U , let
f ′(x0) be injective with bounded left inverse L0 ∈ B(G,F ). Then there is a real number r0 > 0 such that
there is a continuous left inverse of f |B(x0,r0) (thus in particular it is injective). 2

Theorem 4.9 (Right inverse function Theorem between metric Fréchet manifolds) Let M resp.
N be Fréchet manifolds with compatible metrics dM resp. dN modelled on metric Fréchet spaces F,G with
the metric being a countable sum of continuous functions of seminorms as given by the equation (7). Let
x0 ∈ U , U ⊂ M be open, f : U → G bounded-differentiable with surjective differential at x0 and bounded
right inverse R0 : U ∈ B(G,F ) at x0 and with f ′′ : U × F → B(F,G) bounded as well in U . Then there
is a real number r0 > 0 such that V := f(B(x0, r0)) is open in G and there is a smooth right inverse of
f |B(x0,r0) → V (thus in particular it is surjective). 2

Theorem 4.10 (Full inverse function theorem between metric Fréchet manifolds) Let M resp. N
be Fréchet manifolds with compatible metrics dM resp. dN modelled on metric Fréchet spaces F,G with a
metric of the form (8). Let U ⊂M be an open set contained in a chart, f : U → N bounded-differentiable and
f ′′ : U ×F → B(F,G) bounded as well, everything w.r.t. dM and dN . Let f(x0) be an isomorphism bounded
from 0. Then there is a real number r0 > 0 such that V := f(B(x0, r0)) is open in N and f |B(x0,r0) → V is
a diffeomorphism. 2

5 Fréchet manifolds as generalized length spaces

Now let us equip the Fréchet spaces and manifolds with structures carrying still a little bit more infor-
mation trying to give them a notion of curve length. We recall the notion of length spaces, adding two
generalizations:

Definition 5.1 A length structure on a topological space X is a subset C of
⋃

(a,b∈R2) C
0([a, b], X) closed

under concatenation of paths, restrictions to subsets and linear reparametrizations, and a function L : C →
R∪ {∞} which is additive under concatenation of curves, invariant under linear homeomorphisms and with
the additional properties that for a curve c : [a, b] → X with L(c) < ∞ the function l : [a, b] → R+, t 7→
L(c|[a,r]) is continuous, and that for every point x ∈ X and every open neighborhood U of x there is an
ǫ > 0 such the length of any curve beginning at x and ending in the complement of U is greater than ǫ.
A generalized length structure of first kind is a subset and a function satisfying all of the above,
except that the function does not have to be additive under concatenation of curves. A generalized length
structure of second kind is a subset and a function satisfying all of the above, except that the function
does not have to be invariant under reparametrizations of curves. A length space is a metric space such
that the distance between two points p, q coincides with the infimum of length of curves joining p and q.

If X is a metric space, there is always the (in the category of metric spaces and isometries) natural choice of
a length structure C0 :=

⋃
a,b∈R2 C0([a, b], X), L0 := supP∈P

∑n
i=1 d(c(ti+1), c(ti)). If a curve k : [a, b] → X

is Lipschitz, i.e. if lipc := sups,t∈[a,b],s6=td(k(s), k(t))/|s − t| < ∞, then L0(k) =
∫ b

a
liptdt, where lipt :=

limǫ→0 lip(c|[t−ǫ,t+ǫ]) (this limit exists as its argument is monotonely decreasing in ǫ and bounded by 0).
The definition of L0, due to Gromov, is an extension of the notion of curve length for piecewise differentiable
curves in Banach manifolds. However, the following corollary from 3.26 shows that this is not the appropriate
notion of length as we would have too few rectifiable curves, i.e. curves of finite length, as these would not
even include all straight lines:

Corollary 5.2 Let g : t 7→ tv be a straight line in Γ(π) with a metric of the form 7 or 8, then L0(g) <∞ ⇔
∃M ∈ R : ||v||i ≤M∀i.
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So we try to construct at least generalized length structures for interesting spaces of curves. To this purpose
we first prove a theorem about arc-length parametrization of differentiable curves:

Theorem 5.3 Given a C1 curve c : [a, b] → F in a Fréchet space with ċ(t) 6= 0, we can always find a
reparametrization c̃ : [0, T ] → X with dF (ċ(t), 0) = 1.

Proof. This follows from continuity of the first Minkowski functional and the multiplicative inversion in
R+. 2

We define the metric length l of a continuous curve c : I → F by

l(c) :=

∫

I

∑
αnΦ(supr∈R\{0}||ċ(t)(r∂t)||

M
n )dt

where the || · ||Mk are the Minkowski functionals.
We define the smooth length L of a smooth curve by the canonical embedding H : C∞(I,Γ(π) → Γ(I×π)
and L(H) := 〈H〉 as in the section of Fréchet manifolds.
Obviously, the smooth length gives rise to the Fréchet metric already used, but its definition needs more
than the metric alone, but the whole series of seminorms. The metric length, in turn, is defined for a wider
class of curves, but it induces a new metric. It seems most approriate to define lengths of smooth curves
first, by L, and then define the metric as infimum of curve length. We want to compare l and L which differ
basically by the order of Φ and the integral along the curve:

Theorem 5.4 Let M be a metric Fréchet manifold. (C∞(I,M), L) is a generalized length structure of first
kind, satisfying only an inequality L(c1 ◦ c2) ≤ L(c1) + L(c2). (C0(I,M), l) is a generalized length structure
of second kind. We have the inequality l(c) ≤ L(c).

Proof. We only show 〈I〉 ≥ l(I). It is enough to show the inequality in

∑
2−nΦ(an

∫ 1

0

f(t)dt) ≥

∫ 1

0

∑
2−nΦ(anf(t))dt =

∑
2−n

∫ 1

0

Φ(anf(t))dt,

as the right hand side is ≥
∫
[...]dt by the inequality after the definition of length and scalar-boundedness.

So if we absorb am into f , it is enough to show that for an arbitrary positive function S, we have

Φ(

∫ 1

0

f(t)dt) ≥

∫ 1

0

Φ(f(t))dt. (15)

But this is clear from the concavity of Φ and the fact that step functions are dense in L1(I): Let T be a step
function on the unit interval with values T1, ...Tn. The integral of T is a convex combination of T1, ...Tn, and
a concave function maps convex sets into convex sets, explicitly: Φ(tx+(1− t)y) ≥ tΦ(x)+ (1− t)Φ(y), thus
by induction Φ(

∑
tixi) ≥

∑
tiΦ(xi) if

∑
ti = 1. Therefore Equation (15) holds, and we are done. 2

Some important questions remain open: Is there a metric such that Gromov’s curve length is finite for all
smooth curves? Is there a proper length structure (no generalized one) only defined by means of the metric
for which all smooth curves are rectifiable? And if yes, is there one inducing the metric it started with? This
shall be object of further research.
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